
Math. Program., Ser. A (2017) 162:83–112
DOI 10.1007/s10107-016-1030-6

FULL LENGTH PAPER

Minimizing finite sums with the stochastic average
gradient

Mark Schmidt1 · Nicolas Le Roux2 ·
Francis Bach3

Received: 11 September 2013 / Accepted: 13 May 2016 / Published online: 14 June 2016
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Abstract We analyze the stochastic average gradient (SAG) method for optimizing
the sum of a finite number of smooth convex functions. Like stochastic gradient (SG)
methods, the SAG method’s iteration cost is independent of the number of terms
in the sum. However, by incorporating a memory of previous gradient values the
SAG method achieves a faster convergence rate than black-box SG methods. The
convergence rate is improved from O(1/

√
k) to O(1/k) in general, and when the sum

is strongly-convex the convergence rate is improved from the sub-linear O(1/k) to
a linear convergence rate of the form O(ρk) for ρ < 1. Further, in many cases the
convergence rate of the newmethod is also faster than black-box deterministic gradient
methods, in terms of the number of gradient evaluations. This extends our earlier
work Le Roux et al. (Adv Neural Inf Process Syst, 2012), which only lead to a faster
rate for well-conditioned strongly-convex problems. Numerical experiments indicate
that the new algorithm often dramatically outperforms existing SG and deterministic
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gradient methods, and that the performance may be further improved through the use
of non-uniform sampling strategies.

Keywords Convex optimization · Stochastic gradient methods · First-order methods ·
Convergence Rates

Mathematics Subject Classification 90C06 · 90C15 · 90C25 · 90C30 · 65K05 ·
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1 Introduction

A plethora of the optimization problems arising in practice involve computing a mini-
mizer of a finite sum of functions measuring misfit over a large number of data points.
A classical example is least-squares regression,

minimize
x∈Rp

1

n

n∑

i=1

(aTi x − bi )
2,

where the ai ∈ R
p and bi ∈ R are the data samples associated with a regression

problem. Another important example is logistic regression,

minimize
x∈Rp

1

n

n∑

i=1

log(1 + exp(−bia
�
i x)),

where the ai ∈ R
p and bi ∈ {−1, 1} are the data samples associated with a binary

classification problem. A key challenge arising in modern applications is that the
number of data points n (also known as training examples) can be extremely large,
while there is often a large amount of redundancy between examples. The most wildly
successful class of algorithms for taking advantage of the sum structure for problems
where n is very large are stochastic gradient (SG)methods [7,49]. Although the theory
behind SG methods allows them to be applied more generally, SG methods are often
used to solve the problem of optimizing a finite sample average,

minimize
x∈Rp

g(x) := 1

n

n∑

i=1

fi (x). (1)

In this work, we focus on such finite data problems where each fi is smooth and
convex.

In addition to this basic setting, we will also be interested in cases where the sum g
has the additional property that it is strongly-convex. This often arises due to the use
of a strongly-convex regularizer such as the squared �2-norm, resulting in problems
of the form

minimize
x∈Rp

λ

2
‖x‖2 + 1

n

n∑

i=1

li (x), (2)
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Minimizing finite sums with the stochastic average gradient 85

where each li is a data-misfit function (as in least-squares and logistic regression) and
the positive scalar λ controls the strength of the regularization. These problems can
be put in the framework of (1) by using the choice

fi (x) := λ

2
‖x‖2 + li (x).

The resulting function g will be strongly-convex provided that the individual loss
functions li are convex. An extensive list of convex loss functions used in a statistical
data-fitting context is given by Teo et al. [61], and non-smooth loss functions (or
regularizers) can also be put in this framework by using smooth approximations (for
example, see [43]).

For optimizing problem (1), the standarddeterministic or full gradient (FG)method,
which dates back to Cauchy [10], uses iterations of the form

xk+1 = xk − αkg
′(xk) = xk − αk

n

n∑

i=1

f ′
i (x

k), (3)

whereαk is the step size on iteration k. Assuming that aminimizer x∗ exists, then under
standard assumptions the sub-optimality achieved on iteration k of the FGmethodwith
a constant step size is given by

g(xk) − g(x∗) = O(1/k),

when g is convex [42, see Corollary 2.1.2]. This results in a sublinear convergence
rate. When g is strongly-convex, the error also satisfies

g(xk) − g(x∗) = O(ρk),

for some ρ < 1 which depends on the condition number of g [42, see Theorem 2.1.5].
This results in a linear convergence rate, which is also known as a geometric or expo-
nential rate because the error is cut by a fixed fraction on each iteration. Unfortunately,
the FG method can be unappealing when n is large because its iteration cost scales
linearly in n.

The main appeal of SG methods is that they have an iteration cost which is inde-
pendent of n, making them suited for modern problems where n may be very large.
The basic SG method for optimizing (1) uses iterations of the form

xk+1 = xk − αk f
′
ik (x

k), (4)

where at each iteration an index ik is sampled uniformly from the set {1, . . . , n}. The
randomly chosen gradient f ′

ik
(xk) yields an unbiased estimate of the true gradient

g′(xk) and one can show under standard assumptions (see [40]) that, for a suitably
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chosen decreasing step-size sequence {αk}, the SG iterations have an expected sub-
optimality for convex objectives of

E[g(xk)] − g(x∗) = O(1/
√
k),

and an expected sub-optimality for strongly-convex objectives of

E[g(xk)] − g(x∗) = O(1/k).

In these rates, the expectations are takenwith respect to the selection of the ik variables.
These sublinear rates are slower than the corresponding rates for the FG method, and
under certain assumptions these convergence rates are optimal in a model of computa-
tion where the algorithm only accesses the function through unbiased measurements
of its objective and gradient (see [1,39,40]). Thus, we should not expect to be able to
obtain the convergence rates of the FG method if the algorithm only relies on unbi-
ased gradient measurements. Nevertheless, by using the stronger assumption that the
functions are sampled from a finite dataset, in this paper we show that we can achieve
the convergence rates of FG methods while preserving the iteration complexity of SG
methods.

The primary contribution of this work is the analysis of a new algorithm that we
call the stochastic average gradient (SAG) method, a randomized variant of the incre-
mental aggregated gradient (IAG) method of Blatt et al. [5]. The SAG method has the
low iteration cost of SG methods, but achieves the convergence rates stated above for
the FG method. The SAG iterations take the form

xk+1 = xk − αk

n

n∑

i=1

yki , (5)

where at each iteration a random index ik is selected and we set

yki =
{
f ′
i (x

k) if i = ik,

yk−1
i otherwise.

(6)

That is, like the FG method, the step incorporates a gradient with respect to each
function. But, like the SG method, each iteration only computes the gradient with
respect to a single example and the cost of the iterations is independent of n. Despite
the low cost of the SAG iterations, we show in this paper that with a constant step-
size the SAG iterations have an O(1/k) convergence rate for convex objectives and
a linear convergence rate for strongly-convex objectives, like the FG method. That is,
by having access to ik and by keeping a memory of the most recent gradient value
computed for each index i , this iteration achieves a faster convergence rate than is
possible for standard SG methods. Further, in terms of effective passes through the
data, we will also see that for many problems the convergence rate of the SAGmethod
is also faster than is possible for standard FG methods.
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Minimizing finite sums with the stochastic average gradient 87

One of the main contexts where minimizing the sum of smooth convex functions
arises is machine learning. In this context, g is often an empirical risk (or a regularized
empirical risk), which is a sample average approximation to the true risk that we are
interested in. It is known that with n training examples the empirical risk minimizer
(ERM) has an error for the true risk of O(1/

√
n) in the convex case and O(1/n) in

the strongly-convex case. Since these rates are achieved by doing one pass through the
data with an SG method, in the worst case the SAG algorithm applied to the empirical
risk cannot improve the convergence rate in terms of the true risk over this simple
method. Nevertheless, Srebro and Sridharan [58] note that “overwhelming empirical
evidence shows that for almost all actual data, the ERM is better. However, we have no
understanding of why this happens”. Although our analysis does not give insight into
the better performance of ERM, our analysis shows that the SAG algorithm will be
preferable to SG methods for finding the ERM and hence for many machine learning
applications.

