On the Path to an Ideal ROC Curve: Considering Cost Asymmetry in Learning Classifiers

Francis Bach UC Berkeley David Heckerman Eric Horvitz Microsoft Research

January 2005

Outline

- Asymmetric testing cost and ROC analysis
- Training linear classifiers
- Efficient algorithm to vary the training cost asymmetry
- Mismatch between training and testing asymmetries

Linear classification

- Input: $x \in \mathbb{R}^d$
- Output: labels $y \in \{-1, +1\}$

- Linear classifiers two parameters (w, b): $f(x) = \operatorname{sign}(w^{\top}x + b)$
 - -w : slope
 - -b: intercept
- Straightforward extension to non linear classification using kernels

Asymmetric utility

- Two types of errors:
 - false positives: y = -1, f(x) = 1
 - false negatives: y = 1, f(x) = -1
- Asymmetric user utility function with two parameters (C_+, C_-) :

Correct classification :	0
False positive :	$C_{-} > 0$
False negative :	$C_{+} > 0$

- Definition: **assymetry** = $C_+/(C_+ + C_-)$
- Example: junk mail filtering
- ROC curves: display performance of a set of classifiers for all possible asymmetries

ROC curves

- ROC plane (u, v)
- u = proportion of false positives = P(f(x) = 1 | y = -1)
- v = proportion of true positives = P(f(x) = 1 | y = 1)
- Plot a set of classifiers $f_{\gamma}(x)$ for $\gamma \in \mathbb{R}$

ROC curves and convex envelopes

- Any point on the upper convex envelope can be achieved
- Definition: $(u(\gamma), v(\gamma))$ **ROC-consistent** iff it lies on the upper convex envelope of the ROC curve

Reading out performance from ROC curves

- Given the user (testing) asymmetry β , find the best γ
 - β defines a direction in the ROC plane
 - finds the most upper left tangent point
- Given $\gamma,$ find the best testing asymmetry β
 - Only relevant for ROC consistent points: $\beta(\gamma) = \frac{1}{1 + \frac{p_+}{p_-} \frac{dv}{d\gamma}(\gamma) / \frac{du}{d\gamma}(\gamma)}$

Training linear classifiers

• User cost (testing) : $R(C_+, C_-, w, b)$

$$= C_{+}P\{w^{\top}x + b < 0, y = 1\} + C_{-}P\{w^{\top}x + b \ge 0, y = -1\}$$
$$= C_{+}E\{1_{y=1}\phi_{0-1}(w^{\top}x + b)\} + C_{-}E\{1_{y=-1}\phi_{0-1}(-w^{\top}x - b)\}$$

 $\phi_{0-1} =$ "0-1 loss" (step function): 1 for negative values, 0 otherwise

• Training cost using convex surrogate: $R_{\phi}(C_+, C_-, w, b)$

$$= C_{+}E\{1_{y=1}\phi(w^{\top}x+b)\} + C_{-}E\{1_{y=-1}\phi(-w^{\top}x-b)\}$$

Loss functions

Building ROC curves for linear classifiers

- Usual method:
 - train once with a given asymmetry $\gamma \in (0,1) \rightarrow w, b$
 - hold the slope \boldsymbol{w} fixed
 - vary the intercept b from $-\infty$ to $+\infty$
- Proposed method:
 - train for all possible asymmetries $\gamma \in (0,1) \rightarrow w(\gamma), b(\gamma)$
 - should perform better than not optimizing \boldsymbol{w}
 - if also varying b, it strictly includes the usual one \Rightarrow must perform better

Building ROC curves for linear classifiers

- Usual method:
 - train once with a given asymmetry $\gamma \in (0,1) \rightarrow w, b$
 - hold the slope \boldsymbol{w} fixed
 - vary the intercept b from $-\infty$ to $+\infty$
- Proposed method:
 - train for all possible asymmetries $\gamma \in (0,1) \rightarrow w(\gamma), b(\gamma)$
 - should perform better than not optimizing \boldsymbol{w}
 - if also varying b, it strictly includes the usual one \Rightarrow must perform better
- Computational feasibility ?
- Links between training asymmetry and testing asymmetry ?

