On the Path to an Ideal ROC Curve:
Considering Cost Asymmetry
in Learning Classifiers

Francis Bach David Heckerman Eric Horvitz
UC Berkeley Microsoft Research

January 2005



Outline

e Asymmetric testing cost and ROC analysis
e Training linear classifiers
e Efficient algorithm to vary the training cost asymmetry

e Mismatch between training and testing asymmetries



Linear classification

e Input: z € R?

e Output: labels y € {—1,+1}

e Linear classifiers - two parameters (w,b): f(x) = sign(w 'z + b)

— w : slope
— b : intercept

e Straightforward extension to non linear classification using kernels



Asymmetric utility

Two types of errors:

— false positives: y = —1, f(z) =1
— false negatives: y =1, f(x) = —1

Asymmetric user utility function with two parameters (C'y, C_):

Correct classification : 0
False positive : C_>0
False negative : Cy. >0

Definition: assymetry = C, /(Cy, + C_)
Example: junk mail filtering

ROC curves: display performance of a set of classifiers for all possible
asymmetries



ROC curves
e ROC plane (u,v)
e 1, = proportion of false positives = P(f(x) = 1|y = —1)
e v = proportion of true positives = P(f(x) = 1|y =1)

e Plot a set of classifiers f.(z) for y € R
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ROC curves and convex envelopes

e Any point on the upper convex envelope can be achieved

e Definition: (u(v),v(v)) ROC-consistent iff it lies on the upper
convex envelope of the ROC curve
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Reading out performance from ROC curves

e Given the user (testing) asymmetry [, find the best ~

— (3 defines a direction in the ROC plane
— finds the most upper left tangent point

e Given v, find the best testing asymmetry 3
1

— Only relevant for ROC consistent points: 3(v) = P ) i)
p_dy dry

VA
1

true positives

0 | fasepositives 1 u



Training linear classifiers

e User cost (testing) : R(C.,C_,w,b)
= O P{lw's+b<0,y=1}+C_Plw'z+b>0, y=—1}
— C+E{1y:1¢0—1(wT$ +b)} + C—E{ly:—1¢0—1<_wTI —b)}
¢o—1 = “0-1 loss” (step function): 1 for negative values, 0 otherwise

e Training cost using convex surrogate: R4(Cy,C_,w,b)

— CLB{lymd(w @ + b))+ C_E{l,16(—w z — b))



Loss functions

— 0-1

— hinge
square
logistic




Building ROC curves for linear classifiers

e Usual method:

— train once with a given asymmetry v € (0,1) — w, b
— hold the slope w fixed
— vary the intercept b from —oo to +o0

e Proposed method:

— train for all possible asymmetries v € (0,1) — w(~), b(~)

— should perform better than not optimizing w

— if also varying b, it strictly includes the usual one = must perform
better



Building ROC curves for linear classifiers

e Usual method:

— train once with a given asymmetry v € (0,1) — w, b
— hold the slope w fixed
— vary the intercept b from —oo to 400

e Proposed method:

— train for all possible asymmetries v € (0,1) — w(~), b(~)

— should perform better than not optimizing w

— if also varying b, it strictly includes the usual one = must perform
better

e Computational feasibility 7

e Links between training asymmetry and testing asymmetry ?



Training data and regularization

e Regularized empirical training cost }A2¢(C+, C_,w,b)

C C_ 1
=== 0wz +0) + == o(wi(wzi + b)) + ol
€Ty icT_

7. positive examples, Z_ negative examples,

e Two different effects in training:

— Asymmetry C, /(C_ + C}y)
— Total amount of regularization 1/(Cy + C_)

e Simplification: (C 4 C_) held fixed to the best value for a particular
asymmetry



Building paths of linear classifiers for the SVM

e SVM corresponds to hinge loss ¢(u) = max{0,1 — u}

e Usual formulation:

1
min C_|_Z fz + C_Z fz + §HUJH2 S.T. \V/Z, "Sz = O,

Wb i€Ty i€T_
Vi, & =1 —yi(w'z;+b)

e Goal : follow optimal solution along lines in the (C, C_)-plane

e Path following method:

1. Find (C'y, C_) for which the solution is trivial to find
2. Use efficient path following technique



Path following for the SVM

e Proposition — extension of recent result by Hastie et al (2004):
(Cy,C_) — (w,b) is piecewise linear

e Corollary: following paths of solutions along straight lines in the
(C'y, C_)-plane is computationally feasible.