The next section reviews several closely-related algorithms from the literature,
including previous attempts to combine the appealing aspects of FG and SG methods.
However, despite 60years of extensive research on SG methods, with a significant
portion of the applications focusing on finite datasets, we believe that this is the first
general method that achieves the convergence rates of FG methods while preserving
the iteration cost of standard SG methods. Section 3 states the (standard) assumptions
underlying our analysis and gives our convergence rate results. Section 4 discusses
practical implementation issues including howwe adaptively set the step size and how
we can reduce the storage cost needed by the algorithm. For example, we can reduce
the memory requirements from O(np) to O(n) in the common scenario where each
fi only depends on a linear function of x , as in least-squares and logistic regression.
Section 5 presents a numerical comparison of an implementation based on SAG to
competitive SG and FG methods, indicating that the method may be very useful for
problems where we can only afford to do a few passes through a data set.

A preliminary conference version of this work appears in [30], and we extend
this work in various ways. Most notably, the analysis in the prior work focuses only
on showing linear convergence rates in the strongly-convex case while the present
work also gives an O(1/k) convergence rate for the general convex case. In the prior
work we show (Proposition 1) that a small step-size gives a slow linear convergence
rate (comparable to the rate of FG methods in terms of effective passes through the
data), while we also show (Proposition 2) that a much larger step-size yields a much
faster convergence rate, but this requires that n is sufficiently large compared to the
condition number of the problem. In the present work (Sect. 3) our analysis yields
a very fast convergence rate using a large step-size (Theorem 1), even when this
condition required by the prior work is not satisfied. Surprisingly, for ill-conditioned
problems our new analysis shows that using SAG iterations can be nearly n times as
fast as the standard gradient method. To prove this stronger result, Theorem 1 employs
a Lyapunov function that generalizes the Lyapunov functions used in Propositions 1
and 2 of the previous work. This new Lyapunov function leads to a unified proof
for both the convex and the strongly-convex cases, and for both well-conditioned
and ill-conditioned problems. However, this more general Lyapunov function leads
to a more complicated analysis. To significantly simplify the formal proof, we use
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88 M. Schmidt et al.

a computed-aided strategy to verify the non-negativity of certain polynomials that
arise in the proof. Beyond this significantly strengthened result, in this work we also
argue that yet-faster convergence rates may be achieved by non-uniform sampling
(Sect. 4.8) and present numerical results showing that this can lead to drastically
improved performance (Sect. 5.3).

Due to space restrictions, some details are omitted in this article. This notably
includes the proof of the main theorem, some additional experimental results, and a
thorough discussion of themany interesting works that have followed after [30]. These
extra materials are made available in the extrended arXiv version of the paper located
at: http://arxiv.org/abs/1309.2388.

2 Related work

There are a large variety of approaches available to accelerate the convergence of SG
methods, and a full review of this immense literature would be outside the scope of this
work. Below, we comment on the relationships between the new method and several
of the most closely-related ideas.

2.1 Momentum

SG methods that incorporate a momentum term use iterations of the form

xk+1 = xk − αk f
′
ik (x

k) + βk(x
k − xk−1),

see [62]. It is common to set all βk = β for some constant β, and in this case we can
rewrite the SG with momentum method as

xk+1 = xk −
k∑
j=1

α jβ
k− j f ′

i j
(x j ).

We can re-write the SAG updates (5) in a similar form as

xk+1 = xk −
k∑
j=1

αk S( j, i1:k) f ′
i j
(x j ), (7)

where the selection function S( j, i1:k) is equal to 1/n if j is the maximum iteration
number where example i j was selected and is set to 0 otherwise. Thus, momentum
uses a geometric weighting of previous gradients while the SAG iterations select
and average the most recent evaluation of each previous gradient. While momentum
can lead to improved practical performance, it still requires the use of a decreasing
sequence of step sizes and is not known to lead to a faster convergence rate.
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2.2 Gradient averaging

Closely related to momentum is using the sample average of all previous gradients,

xk+1 = xk − αk
k

k∑
j=1

f ′
i j
(x j ),

which is similar to the SAG iteration in the form (5) but where all previous gradients
are used. This approach is used in the dual averaging method of Nesterov [44] and,
while this averaging procedure and its variants lead to convergence for a constant step
size and can improve the constants in the convergence rate [63], it does not improve
on the sublinear convergence rates for SG methods.

2.3 Iterate averaging

Rather than averaging the gradients, some authors propose to perform the basic SG
iteration but use an average over certain xk values as the final estimator.With a suitable
choice of step-sizes, this gives the same asymptotic efficiency as Newton-like second-
order SGmethods and also leads to increased robustness of the convergence rate to the
exact sequence of step sizes [2,47]. Bather’s method [28, § 1.3.4] combines gradient
averaging with online iterate averaging and also displays appealing asymptotic prop-
erties. Several authors have recently shown that suitable iterate averaging schemes
obtain an O(1/k) rate for strongly-convex optimization even for non-smooth objec-
tives [21,48]. However, none of these methods improve on the O(1/

√
k) and O(1/k)

rates for SG methods.

2.4 Stochastic versions of FG methods

Various options are available to accelerate the convergence of the FG method for
smooth functions, such as the accelerated full gradient (AFG)method ofNesterov [41],
as well as classical techniques based on quadratic approximations such as diagonally-
scaled FG methods, non-linear conjugate gradient, quasi-Newton, and Hessian-free
Newtonmethods (see [46]). There has been a substantial amount ofwork ondeveloping
stochastic variants of these algorithms, with several of the notable recent examples
including [6,18,22,36,60,63]. Duchi et al. [15] have recently shown an improved
regret bound using a diagonal scaling that takes into account previous gradient magni-
tudes. Alternately, if we split the convergence rate into a deterministic and stochastic
part, these methods can improve the dependency of the convergence rate of the deter-
ministic part [18,22,63]. However, we are not aware of any existing method of this
flavor that improves on the O(1/

√
k) and O(1/k) dependencies on the stochastic part.

Further, many of these methods typically require carefully setting parameters (beyond
the step size) and often aren’t able to take advantage of sparsity in the gradients
f ′
i .
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2.5 Constant step size

If the SG iterations are used for strongly-convex optimization with a constant step size
(rather than a decreasing sequence), then Nedic and Bertsekas [37, Proposition 3.4]
showed that the convergence rate of themethod can be split into two parts. The first part
depends on k and converges linearly to 0. The second part is independent of k and does
not converge to 0. Thus, with a constant step size, the SG iterations have a linear con-
vergence rate up to some tolerance, and in general after this point the iterations do not
make further progress. Indeed, up until the recent work of Bach andMoulines [3], con-
vergence of the basic SGmethod with a constant step size had only been shown for the
strongly-convex quadratic case (with averaging of the iterates) [47], or under extremely
strong assumptions about the relationship between the functions fi [57]. This contrasts
with the method we present in this work which converges to the optimal solution using
a constant step size and does so with a linear rate (without additional assumptions).

