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Outline

• Asymmetric testing cost and ROC analysis

• Training linear classifiers

• Efficient algorithm to vary the training cost asymmetry

• Mismatch between training and testing asymmetries



Linear classification

• Input: x ∈ R
d

• Output: labels y ∈ {−1,+1}

• Linear classifiers - two parameters (w, b): f(x) = sign(w>x+ b)

– w : slope

– b : intercept

• Straightforward extension to non linear classification using kernels



Asymmetric utility

• Two types of errors:

– false positives: y = −1, f(x) = 1

– false negatives: y = 1, f(x) = −1

• Asymmetric user utility function with two parameters (C+, C−):

Correct classification : 0

False positive : C− > 0

False negative : C+ > 0

• Definition: assymetry = C+/(C+ + C−)

• Example: junk mail filtering

• ROC curves: display performance of a set of classifiers for all possible

asymmetries



ROC curves

• ROC plane (u, v)

• u = proportion of false positives = P (f(x) = 1|y = −1)

• v = proportion of true positives = P (f(x) = 1|y = 1)

• Plot a set of classifiers fγ(x) for γ ∈ R
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ROC curves and convex envelopes

• Any point on the upper convex envelope can be achieved

• Definition: (u(γ), v(γ)) ROC-consistent iff it lies on the upper

convex envelope of the ROC curve
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Reading out performance from ROC curves

• Given the user (testing) asymmetry β, find the best γ

– β defines a direction in the ROC plane

– finds the most upper left tangent point

• Given γ, find the best testing asymmetry β

– Only relevant for ROC consistent points: β(γ) = 1

1+
p+
p−

dv
dγ(γ)/du

dγ(γ)
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Training linear classifiers

• User cost (testing) : R(C+, C−, w, b)

= C+P{w>x+ b < 0, y = 1} + C−P{w>x+ b > 0, y = −1}
= C+E{1y=1φ0−1(w

>x+ b)} + C−E{1y=−1φ0−1(−w>x− b)}

φ0−1 = “0-1 loss” (step function): 1 for negative values, 0 otherwise

• Training cost using convex surrogate: Rφ(C+, C−, w, b)

= C+E{1y=1φ(w>x+ b)} + C−E{1y=−1φ(−w>x− b)}



Loss functions
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Building ROC curves for linear classifiers

• Usual method:

– train once with a given asymmetry γ ∈ (0, 1) → w, b

– hold the slope w fixed

– vary the intercept b from −∞ to +∞

• Proposed method:

– train for all possible asymmetries γ ∈ (0, 1) → w(γ), b(γ)

– should perform better than not optimizing w

– if also varying b, it strictly includes the usual one ⇒ must perform

better



Building ROC curves for linear classifiers

• Usual method:

– train once with a given asymmetry γ ∈ (0, 1) → w, b

– hold the slope w fixed

– vary the intercept b from −∞ to +∞

• Proposed method:

– train for all possible asymmetries γ ∈ (0, 1) → w(γ), b(γ)

– should perform better than not optimizing w

– if also varying b, it strictly includes the usual one ⇒ must perform

better

• Computational feasibility ?

• Links between training asymmetry and testing asymmetry ?



Training data and regularization

• Regularized empirical training cost R̂φ(C+, C−, w, b)

=
C+

n

∑

i∈I+

φ(yi(w
>xi + b)) +

C−

n

∑

i∈I−

φ(yi(w
>xi + b)) +

1

2n
||w||2

I+ positive examples, I− negative examples,

• Two different effects in training:

– Asymmetry C+/(C− + C+)

– Total amount of regularization 1/(C+ + C−)

• Simplification: (C++C−) held fixed to the best value for a particular

asymmetry



Building paths of linear classifiers for the SVM

• SVM corresponds to hinge loss φ(u) = max{0, 1 − u}

• Usual formulation:

min
w,b,ξ

C+

∑

i∈I+

ξi + C−

∑

i∈I−

ξi +
1

2
||w||2 s.t. ∀i, ξi > 0,

∀i, ξi > 1 − yi(w
>xi + b)

• Goal : follow optimal solution along lines in the (C+, C−)-plane

• Path following method:

1. Find (C+, C−) for which the solution is trivial to find

2. Use efficient path following technique



Path following for the SVM

• Proposition — extension of recent result by Hastie et al (2004):

(C+, C−) 7→ (w, b) is piecewise linear

• Corollary: following paths of solutions along straight lines in the

(C+, C−)-plane is computationally feasible.