e

e Path following algorithm:

— Follow a straight line in the (w, b)-space until a kink
— Once at a kink, compute the new direction



Building paths of linear classifiers for the SVM

e [nitialization:

— Original method of Hastie et al requires “balanced data” (Cin, =
C'_n_) for simple initialization
— We allow the ratio C'; /C_ to vary = always possible

e Exploring the (C',C"_)-plane

“3

C+n+=C—n-




Computational complexity

e n number of data points, m number of support vectors

e Complexity of each step O(mn + m?)

e Number of kinks along a straight line empirically O(n)

e Total empirical complexity is O(mn? + m?n) for the entire path

e Similar to SMO for a single point



ROC curves
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e Varying the asymmetry does not always perform better than varying
the intercept

e Some points are ROC inconsistent when varying the asymmetry



ROC curves - population densities
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e = empirical mismatch between training and testing asymmetries

— Not a small sample effect
— Due to the use of a convex surrogate to the 0-1 loss



Training and optimal testing asymmetries

e Population case (infinite sample) = no need for regularization

e One-dimensional ROC curve u(v),v(vy) parameterized by training
asymmetry -y

e For each -y, there exists one optimal testing asymmetry

o 3(v) is different from ~

— Characterization around extreme asymmetries v = 0 or 1



Characterization around extreme asymmetries

e Requires asymptotic expansion of 3(~) around v =0

e Expansion can be done in semi-closed form when

— class-conditional densities are mixtures of Gaussians
— the loss functions are the square loss and the erf loss

o erf loss: ¢ p(u) = 2% (%) —%+¢' (%)], where ¢ is the
cumulative distribution of the standard normal distribution, a.k.a
the erf function.

e the erf loss is a close approximation to the logistic loss log(1 + e~ ")



erf loss

i 0.5 -
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— hinge logistic
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Gaussian densities - square loss

e Notations:

— Py =41) = p4,
— Given y = £1, x is normal with mean 4 and covariance >4

e Proof: square loss < linear regression

e Expansion:

2
pP— 1 p_ 1 1
log | — —1) | ~ _
5 (p%—(ﬂ(w )> Sp?ﬂQ (mTZlm mT21§]+Zlm>

mTs"tm mTe is,s!

e Behavior depends on sign of A = ( . — ! m)



Square loss - Gaussian densities
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Gaussian densities - erf loss

e Notations:

— Py =41) = p4,
— Given y = £1, x is normal with mean 4 and covariance >4

e Proof: write down the optimality conditions and compute...

e Expansion:

p- — 1 1
log (E(ﬁ(v) 1—1>) ~2log(1/7) (mzlm - m7212+21m>

mTs"tm mTe is,s!

e Behavior depends on sign of A = ( . — ! m)



Erf loss - Gaussian densities
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Results for mixtures of Gaussians

e Qualitatively similar:

— to the first order, phase transition
— test available given the class-conditional densities

e For details see the paper and the technical report



Empirical study of the mismatch

e Mismatch between training and testing asymmetries

— quantifiable for extreme asymmetries

e Given one desired testing cost asymmetry, which training asymmetry?

— currently no rule of thumb, but ...
— ... one can try all of them (if it is efficient)



Maximal discrepancies

e For each dataset, compute the asymmetry v for which performance
Is most different

e Performance measured by 10 fold cross validation

Dataset Y one asym. | all asym.
PiMA 06841 04 |22+1
BREAST 0.99 |1 0.9 + 0.03 | 0.09 4+ 0.04
IONOSPHERE | 0.82 | 10 =05 |4 4+ 0.8
LIVER 0.32 | 27 =1.8 | 23.8 4+ 0.02

RINGNORM 094 | 6.3 4+0.06|4.34+0.1
TWONORM 0.16 | 15 4+ 0.2 1.2 +0.2
ADULT 0.701 128 0.8 | 11.5 + 0.3




Conclusion

Efficient algorithm to compute the solutions of the SVM for many
cost asymmetries

Allow to build better ROC curves

Mismatch between training and testing asymmetries due to convex
surrogate to the 0-1 loss

Future work:

— Theoretical analysis: extend to other losses
— Algorithm: path following extended to multiple kernel learning