2.6 Accelerated methods

Accelerated SG methods, which despite their name are not related to the aforemen-
tioned AFG method, take advantage of the fast convergence rate of SG methods with
a constant step size. In particular, accelerated SG methods use a constant step size by
default, and only decrease the step size on iterations where the inner-product between
successive gradient estimates is negative [14,25]. This leads to convergence of the
method and allows it to potentially achieve periods of faster convergence where the
step size stays constant. However, the overall convergence rate of the method is not
improved.

2.7 Hybrid methods

Some authors have proposed variants of the SG method for problems of the form (1)
that seek to gradually transform the iterates into the FG method in order to achieve
a faster convergence rate. Bertsekas [4] proposes to go through the data cyclically
with a specialized weighting that allows the method to achieve a linear convergence
rate for strongly-convex quadratic functions. However, the weighting is numerically
unstable and the linear convergence rate presented treats full passes through the data as
iterations. A related strategy is to group the functions fi into ‘batches’ of increasing
size and perform SG iterations on the batches. Friedlander and Schmidt [17] give
conditions under which this strategy achieves the O(1/k) and O(ρk) convergence
rates of FG methods. However, in both cases the iterations that achieve the faster rates
have a cost that is not independent of n, as opposed to SAG iterations.

2.8 Incremental aggregated gradient

Blatt et al. [5] present the most closely-related algorithm to the SAG algorithm, the
IAG method. This method is identical to the SAG iteration (5), but uses a cyclic
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Minimizing finite sums with the stochastic average gradient 91

choice of ik rather than sampling the ik values. This distinction has several important
consequences. In particular, Blatt et al. are only able to show that the convergence rate
is linear for strongly-convex quadratic functions (without deriving an explicit rate),
and their analysis treats full passes through the data as iterations. Using a non-trivial
extension of their analysis and a novel proof technique involving bounding the gradient
and iterates simultaneously by a Lyapunov potential function, in this work we give an
O(1/k) rate for general convex functions and an explicit linear convergence rate for
general strongly-convex functions using the SAG iterations that only examine a single
function. Further, as our analysis and experiments show, the SAG iterations allow a
much larger step size than is required for convergence of the IAG method. This leads
to more robustness to the selection of the step size and also, if suitably chosen, leads
to a faster convergence rate and substantially improved practical performance. This
shows that the simple change (random selection vs. cycling) can dramatically improve
optimization performance.

2.9 Special problem classes

For certain highly-restricted classes of problems, it is possible to show faster con-
vergence rates for methods that only operate on a single function fi . For example,
Strohmer and Vershynin [59] show that the randomized Kaczmarz method with a par-
ticular sampling scheme achieves a linear convergence rate for the problem of solving
consistent linear systems. It is also known that the SGmethod with a constant step-size
has the O(1/k) and O(ρk) convergence rates of FGmethods if ‖ f ′

i (x)‖ is bounded by
a linear function of ‖g′(x)‖ for all i and x [52]. This is the strong condition required
by Solodov [57] to show convergence of the SG method with a constant step size.
Unlike these previous works, our analysis in the next section applies to general fi that
satisfy standard assumptions, and only requires gradient evaluations of the functions
fi rather than dual block-coordinate steps.

2.10 Subsequent work

Since the first version of thisworkwas released, there has been an explosion of research
into stochastic gradient methods with faster convergence rates. It has been shown that
similar rates can be achieved for certain constrained and non-smooth problems, that
similar rates can be achieved without the memory requirements, that Newton-like
variants of the method may be possible, and that similar rates can be achieved with
other algorithms. In Sect. 6 of the extended version of this paper, we survey these
recent developments.

3 Convergence analysis

In our analysis we assume that each function fi in (1) is convex and differentiable,
and that each gradient f ′

i is Lipschitz-continuous with constant L , meaning that for
all x and y in Rp and each i we have
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‖ f ′
i (x) − f ′

i (y)‖ � L‖x − y‖. (8)

This is a fairly weak assumption on the fi functions, and in cases where the fi are
twice-differentiable it is equivalent to saying that the eigenvalues of the Hessians of
each fi are bounded above by L . We will also assume the existence of at least one
minimizer x∗ that achieves the optimal function value. We denote the average iterate
by x̄ k = 1

k

∑k−1
i=0 xi , and the variance of the gradient norms at the optimum x∗ by

σ 2 = 1
n

∑
i ‖ f ′

i (x
∗)‖2. Our convergence results consider two different initializations

for the y0i variables: setting y0i = 0 for all i , or setting them to the centered gradient at
the initial point x0 given by y0i = f ′

i (x
0) − g′(x0). We note that all our convergence

results are expressed in terms of expectationswith respect to the internal randomization
of the algorithm (the selection of the random variables ik), and not with respect to the
data which is assumed to be deterministic and fixed.

In addition to this basic convex case discussed above, we will also consider the case
where the average function g = 1

n

∑n
i=1 fi is strongly-convex with constant μ > 0,

meaning that the function x �→ g(x) − μ
2 ‖x‖2 is convex. For twice-differentiable g,

this is equivalent to requiring that the eigenvalues of the Hessian of g are bounded
below by μ. This is a stronger assumption that is often not satisfied in practical appli-
cations. Nevertheless, in many applications we are free to choose a regularizer of the
parameters, and thus we can add an �2-regularization term as in (2) to transform any
convex problem into a strongly-convex problem (in this case we have μ ≥ λ). Note
that strong-convexity implies the existence of a unique x∗ that achieves the optimal
function value.

Under these standard assumptions, we now state our convergence result.

Theorem 1 With a constant step size of αk = 1
16L , the SAG iterations satisfy for

k ≥ 1:

E[g(x̄ k)] − g(x∗) � 32n

k
C0,

where if we initialize with y0i = 0 we have

C0 = g(x0) − g(x∗) + 4L

n
‖x0 − x∗‖2 + σ 2

16L
,

and if we initialize with y0i = f ′
i (x

0) − g′(x0) we have

C0 = 3

2

[
g(x0) − g(x∗)

]
+ 4L

n
‖x0 − x∗‖2.

Further, if g is μ-strongly convex we have

E[g(xk)] − g(x∗) �
(
1 − min

{ μ

16L
,
1

8n

})k
C0.
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The proof is given in Appendix B of the extended version of this paper, and involves
finding a Lyapunov function for a non-linear stochastic dynamical system defined on
the yki and x

k variables that converges to zero at the above rates, and showing that this
function dominates the expected sub-optimality [E[g(xk)] − g(x∗)]. This is the same
approach used to show Proposition 1 and 2 in the conference version of the paper [30],
but in this work we use a more general Lyapunov function that gives a much faster
rate for ill-conditioned problems and also allows us to analyze problems that are not
strongly-convex. To simplify the analysis of thismore complicatedLyapunov function,
our new proof verifies positivity of certain polynomials that arise in the bound using
a computer-aided approach.

Note that while the first part of Theorem 1 is stated for the average x̄ k , with a trivial
change to the proof technique it can be shown to also hold for any iterate xk where
g(xk) is lower than the average function value up to iteration k, 1

k

∑k−1
i=0 g(xi ). Thus,

in addition to x̄ k the result also holds for the best iterate. We also note that our bounds
are valid for any L greater than or equal to the minimum L satisfying (8), implying
an O(1/k) and linear convergence rate for any αk � 1/16L (but the bound becomes
worse as L grows). Although initializing each y0i with the centered gradient may have
an additional cost and slightly worsens the dependency on the initial sub-optimality
(g(x0) − g(x∗)), it removes the dependency on the variance σ 2 of the gradients at
the optimum. While we have stated Theorem 1 in terms of the function values, in the
strongly-convex casewe also obtain a convergence rate on the iterates becausewe have

μ

2
‖xk − x∗‖2 � g(xk) − g(x∗).