Training data and regularization

• Regularized empirical training cost $\widehat{R}_{\phi}(C_{+}, C_{-}, w, b)$

$$= \frac{C_+}{n} \sum_{i \in \mathcal{I}_+} \phi(y_i(w^\top x_i + b)) + \frac{C_-}{n} \sum_{i \in \mathcal{I}_-} \phi(y_i(w^\top x_i + b)) + \frac{1}{2n} ||w||^2$$

 \mathcal{I}_+ positive examples, \mathcal{I}_- negative examples,

- Two different effects in training:
 - Asymmetry $C_+/(C_- + C_+)$
 - Total amount of regularization $1/(C_+ + C_-)$
- Simplification: $(C_+ + C_-)$ held fixed to the best value for a particular asymmetry

Building paths of linear classifiers for the SVM

- SVM corresponds to hinge loss $\phi(u) = \max\{0, 1 u\}$
- Usual formulation:

$$\begin{split} \min_{w,b,\xi} \ C_+ \sum_{i \in \mathcal{I}_+} \xi_i + C_- \sum_{i \in \mathcal{I}_-} \xi_i + \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad \forall i, \ \xi_i \geqslant 0, \\ \forall i, \ \xi_i \geqslant 1 - y_i (w^\top x_i + b) \end{split}$$

- Goal : follow optimal solution along lines in the (C_+, C_-) -plane
- Path following method:
 - 1. Find (C_+, C_-) for which the solution is trivial to find
 - 2. Use efficient path following technique

Path following for the SVM

- **Proposition** extension of recent result by Hastie et al (2004): $(C_+, C_-) \mapsto (w, b)$ is piecewise linear
- Corollary: following paths of solutions along straight lines in the (C_+, C_-) -plane is computationally feasible.

- Path following algorithm:
 - Follow a straight line in the (w, b)-space until a kink
 - Once at a kink, compute the new direction

Building paths of linear classifiers for the SVM

- Initialization:
 - Original method of Hastie et al requires "balanced data" ($C_+n_+ = C_-n_-$) for simple initialization
 - We allow the ratio C_+/C_- to vary \Rightarrow always possible
- Exploring the (C_+, C_-) -plane

Computational complexity

- n number of data points, m number of support vectors
- Complexity of each step $O(mn + m^2)$
- Number of kinks along a straight line empirically O(n)
- Total empirical complexity is $O(mn^2 + m^2n)$ for the entire path
- Similar to SMO for a single point

ROC curves

- Varying the asymmetry does not always perform better than varying the intercept
- Some points are ROC inconsistent when varying the asymmetry

ROC curves - population densities

- \Rightarrow empirical mismatch between training and testing asymmetries
 - Not a small sample effect
 - Due to the use of a convex surrogate to the 0-1 loss

Training and optimal testing asymmetries

- Population case (infinite sample) \Rightarrow no need for regularization
- One-dimensional ROC curve $u(\gamma), v(\gamma)$ parameterized by training asymmetry γ
- For each γ , there exists one optimal testing asymmetry

$$\beta(\gamma) = \frac{1}{1 + \frac{p_+}{p_-} \frac{dv}{d\gamma}(\gamma) / \frac{du}{d\gamma}(\gamma)}$$

- $\beta(\gamma)$ is different from γ
 - Characterization around extreme asymmetries $\gamma=0 \mbox{ or } 1$