• Path following algorithm:

– Follow a straight line in the (w, b)-space until a kink

– Once at a kink, compute the new direction



Building paths of linear classifiers for the SVM

• Initialization:

– Original method of Hastie et al requires “balanced data” (C+n+ =

C−n−) for simple initialization

– We allow the ratio C+/C− to vary ⇒ always possible

• Exploring the (C+, C−)-plane

C+n+=C−n−

C−

C+



Computational complexity

• n number of data points, m number of support vectors

• Complexity of each step O(mn+m2)

• Number of kinks along a straight line empirically O(n)

• Total empirical complexity is O(mn2 +m2n) for the entire path

• Similar to SMO for a single point



ROC curves
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• Varying the asymmetry does not always perform better than varying

the intercept

• Some points are ROC inconsistent when varying the asymmetry



ROC curves - population densities
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• ⇒ empirical mismatch between training and testing asymmetries

– Not a small sample effect

– Due to the use of a convex surrogate to the 0-1 loss



Training and optimal testing asymmetries

• Population case (infinite sample) ⇒ no need for regularization

• One-dimensional ROC curve u(γ), v(γ) parameterized by training

asymmetry γ

• For each γ, there exists one optimal testing asymmetry

β(γ) =
1

1 + p+
p−

dv
dγ(γ)/du

dγ(γ)

• β(γ) is different from γ

– Characterization around extreme asymmetries γ = 0 or 1



Characterization around extreme asymmetries

• Requires asymptotic expansion of β(γ) around γ = 0

• Expansion can be done in semi-closed form when

– class-conditional densities are mixtures of Gaussians

– the loss functions are the square loss and the erf loss

• erf loss: φerf(u) = 2
[
u
2ψ
(

u
2

)
− u

2 + ψ′
(

u
2

)]
, where ψ is the

cumulative distribution of the standard normal distribution, a.k.a

the erf function.

ψ(v) =
1√
2π

∫ v

−∞

e−t2/2dt

• the erf loss is a close approximation to the logistic loss log(1 + e−u)



erf loss
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Gaussian densities - square loss

• Notations:

– P (y = ±1) = p±,

– Given y = ±1, x is normal with mean µ± and covariance Σ±

• Proof: square loss ⇔ linear regression

• Expansion:

log

(
p−
p+

(β(γ)−1−1)

)
≈ p2

−

8p2
+γ

2

(
1

m>Σ−1
− m

− 1

m>Σ−1
− Σ+Σ−1

− m

)

• Behavior depends on sign of A =

(
1

m>Σ−1
−

m
− 1

m>Σ−1
−

Σ+Σ−1
−

m

)



Square loss - Gaussian densities
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Gaussian densities - erf loss

• Notations:

– P (y = ±1) = p±,

– Given y = ±1, x is normal with mean µ± and covariance Σ±

• Proof: write down the optimality conditions and compute...

• Expansion:

log

(
p−
p+

(β(γ)−1−1)

)
≈2 log(1/γ)

(
1

m>Σ−1
− m

− 1

m>Σ−1
− Σ+Σ−1

− m

)

• Behavior depends on sign of A =
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Erf loss - Gaussian densities
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Results for mixtures of Gaussians

• Qualitatively similar:

– to the first order, phase transition

– test available given the class-conditional densities

• For details see the paper and the technical report



Empirical study of the mismatch

• Mismatch between training and testing asymmetries

– quantifiable for extreme asymmetries

• Given one desired testing cost asymmetry, which training asymmetry?

– currently no rule of thumb, but ...

– ... one can try all of them (if it is efficient)



Maximal discrepancies

• For each dataset, compute the asymmetry γ for which performance

is most different

• Performance measured by 10 fold cross validation

Dataset γ one asym. all asym.

Pima 0.68 41 ± 0.4 22 ± 1

Breast 0.99 0.9 ± 0.03 0.09 ± 0.04

Ionosphere 0.82 10 ± 0.5 4 ± 0.8

Liver 0.32 27 ± 1.8 23.8 ± 0.02

Ringnorm 0.94 6.3 ± 0.06 4.3 ± 0.1

Twonorm 0.16 15 ± 0.2 1.2 ± 0.2

Adult 0.70 12.8 ± 0.8 11.5 ± 0.3



Conclusion

• Efficient algorithm to compute the solutions of the SVM for many

cost asymmetries

• Allow to build better ROC curves

• Mismatch between training and testing asymmetries due to convex

surrogate to the 0-1 loss

• Future work:

– Theoretical analysis: extend to other losses

– Algorithm: path following extended to multiple kernel learning