Theorem 1 shows that the SAG iterations are advantageous over SG methods in
later iterations because they obtain a faster convergence rate. However, the SAG iter-
ations have a worse constant factor because of the dependence on n. We can improve
the dependence on n using an appropriate choice of x0. In particular, following [30]
we can set x0 to the result of n iterations of an appropriate SG method. In this set-
ting, the expectation of g(x0) − g(x∗) is O(1/

√
n) in the convex setting, while both

g(x0) − g(x∗) and ‖x0 − x∗‖2 would be in O(1/n) in the strongly-convex setting. If
we use this initialization of x0 and set y0i = f ′

i (x
0) − g′(x0), then in terms of n and k

the SAG convergence rates take the form O(
√
n/k) and O(ρk/n) in the convex and

strongly-convex settings, instead of the O(n/k) and O(ρk) rates implied by Theo-
rem 1. However, in our experiments we do not use an SG initialization but rather use
a minor variant of SAG in the early iterations (discussed in the next section), which
appears more difficult to analyze but which gives better empirical performance.

An interesting consequence of using a step-size of αk = 1/16L is that it makes
the method adaptive to the strong-convexity constant μ. That is, for problems with
a higher degree of local strong-convexity around the solution x∗, the algorithm will
automatically take advantage of this and yield a faster local rate. This can even lead to
a local linear convergence rate if the problem is strongly-convex near the optimum but
not globally strongly-convex. This adaptivity to the problem difficulty is in contrast
to SG methods whose sequence of step sizes typically depend on global constants and
thus do not adapt to local strong-convexity.
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We have observed in practice that the IAG method with a step size of αk = 1
16L

may diverge. While the step-size needed for convergence of the IAG iterations is not
precisely characterized, we have observed that it requires a step-size of approximately
1/nL in order to converge. Thus, the SAG iterations can tolerate a step size that
is roughly n times larger, which leads to increased robustness to the selection of
the step size. Further, as our analysis and experiments indicate, the ability to use a
large step size leads to improved performance of the SAG iterations. Note that using
randomized selection with a larger step-size leading to vastly improved performance
is not an unprecedented phenomenon; the analysis of Nedic and Bertsekas [37] shows
that the iterations of the basic stochastic gradient method with a constant step-size can
achieve the same error bound as full cycles through the data of the cyclic variant of the
method by using steps that are n times larger (see the discussion after Proposition 3.4).
Related results also appear in [11,29] showing the advantage of stochastic optimization
strategies over deterministic optimization strategies in the context of certain dual
optimization problems.

The convergence rate of the SAG iterations in the strongly-convex case takes a
somewhat surprising form. For ill-conditioned problems where n � 2L

μ
, n does not

appear in the convergence rate and the SAGalgorithm has nearly the same convergence
rate as the FG method with a step size of 1/16L , even though it uses iterations which
are n times cheaper. This indicates that the basic gradient method (under a slightly
sub-optimal step-size) is not slowed down by using out-of-date gradientmeasurements
for ill-conditioned problems. Although n appears in the convergence rate in the well-
conditioned settingwhere n > 2L

μ
, if we perform n iterations of SAG (i.e., one effective

pass through the data), the error is multiplied by (1− 1/8n)n � exp(−1/8), which is
independent of n. Thus, in this setting each pass through the data reduces the excess
objective by a constant multiplicative factor that is independent of the problem.

It is interesting to compare the convergence rate of SAG in the strongly-convex case
with the known convergence rates for first-order methods [42, see §2]. In Table 1, we
use two examples to compare the convergence rate of SAG to the convergence rates
of the standard FG method, the faster AFG method, and the lower-bound for any first-
order strategy (under certain dimensionality assumptions) for optimizing a function g

Table 1 Comparison of convergence rates of first-order methods to the convergence rates of n iterations
of SAG

Algorithm Step size Theoretical rate Rate in case 1 Rate case 2

FG 1
L

(
1 − μ

L

)2 0.9998 1.000

FG 2
μ+L

(
1 − 2μ

L+μ

)2
0.9996 1.000

AFG 1
L

(
1 −

√
μ
L

)
0.9900 0.9990

Lower-bound –

(
1 − 2

√
μ√

L+√
μ

)2
0.9608 0.9960

SAG (n iters) 1
16L

(
1 − min

{
μ

16L , 1
8n

})n
0.8825 0.9938

In the examples we take n = 100000, L = 100, μ = 0.01 (Case 1), and μ = 0.0001 (Case 2)
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satisfying our assumptions. In this table, we compare the rate obtained for these FG
methods to the rate obtained by running n iterations of SAG, since this requires the
same number of evaluations of f ′

i . Case 1 in this table focuses on a well-conditioned
case where the rate of SAG is (1− 1/8n), while Case 2 focuses on an ill-conditioned
example where the rate is (1 − μ/16L). Note that in the latter case the O(1/k) rate
for the method may be faster.

In Table 1 we see that performing n iterations of SAG can actually lead to a rate
that is faster than the lower bound for FG methods. Thus, for certain problems SAG
can be substantially faster than any FG method that does not use the structure of the
problem. However, we note that the comparison is somewhat problematic because L
in the SAG rates is the Lipschitz constant of the f ′

i functions, while in the FG method
we only require that L is an upper bound on the Lipschitz continuity of g′ so it may
be much smaller. To give a concrete example that takes this into account and also
considers the rates of dual methods and coordinate-wise methods, in Appendix A of
the extended version of this paper we attempt to more carefully compare the rates
obtained for SAG with the rates of primal and dual FG and coordinate-wise methods
for the special case of �2-regularized least-squares regression.

4 Implementation details

In Algorithm 1we give pseudo-code for an implementation of the basicmethod, where
we use a variable d to track the quantity (

∑n
i=1 yi ). This section focuses on further

implementation details that are useful in practice. In particular, we discuss modifica-
tions that lead to better practical performance than the basic Algorithm 1, including
ways to reduce the storage cost, how to handle regularization, how to set the step size,
using mini-batches, and using non-uniform sampling. Note that an implementation
of the algorithm that incorporates many of these aspects is available from the first
author’s webpage.

Algorithm 1 Basic SAG method for minimizing 1
n

∑n
i=1 fi (x) with step size α.

d = 0, yi = 0 for i = 1, 2, . . . , n
for k = 0, 1, . . . do
Sample i from {1, 2, . . . , n}
d = d − yi + f ′

i (x)
yi = f ′

i (x)
x = x − α

n d
end for

4.1 Structured gradients and just-in-time parameter updates

For many problems the storage cost of O(np) for the yki vectors is prohibitive, but
we can often use the structure of the gradients f ′

i to reduce this cost. For example,
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a commonly-used specialization of (1) is linearly-parameterized models which take
form

minimize
x∈Rp

g(x) := 1

n

n∑

i=1

fi (a
�
i x). (9)

Since each ai is constant, for these problems we only need to store the scalar f ′
ik
(uki )

for uki = a�
ik
xk rather than the full gradient ai f ′

i (u
k
i ). This reduces the storage cost

from O(np) down to O(n).
For problems where the vectors ai are sparse, an individual gradient f ′

i will inherit
the sparsity pattern of the corresponding ai . However, the update of x in Algorithm 1
appears unappealing since in general d will be dense, resulting in an iteration cost of
O(p). Nevertheless, we can take advantage of the simple form of the SAG updates
to implement a ‘just-in-time’ variant of the SAG algorithm where the iteration cost
is proportional to the number of non-zeroes in aik . In particular, we do this by not
explicitly storing the full vector xk after each iteration. Instead, on each iteration we
only compute the elements xkj corresponding to non-zero elements of aik , by applying

the sequence of updates to each variable xkj since the last iteration where it was non-
zero in aik . This sequence of updates can be applied efficiently since it simply involves
changing the step size. For example, if variable j has been zero in aik for 5 iterations,
then we can compute the needed value xkj using

xkj = xk−5
j − 5α

n

n∑

i=1

(yki ) j .