Characterization around extreme asymmetries

- Requires asymptotic expansion of $\beta(\gamma)$ around $\gamma = 0$
- Expansion can be done in semi-closed form when
 - class-conditional densities are mixtures of Gaussians
 - the loss functions are the square loss and the erf loss
- erf loss: $\phi_{erf}(u) = 2\left[\frac{u}{2}\psi\left(\frac{u}{2}\right) \frac{u}{2} + \psi'\left(\frac{u}{2}\right)\right]$, where ψ is the cumulative distribution of the standard normal distribution, a.k.a the erf function.

$$\psi(v) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{v} e^{-t^2/2} dt$$

• the erf loss is a close approximation to the *logistic loss* $\log(1 + e^{-u})$

erf loss

Gaussian densities - square loss

• Notations:

$$-P(y=\pm 1)=p_{\pm},$$

- Given $y = \pm 1$, x is normal with mean μ_{\pm} and covariance Σ_{\pm}
- Proof: square loss ⇔ linear regression
- Expansion:

$$\log\left(\frac{p_{-}}{p_{+}}(\beta(\gamma)^{-1}-1)\right) \approx \frac{p_{-}^{2}}{8p_{+}^{2}\gamma^{2}} \left(\frac{1}{m^{\top}\Sigma_{-}^{-1}m} - \frac{1}{m^{\top}\Sigma_{-}^{-1}\Sigma_{+}\Sigma_{-}^{-1}m}\right)$$

• Behavior depends on sign of $A = \left(\frac{1}{m^{\top}\Sigma_{-}^{-1}m} - \frac{1}{m^{\top}\Sigma_{-}^{-1}\Sigma_{+}\Sigma_{-}^{-1}m}\right)$

Square loss - Gaussian densities

Gaussian densities - erf loss

• Notations:

$$- P(y = \pm 1) = p_{\pm},$$

- Given $y = \pm 1$, x is normal with mean μ_{\pm} and covariance Σ_{\pm}
- Proof: write down the optimality conditions and compute...
- Expansion:

$$\log\left(\frac{p_{-}}{p_{+}}(\beta(\gamma)^{-1}-1)\right) \approx 2\log(1/\gamma)\left(\frac{1}{m^{\top}\Sigma_{-}^{-1}m} - \frac{1}{m^{\top}\Sigma_{-}^{-1}\Sigma_{+}\Sigma_{-}^{-1}m}\right)$$

• Behavior depends on sign of $A = \left(\frac{1}{m^{\top}\Sigma_{-}^{-1}m} - \frac{1}{m^{\top}\Sigma_{-}^{-1}\Sigma_{+}\Sigma_{-}^{-1}m}\right)$

Erf loss - Gaussian densities

Results for mixtures of Gaussians

- Qualitatively similar:
 - to the first order, phase transition
 - test available given the class-conditional densities
- For details see the paper and the technical report

Empirical study of the mismatch

- Mismatch between training and testing asymmetries
 - quantifiable for extreme asymmetries
- Given one desired testing cost asymmetry, which training asymmetry?
 - currently no rule of thumb, but ...
 - ... one can try all of them (if it is efficient)

Maximal discrepancies

- \bullet For each dataset, compute the asymmetry γ for which performance is most different
- Performance measured by 10 fold cross validation

Dataset	γ	one asym.	all asym.
Pima	0.68	41 ± 0.4	22 ± 1
Breast	0.99	0.9 ± 0.03	0.09 ± 0.04
IONOSPHERE	0.82	10 ± 0.5	4 ± 0.8
LIVER	0.32	27 ± 1.8	23.8 ± 0.02
Ringnorm	0.94	6.3 ± 0.06	4.3 ± 0.1
TWONORM	0.16	15 ± 0.2	1.2 ± 0.2
Adult	0.70	12.8 ± 0.8	11.5 ± 0.3

Conclusion

- Efficient algorithm to compute the solutions of the SVM for many cost asymmetries
- Allow to build better ROC curves
- Mismatch between training and testing asymmetries due to convex surrogate to the 0-1 loss
- Future work:
 - Theoretical analysis: extend to other losses
 - Algorithm: path following extended to multiple kernel learning