This update allows SAG to be efficiently applied to sparse data sets where n and p are
both in the millions or higher but the number of non-zeros is much less than np.

4.2 Re-weighting on early iterations

In the update of x in Algorithm 1, we normalize the direction d by the total number of
data points n. When initializing with y0i = 0 we believe this leads to steps that are too
small on early iterations of the algorithm where we have only seen a fraction of the
data points, because many yi variables contributing to d are set to the uninformative
zero-vector. Following Blatt et al. [5], the more logical normalization is to divide d
by m, the number of data points that we have seen at least once (which converges to n
once we have seen the entire data set), leading to the update x = x − α

m d. Although
this modified SAG method appears more difficult to analyze, in our experiments we
found that running the basic SAG algorithm from the very beginning with this modifi-
cation outperformed the basic SAG algorithm as well as the SG/SAG hybrid algorithm
mentioned in the Sect. 3. In addition to using the gradient information collected during
the first k iterations, this modified SAG algorithm is also advantageous over hybrid
SG/SAG algorithms because it only requires estimating a single constant step size.
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4.3 Exact and efficient regularization

In the case of regularized objectives like (2), the cost of computing the gradient of the
regularizer is independent of n. Thus, we can use the exact gradient of the regularizer
in the update of x , and only use d to approximate the sum of the l ′i functions. By
incorporating the gradient of the regularizer explicitly, the update for yi in Algorithm 1
becomes yi = l ′i (x), and in the case of �2-regularization the update for x becomes

x = x − α

(
1

m
d + λx

)
= (1 − αλ) x − α

m
d.

If the loss function gradients l ′i are sparse as in Sect. 4.1, then these modifications lead
to a reduced storage requirement even though the gradient of the regularizer is dense.
Further, although the update of x again appears to require dense vector operations,
we can implement the algorithm efficiently if the ai are sparse. In particular, to allow
efficient multiplication of x by the scalar (1−αλ), it is useful to represent x in the form
x = κz, where κ is a scalar and z is a vector (as done by Shalev-Shwartz et al. [55]).
Under this representation, we can multiply x by a scalar in O(1) by simply updating
κ (though to prevent κ becoming too large or too small we may need to occasionally
re-normalize by setting z = κz and κ = 1). To efficiently implement the vector
subtraction operation, we can use a variant of the just-in-time updates from Sect. 4.1.
In Algorithm 2, we give pseudo-code for a variant of SAG that includes all of these
modifications, and thus uses no full-vector operations. This code uses a vector y to keep
track of the scalars l ′i (u

k
i ), a vector C to determine whether a data point has previously

been visited, a vector V to track the last time a variable was updated, and a vector S
to keep track of the cumulative sums needed to implement the just-in-time updates.

4.4 Warm starting

Inmany scenarioswemay need to solve a set of closely-related optimization problems.
For example, we may want to apply Algorithm 2 to a regularized objective of the
form (2) for several values of the regularization parameter λ. Rather than solving
these problems independently, wemight expect to obtain better performance bywarm-
starting the algorithm. Although initializing x with the solution of a related problem
can improve performance, we can expect an even larger performance improvement if
we also use the gradient information collected from a run of SAG for a close value
of λ. For example, in Algorithm 2 we could initialize x , yi , d, m, and Ci based on a
previous run of the SAG algorithm. In this scenario, Theorem 1 suggests that it may
be beneficial in this setting to center the yi variables around d.

4.5 Larger step sizes

In our experiments we have observed that utilizing a step size of 1/L , as in standard
FGmethods, always converged and often performed better than the step size of 1/16L
suggested by our analysis. Thus, in our experiments we used αk = 1/L even though
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Algorithm 2 SAG variant for minimizing λ
2‖x‖2 + 1

n

∑n
i=1 li (a

�
i x), with step size α

and ai sparse.
{Initialization, note that x = κz.}
d = 0, yi = 0 for i = 1, 2, . . . , n
z = x , κ = 1
m = 0, Ci = 0 for i = 1, 2, . . . , n
S−1 = 0, Vj = 0 for j = 1, 2, . . . , p
for k = 0, 1, . . . do
Sample i from {1, 2, . . . , n}
if Ci = 0 then
{This is the first time we have sampled this data point.}
m = m + 1
Ci = 1

end if
for j non-zero in ai do
{Just-in-time calculation of needed values of z.}
z j = z j − (Sk−1 − SVj−1)d j
V j = k

end for
{Update the memory y and the direction d.}
Let J be the support of ai
dJ = dJ − ai J (yi − l ′i (κaTi J z J ))

yi = l ′i (κaTi J z J )

{Update κ and the sum needed for z updates.}
κ = κ(1 − αλ)

Sk = Sk−1 + α/(κm)

end for
{Final x is κ times the just-in-time update of all z.}
for j = 1, 2, . . . , p do
x j = κ(z j − (Sk−1 − SVj−1)d j )

end for

we do not have a formal analysis of the method under this step size. We also found that
a step size of 2/(L + nμ), which in the strongly-convex case corresponds to the best
fixed step size for the FGmethod in the special case of n = 1 [42, see Theorem 2.1.15],
sometimes yields even better performance (though in other cases it performs poorly).

4.6 Line-search when L is not known

In general the Lipschitz constant L will not be known, but we may obtain a reasonable
approximation of a valid L by evaluating fi values while running the algorithm. In
our experiments, we used a basic line-search where we start with an initial estimate
L0, and double this estimate whenever we do not satisfy the inequality

fik

(
xk − 1

Lk
f ′
ik (x

k)

)
� fik (x

k) − 1

2Lk
‖ f ′

ik (x
k)‖2,

which must be true if Lk is valid. An important property of this test is that it depends
on fik but not on g, and thus the cost of performing this test is independent of n. To
avoid instability caused by comparing very small numbers, we only do this test when
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‖ f ′
ik
(xk)‖2 > 10−8. Since L is a global quantity but the algorithm will eventually

remain within a neighbourhood of the optimal solution, it is possible that a smaller
estimate of L (and thus a larger step size) can be used as we approach x∗. To potentially
take advantage of this, we initialize with the slightly smaller Lk = (Lk−12−1/n) at
each iteration, so that the estimate of L is halved if we do n iterations (an effective pass
through the data) and never violate the inequality.Note that in the case of �2-regularized
objectives, we can perform the line-search to find an estimate of the Lipschitz constant
of l ′i rather than f ′

i , and then simply add λ to this value to take into account the effect
of the regularizer.

Note that the cost of this line-search is independent of n, making it suitable for large
problems. Further, for linearly-parameterized models of the form fi (aTi x), it is also
possible to implement the line-search so that its cost is also independent of the number
of variables p. To see why, if we use δk = aTik x

k and the structure in the gradient then
the left side is given by

fik

(
aTik

(
xk − 1

Lk
f ′
ik (x

k)

))
= fik

(
δk − f ′

ik
(δk)

Lk
‖aik‖2

)
.

Thus, if we pre-compute the squared norms ‖ai‖2 and note that δk and f ′
ik
(δk) are

already needed by the SAG update, then each iteration only involves operations on
scalar values and the single-variable function fik .

4.7 Mini-batches for vectorized computation and reduced storage

Because of the use of vectorization and parallelism in modern architectures, practical
SG implementations often group functions into ‘mini-batches’ and perform SG itera-
tions on the mini-batches. We can also use mini-batches within the SAG iterations to
take advantage of the same vectorization and parallelism. Additionally, for problems
with dense gradients mini-batches can dramatically decrease the storage requirements
of the algorithm, since we only need to store a vector yi for each mini-batch rather
than for each example. Thus, for example, using a mini-batch of size 100 leads to a
100-fold reduction in the storage cost.

A subtle issue that arises when using mini-batches is that the value of L in the
Lipschitz condition (8) is based on the mini-batches instead of the original functions
fi . For example, consider the case where we have a batch B and the minimum value
of L in (8) for each i is given by Li . In this case, a valid value of L for the function
x �→ 1

|B|
∑

i∈B fi (x)would bemaxi∈B{Li }.We refer to this as Lmax.Butwe could also

consider using Lmean = 1
|B|

∑
i∈B Li . The value Lmean is still valid and will be smaller

than Lmax unless all Li are equal. We could even consider the minimum possible
value of L , which we refer to as LHessian because (if each fi is twice-differentiable)
it is equal to the maximum eigenvalue of 1

|B|
∑

i∈B f ′′
i (x) across all x . Note that

LHessian ≤ Lmean ≤ Lmax, although LHessian will typically bemore difficult to compute
than Lmean or Lmax (although a line-search as discussed in the previous section can
reduce this cost). Due to the potential of using a smaller L , we may obtain a faster
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convergence rate by using larger mini-batches. However, in terms of passes through
the data this faster convergence may be offset by the higher iteration cost associated
with using mini-batches.

4.8 Non-uniform example selection

In standard SG methods, it is crucial to sample the functions fi uniformly, at least
asymptotically, in order to yield an unbiased gradient estimate and subsequently
achieve convergence to the optimal value (alternately, the bias induced by non-uniform
sampling would need to be asymptotically corrected). In SAG iterations, however, the
weight of each gradient is constant and equal to 1/n, regardless of the frequency at
which the corresponding function is sampled. We might thus consider sampling the
functions fi non-uniformly, without needing to correct for this bias. Though we do not
yet have any theoretical proof as to why a non-uniform sampling might be beneficial,
intuitively we would expect that we do not need to sample functions fi whose gradient
changes slowly as often as functions fi whose gradient changes more quickly. Indeed,
we provide here an argument to justify a non-uniform sampling strategy based on
the Lipschitz constants of the individual gradients f ′

i and we note that in subsequent
works this intuition has proved correct for related algorithms [53,64].

Let Li again be the Lipschitz constant of f ′
i , and assume that the functions are

placed in increasing order of Lipschitz constants, so that L1 � L2 � . . . � Ln . In
the ill-conditioned setting where the convergence rate depends on μ

L , a simple way to
improve the rate by decreasing L is to replace fn by two functions fn1 and fn2 such
that

fn1(x) = fn2(x) = fn(x)

2

g(x) = 1

n

(
n−1∑

i=1

fi (x) + fn1(x) + fn2(x)

)

= 1

n + 1

(
n−1∑

i=1

n + 1

n
fi (x) + n + 1

n
fn1(x) + n + 1

n
fn2(x)

)
.

We have thus replaced the original problem by a new, equivalent problem where:

– n has been replaced by (n + 1),
– Li for i � (n − 1) is Li (n+1)

n ,

– Ln and Ln+1 are equal to
Ln(n+1)

2n .

Hence, if Ln−1 < nLn
n+1 , this problem has the same μ but a smaller L than the original

one, improving the bound on the convergence rate. By duplicating fn , we increase
its probability of being sampled from 1

n to 2
n+1 , but we also replace ykn by a noisier

version, i.e. ykn1 + ykn2. Using a noisier version of the gradient appears detrimental, so
we assume that the improvement comes from increasing the frequency at which fn is
sampled, and that logically we might obtain a better rate by simply sampling fn more
often in the original problem and not explicitly duplicating the data.
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We now consider the extreme case of duplicating each function fi a number of
times equal to the Lipschitz constant of their gradient, assuming that these constants
are integers. The new problem becomes

g(x) = 1

n

n∑

i=1

fi (x)

= 1

n

n∑

i=1

Li∑

j=1

fi (x)

Li

= 1∑
k
Lk

n∑

i=1

Li∑

j=1

⎛

⎝

∑
k
Lk

n

fi (x)

Li

⎞

⎠ .

The function g is now written as the sum of
∑

k Lk functions, each with a gradient

with Lipschitz constant
∑

k Lk
n . The new problem has the same μ as before, but now

has an L equal to the average of the Lipschitz constants across the f ′
i , rather than

their maximum, thus improving the bound on the convergence rate. Sampling these
functions uniformly is now equivalent to sampling the original fi ’s according to their
Lipschitz constant. Thus, we might expect to obtain better performance by, instead of
creating a larger problem by duplicating the functions in proportion to their Lipschitz
constant, simply sampling the functions from the original problem in proportion to
their Lipschitz constants.

Sampling in proportion to the Lipschitz constants of the gradients was explored
by Nesterov [45] in the context of coordinate descent methods, and is also somewhat
related to the sampling scheme used by Storhmer and Vershynin [59] in the context
of their randomized Kaczmarz algorithm. Since the first version of this work was
released,Needell et al. [38] have analyzed sampling according to theLipschitz constant
in the context of SG iterations. Such a sampling schememakes the iteration cost depend
on n, due to the need to generate samples from a general discrete distribution over n
variables. However, after an initial preprocessing cost of O(n) we can sample from
such distributions in O(log n) using a simple binary search [50, see Example 2.10].

Unfortunately, sampling the functions according to the Lipschitz constants and
using a step size of αk = n∑

i Li
does not seem to converge in general. However, by

changing the number of times we duplicate each fi , we can interpolate between the
Lipschitz sampling and the uniform sampling. In particular, if each function fi is
duplicated Li + c times, where Li is the Lipschitz constant of f ′

i and c a positive
number, then the new problem becomes

g(x) = 1

n

n∑

i=1

fi (x)

= 1

n

n∑

i=1

Li+c∑

j=1

fi (x)

Li + c
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= 1∑
k

(Lk + c)

n∑

i=1

Li+c∑

j=1

⎛

⎝

∑
k

(Lk + c)

n

fi (x)

Li + c

⎞

⎠ .

Unlike in the previous case, these
∑

k(Lk + c) functions have gradients with different
Lipschitz constants. Denoting L = maxi Li , the maximum Lipschitz constant is equal

to
∑

k (Lk+c)
n

L
L+c and we must thus use the step size α = L+c

L
( ∑

k Lk
n +c

) .

5 Experimental results

In this section we perform empirical evaluations of the SAG iterations. We first com-
pare the convergence of an implementation of the SAG iterations to a variety of
competing methods available. We then seek to evaluate the effect of different of non-
uniform sampling. In Sect. 5 of the extended version of this paper, we present further
experiments evaluating the effect of the step-size and the effect of using mini-batches.

5.1 Comparison to FG and SG methods

The theoretical convergence rates suggest the following strategies for deciding on
whether to use an FG or an SG method:

– If we can only afford one pass through the data, then an SG method should be
used.

– If we can afford to do many passes through the data (say, several hundred), then
an FG method should be used.

We expect that the SAG iterations will be most useful between these two extremes,
where we can afford to do more than one pass through the data but cannot afford to do
enough passes to warrant using FG algorithms like the AFG or L-BFGS methods. To
test whether this is indeed the case in practice, we perform a variety of experiments
evaluating the performance of the SAG algorithm in this scenario.

Although the SAG algorithm can be applied more generally, in our experiments we
focus on the important and widely-used �2-regularized logistic regression problem

minimize
x∈Rp

λ

2
‖x‖2 + 1

n

n∑

i=1

log(1 + exp(−bia
�
i x)), (10)

as a canonical problem satisfying our assumptions. In our experiments we set the
regularization parameter λ to 1/n, which is in the range of the smallest values that
would typically be used in practice, and thus which results in the most ill-conditioned
problems of this form that would be encountered. Our experiments focus on the freely-
available benchmark binary classification data sets listed in Table 2. The quantum and
protein data set was obtained from the KDD Cup 2004 website;1 the covertype (based

1 http://osmot.cs.cornell.edu/kddcup.
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Table 2 Binary data sets used
in the experiments

Data set Data points Variables References

quantum 50000 78 [9]

protein 145751 74 [9]

covertype 581012 54 [16]

rcv1 20242 47236 [31]

news 19996 1355191 [24]

spam 92189 823470 [8,12]

rcv1Full 697641 47236 [31]

sido 12678 4932 [20]

alpha 500000 500 Synthetic

on the datset of Blackard, Jock, and Dean), rcv1, news, and rcv1Full data sets were
obtained from the LIBSVM Data website;2 the sido data set was obtained from the
Causality Workbench website,3 the spam data set was prepared by Carbonetto [8,
see §2.6.5] using the TREC 2005 corpus;4 and the alpha data set was obtained from
the Pascal Large Scale Learning Challenge website.5 We added a (regularized) bias
term to all data sets, and for dense features we standardized so that they would have
a mean of zero and a variance of one. To obtain results that are independent of the
practical implementation of the algorithm, we measure the objective as a function of
the number of effective passes through the data, measured as the number of times
we evaluate l ′i divided by the number of examples n. If they are implemented to
take advantage of the sparsity present in the data sets, the runtimes of all algorithms
examined in this section differ by at most a constant times this measure.

In our first experiment we compared the following variety of competitive FG and
SG methods:

– AFG A variant of the accelerated full gradient method of Nesterov [41], where
iterations of (3) with a step size of 1/Lk are interleaved with an extrapolation
step. We used an adaptive line-search to estimate a local L based on the variant
proposed for �2-regularized logistic regression by Liu et al. [33].

– L-BFGSApublicly-available limited-memory quasi-Newtonmethod that has been
tuned for log-linear models such as logistic regression [51]. This method is the
most complicated method we considered.

– SG The stochastic gradient method described by iteration (4). Since setting the
step-size in this method is a tenuous issue, we chose the constant step size that
gave the best performance (in hindsight) among all powers of 10 (we found that this
constant step-size strategies gave better performance than the variety of decreasing
step-size strategies that we experimented with).

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
3 http://www.causality.inf.ethz.ch/home.php.
4 http://plg.uwaterloo.ca/~gvcormac/treccorpus.
5 http://largescale.ml.tu-berlin.de.
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– ASG The average of the iterations generated by the SGmethod above, where again
we choose the best step size among all powers of 10.6

– IAG The incremental aggregated gradient method of Blatt et al. [5] described by
iteration (5) with a cyclic choice of ik . We used the re-weighting described in
Sect. 4.2, we used the exact regularization as described in Sect. 4.3, and we chose
the step-size that gave the best performance among all powers of 10.

– SAG-LS The proposed stochastic average gradient method described by itera-
tion (5). We used the re-weighting described in Sect. 4.2, the exact regularization
as described in Sect. 4.3, and we used a step size of αk = 1/Lk where Lk

is an approximation of the Lipschitz constant for the negative log-likelihoods
li (x) = log(1 + exp(−bia�

i x)). Although this Lipschitz constant is given by
0.25maxi {‖ai‖2}, we used the line-search described in Sect. 4.6 to estimate it,
to test the ability to use SAG as a black-box algorithm (in addition to avoiding
this calculation and potentially obtaining a faster convergence rate by obtaining an
estimate that could be smaller than the global value). To initialize the line-search
we set L0 = 1.

We plot the results of the different methods for the first 50 effective passes through
the data in Fig. 1. For the stochastic methods, we plot the mean performance as well as
the minimum and maximum function values across 10 choices for the initial random
seed. We can observe several trends across the experiments:

– FG versus SG Although the performance of SG methods is known to be
catastrophic if the step size is not chosen carefully, after giving the SG methods
(SG and ASG) an unfair advantage (by allowing them to choose the best step-size
in hindsight), the SG methods always do substantially better than the FG methods
(AFG and L-BFGS) on the first few passes through the data. However, the SG
methods typically make little progress after the first few passes. In contrast, the
FG methods make steady progress and eventually the faster FG method (L-BFGS)
typically passes the SG methods.

– (FG and SG) versus SAG The SAG iterations seem to achieve the best of both
worlds. They start out substantially better than FG methods, often obtaining sim-
ilar performance to an SG method with the best step-size chosen in hindsight.
But the SAG iterations continue to make steady progress even after the first few
passes through the data. This leads to better performance than SGmethods on later
iterations, and on most data sets the sophisticated FG methods do not catch up to
the SAG method even after 50 passes through the data.

6 Note that we also compared to a variety of other SGmethods including the popular Pegasos SGmethod of
Shalev-Shwartz et al. [55], SGwith momentum, SGwith gradient averaging, the regularized dual averaging
method of Xiao [63] (a stochastic variant of the primal-dual subgradient method of Nesterov [44] for
regularized objectives), the accelerated SG method of Delyon and Juditsky [14], SG methods that only
average the later iterations as in the ‘optimal’ SG method for non-smooth optimization of Rakhlin et
al. [48], the epoch SG method of Hazan and Kale [21], the ‘nearly-optimal’ SG method of Ghadimi and
Lan [18], a diagonally-scaled SG method using the inverse of the coordinate-wise Lipshitz constants as the
diagonal terms, and the adaptive diagonally-scaled AdaGrad method of Duchi et al. [15]. However, we omit
results obtained using these algorithms since they never performed substantially better than the minimum
between the SG and ASG methods when their step-size was chosen in hindsight.
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Fig. 1 Comparison of different FG andSGoptimization strategies. The top row gives results on the quantum
(left), protein (center) and covertype (right) datasets. The middle row gives results on the rcv1 (left), news
(center) and spam (right) datasets. The bottom row gives results on the rcv1Full (left), sido (center), and
alpha (right) datasets. This figure is best viewed in colour

– IAG versus SAG Even though these two algorithms differ in only the seemingly-
minor detail of selecting data points at random (SAG) compared to cycling through
the data (IAG), the performance improvement of SAG over its deterministic coun-
terpart IAG is striking (even though the IAG method was allowed to choose the
best step-size in hindsight). We believe this is due to the larger step sizes allowed
by the SAG iterations, which would cause the IAG iterations to diverge.

5.2 Comparison to coordinate optimization methods

For the �2-regularized logistic regression problem, an alternative means to take advan-
tage of the structure of the problemand achieve a linear convergence ratewith a cheaper
iteration cost than FGmethods is to use randomized coordinate optimization methods.
In particular, we can achieve a linear convergence rate by applying coordinate descent
to the primal [45] or coordinate-ascent to the dual [54]. In our second experiment, we
included the following additional methods in this comparison:

– PCD The randomized primal coordinate-descent method of Nesterov [45], using
a step-size of 1/L j , where L j is the Lipschitz-constant with respect to coordinate
j of g′. Here, we sampled the coordinates uniformly.
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– PCD-L The same as above, but sampling coordinates according to their Lipschitz
constant, which can lead to an improved convergence rate [45].

– DCA Applying randomized coordinate ascent to the dual, with uniform example
selection and an exact line-search [54].

As with comparing FG and SG methods, it is difficult to compare coordinate-wise
methods to FG and SG methods in an implementation-independent way. To do this
in a way that we believe is fair (when discussing convergence rates), we measure
the number of effective passes of the DCA method as the number of iterations of the
method divided by n (since each iteration accesses a single example as in SG and
SAG iterations). We measure the number of effective passes for the PCD and PCD-L
methods as the number of iterations multiplied by n/p so that 1 effective pass for this
method has a cost of O(np) as in FG and SG methods. We ignore the additional cost
associated with the Lipschitz sampling for the PCD-L method (as well as the expense
incurred because the PCD-L method tended to favour updating the bias variable for
sparse data sets) and we also ignore the cost of numerically computing the optimal
step-size for the DCA method.

Wecompare the performance of the randomized coordinate optimizationmethods to
several of the bestmethods from the previous experiment in Fig. 2. In these experiments
we observe the following trends:

– PCD versus PCD-L For the problems with n > p (top and bottom rows of Fig. 2),
there is little difference between uniform and Lipschitz sampling of the coordi-
nates. For the problems with p > n (middle row of Fig. 2), sampling according
to the Lipschitz constant leads to a large performance improvement over uniform
sampling.

– PCD versus DCA For the problems with p > n, DCA and PCD-L have similar
performance. For the problems with n > p, the performance of the methods
typically differed but neither strategy tended to dominate the other.

– (PCD and DCA) versus (SAG) For some problems, the PCD and DCA methods
have performance that is similar to SAG-LS and theDCAmethod even gives better
performance than SAG-LS on one data set. However, for many data sets either the
PCD-L or the DCA method (or both) perform poorly while the SAG-LS iterations
are among the best or substantially better than all other methods on every data set.
This suggests that, while coordinate optimization methods are clearly extremely
effective for some problems, the SAG method tends to be a more robust choice
across problems.

5.3 Effect of non-uniform sampling

In our final experiment, we explored the effect of using the non-uniform sampling
strategy discussed in Sect. 4.8. In Fig. 3, we compare several of the SAG variants with
uniform sampling to the following two methods based on non-uniform sampling:

– SAG (Lipschitz) In this method we sample the functions in proporition to Li + c,
where Li is the global Lipschitz constant of the corresponding f ′

i andwe set c to the
average of these constants, c = Lmean = (1/n)

∑
i Li . Plugging in these values
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Fig. 2 Comparison of optimization different FG and SGmethods to coordinate optimization methods. The
top row gives results on the quantum (left), protein (center) and covertype (right) datasets. The middle row
gives results on the rcv1 (left), news (center) and spam (right) datasets. The bottom row gives results on the
rcv1Full (left), sido (center), and alpha (right) datasets. This figure is best viewed in colour

into the formula at the end of Sect. 4.8 and using Lmax to denote the maximum Li

value, we set the step-size to αk = 1/2Lmax + 1/2Lmean.
– SAG-LS (Lipschitz) In this method we formed estimates of the quantities Li , Lmax,
and Lmean. The estimator Lk

max is computed in the same way as the SAG-LS
method. To estimate each Li , we keep track of an estimate Lk

i for each i and we
set Lk

mean to the average of the Lk
i values among the fi that we have sampled at

least once. We set Lk
i = Lk−1

i if example i was not selected and otherwise we
initialize to Lk

i = Lk−1
i /2 and perform the line-search until we have a valid Lk

i (this
means that Lk

mean will be approximately halved if we perform a full pass through
the data set and never violate the inequality). To ensure that we do not ignore
important unseen data points for too long, in this method we sample a previously
unseen function with probability (n − m)/n, and otherwise we sample from the
previously seen fi in proportion to Lk

i +Lk
mean. To prevent relying toomuch on our

initially-poor estimate of Lmean, we use a step size of αk = n−m
n αmax + m

n αmean,
where αmax = 1/Lk

max is the step-size we normally use with uniform sampling
and αmean = 1/2Lk

max + 1/2Lk
mean is the step-size we use with the non-uniform

sampling method, so that the method interpolates between these extremes until the
entire data set has been sampled.
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Fig. 3 Comparison of uniform and non-uniform sampling strategies for the SAG algorithm. The top row
gives results on the quantum (left), protein (center) and covertype (right) datasets. The middle row gives
results on the rcv1 (left), news (center) and spam (right) datasets. The bottom row gives results on the
rcv1Full (left), sido (center), and alpha (right) datasets. This figure is best viewed in colour

We make the following observations from these experiments:

– SAG (1/L) versus SAG (Lipschitz) With access to global quantities and a constant
step size, the difference between uniform and non-uniform sampling was typically
quite small. However, in some cases the non-uniform sampling method behaved
much better (top row of Fig. 3).

– SAG-LS versus SAG-LS (Lipschitz) When estimating the Lipschitz constants of
the individual functions, the non-uniform sampling strategy often gave better per-
formance. Indeed, the adaptive non-uniform sampling strategy gave solutions that
are orders of magnitude more accurate than any method we examined for several
of the data sets (e.g., the protein, covertype, and sido data sets) In the context of
logistic regression, it makes sense that an adaptive sampling scheme could lead
to better performance, as many correctly-classified data samples might have a
very slowly-changing gradient near the solution, and thus they do not need to be
sampled often.
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6 Discussion

Since the first version of this work was published [30], there has been an explo-
sion of interest in stochastic methods with improved convergence rates. In Sect. 6
of the extended version of this paper we review other algorithms that have been
discovered to have similar convergence rates, including stochastic dual coordinate
ascent (SDCA) [54], incremental surrogate optimization (MISO) [35], stochastic
variance-reduced gradient (SVRG) methods [23,26,34] which remove the memory
requirement, and the SAGA method [13]. In Sect. 6 of the extended version we also
reviewmany of the possible variants on these basic algorithms that have been explored.
This includes accelerated gradient methods that achieve faster convergence rates for
ill-conditioned problems [32], proximal-gradient and alternating direction method of
multipliers (ADMM) variants that can solve certain constrained and non-smooth prob-
lems [13,65], coordinate-wise variants that only update a subset of the variables on
each iteration [27], Newton-like variants of the method [56], methods where non-
uniform sampling provably improves the convergence rate [53], and analyses that
give a linear convergence rate without strong convexity [19].

The three major disadvantages of SG methods are: (i) the slow convergence rate,
(ii) deciding when to terminate the algorithms, and (iii) choosing the step size while
running the algorithm. This work shows that the SAG iterations achieve a much faster
convergence rate, but the SAG iterations may also be advantageous in terms of ter-
mination criteria and choosing step sizes. In particular, the SAG iterations suggest a
natural termination criterion; since the quantity d in Algorithm 1 converges to f ′(xk)
as ‖xk − xk−1‖ converges to zero, we can use ‖d‖ as an approximation of the optimal-
ity of xk as the iterates converge. Regarding choosing the step-size, a disadvantage of a
constant step-size strategy is that a step-size that is too largemay cause divergence.But,
we expect that it is possible to design line-search or trust-region strategies that avoid
this issue. Such strategies might even lead to faster convergence for functions that are
locally well-behaved around their optimum, as indicated in our experiments. Further,
while SG methods require specifying a sequence of step sizes and mis-specifying this
sequence can have a disastrous effect on the convergence rate [40, see §2.1], our theory
shows that the SAG iterations achieve a fast convergence rate for any sufficiently small
constant step size, and our experiments indicate that a simple line-search gives strong
performance.
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26. Konečnỳ, J., Richtárik, P.: Semi-stochastic gradient descent methods. arXiv preprint (2013)
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