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Abstract

Many types of regularization schemes have been employed in statistical learning,
each motivated by some assumption about the problem domain. In this paper,
we present a unified asymptotic analysis of smooth regularizers, which allows us
to see how the validity of these assumptions impacts the success of a particular
regularizer. In addition, our analysis motivates an algorithm for optimizing regu-
larization parameters, which in turn can be analyzed within our framework. We
apply our analysis to several examples, including hybrid generative-discriminative
learning and multi-task learning.

1 Introduction

Many problems in machine learning and statistics involve the estimation of parameters from finite
data. Although empirical risk minimization has favorable limiting properties, it is well known that
this procedure can overfit on finite data. Hence, various forms of regularization have been employed
to control this overfitting. Regularizers are usually chosen based on assumptions about the problem
domain at hand. For example, in classification, we might use L2 regularization if we expect the data
to be separable with a large margin. We might regularize with a generative model if we think it is
roughly well-specified [7, 20, 15, 17]. In multi-task learning, we might penalize deviation between
parameters across tasks if we believe the tasks to be similar [3, 12, 2, 13].

In each case, we would like (1) a procedure for choosing the parameters of the regularizer (for exam-
ple, its strength) and (2) an analysis that shows the amount by which regularization reduces expected
risk, expressed as a function of the compatibility between the regularizer and the problem domain.
In this paper, we address these two points by developing an asymptotic analysis of smooth regular-
izers for parametric problems. The key idea is to derive a second-order Taylor approximation of the
expected risk, yielding a simple and interpretable quadratic form which can be directly minimized
with respect to the regularization parameters. We first develop the general theory (Section 2) and
then apply it to some examples of common regularizers used in practice (Section 3).

2 General theory

We use uppercase letters (e.g., L,R,Z) to denote random variables and script letters (e.g., L,R, I)
to denote constant limits of random variables. For a λ-parametrized differentiable function θ 7→
f(λ; θ), let ḟ , f̈ , and

...
f denote the first, second and third derivatives of f with respect to θ, and

let ∇f(λ; θ) denote the derivative with respect to λ. Let Xn = Op(n−α) denote a sequence of
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random variables for which nαXn is bounded in probability. Let Xn
P−→ X denote convergence in

probability. For a vector v, let v⊗ = vv>. Expectation and variance operators are denoted as E[·]
and V[·], respectively.

2.1 Setup

We are given a loss function `(·; θ) parametrized by θ ∈ Rd (e.g., `((x, y); θ) = 1
2 (y − x>θ)2 for

linear regression). Our goal is to minimize the expected risk,

θ∞
def= argmin

θ∈Rd
L(θ), L(θ) def= EZ∼p∗ [`(Z; θ)], (1)

which averages the loss over some true data generating distribution p∗(Z). We do not have access
to p∗, but instead receive a sample of n i.i.d. data points Z1, . . . , Zn drawn from p∗. The standard
unregularized estimator minimizes the empirical risk:

θ̂0
n

def= argmin
θ∈Rd

Ln(θ), Ln(θ) def=
1
n

n∑
i=1

`(Zi, θ). (2)

Although θ̂0
n is consistent (that is, it converges in probability to θ∞) under relatively weak condi-

tions, it is well known that regularization can improve performance substantially for finite n. Let
Rn(λ, θ) be a (possibly data-dependent) regularization function, where λ ∈ Rb are the regulariza-
tion parameters. For linear regression, we might use squared regularization (Rn(λ, θ) = λ

2n‖θ‖
2),

where λ ∈ R determines the strength. Define the regularized estimator as follows:

θ̂λn
def= argmin

θ∈Rd
Ln(θ) +Rn(λ, θ). (3)

The goal of this paper is to choose good values of λ and analyze the subsequent impact on perfor-
mance. Specifically, we wish to minimize the relative risk:

Ln(λ) def= EZ1,...,Zn∼p∗ [L(θ̂λn)− L(θ̂0
n)], (4)

which is the difference in risk (averaged over the training data) between the regularized and unreg-
ularized estimators; Ln(λ) < 0 is desirable. Clearly, argminλ Ln(λ) is the optimal regularization
parameter. However, it is difficult to get a handle on Ln(λ). Therefore, the main focus of this work is
on deriving an asymptotic expansion for Ln(λ). In this paper, we make the following assumptions:1

Assumption 1 (Compact support). The true distribution p∗(Z) has compact support.
Assumption 2 (Smooth loss). The loss function `(z, θ) is thrice-differentiable with respect to θ.
Furthermore, assume the expected Hessian of the loss function is positive definite (L̈(θ∞) � 0).2

Assumption 3 (Smooth regularizer). The regularizer Rn(λ, θ) is thrice-differentiable with respect

to θ and differentiable with respect to λ. Assume Rn(0, θ) ≡ 0 and Rn(λ, θ) P−→ 0 as n→∞.

2.2 Rate of regularization strength

Let us establish some basic properties that the regularizer Rn(λ, θ) should satisfy. First, a desirable
property is consistency (θ̂λn

P−→ θ∞), i.e., convergence to the parameters that achieve the minimum
possible risk in our hypothesis class. To achieve this, it suffices (and in general also necessitates)
that (1) the loss class satisfies standard uniform convergence properties [22] and (2) the regularizer
has a vanishing impact in the limit of infinite data (Rn(λ, θ) P−→ 0). These two properties can be
verified given our assumptions.

The next question is at what rate Rn(λ, θ) should converge to 0? As we show in [16], Rn(λ, θ) =
Op(n−1) is the rate that minimizes the relative risk Ln. With this rate, it is natural to consider the
regularizer as a prior p(θ | λ) ∝ exp{−Rn(λ, θ)} (and −`(z, θ) as the log-likelihood), in which
case θ̂λn is the maximum a posteriori (MAP) estimate.

1While we do not explicitly assume convexity of ` and Rn, the local nature of our analysis means that we
are essentially working under strong convexity.

2This assumption can be weakened. If L̈ 6� 0, the parameters can only be estimated up to the row space of
L̈. But since we are interested in the parameters θ only in terms of L(θ), this particular non-identifiability of
the parameters is irrelevant.
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2.3 Asymptotic expansion

Our main result is the following theorem, which provides a simple interpretable asymptotic expres-
sion for the relative risk, characterizing the impact of regularization (see [16] for proof):
Theorem 1. Assume Rn(λ, θ∞) = Op(n−1). The relative risk admits the following asymptotic
expansion:

Ln(λ) = L(λ) · n−2 +Op(n−
5
2 ) (5)

in terms of the asymptotic relative risk:

L(λ) def=
1
2

tr{Ṙ(λ)⊗L̈−1} − tr{I``L̈−1R̈(λ)L̈−1} − 2B>Ṙ(λ) + tr{I`r(λ)L̈−1}, (6)

where L̈ def= E[῭(Z; θ∞)], R(λ) def= limn→∞ nRn(λ, θ∞) (derivatives thereof are defined analo-

gously), I``
def= E[ ˙̀(Z; θ∞)⊗], I`r(λ) def= limn→∞ nE[L̇nṘn(λ)>], B def= limn→∞ nE[θ̂0

n − θ∞].

The most important equation of this paper is (6), which captures the lowest-order terms of the relative
risk defined in (4).

Interpretation The significance of Theorem 1 is in identifying the three problem-dependent con-
tributions to the asymptotic relative risk:

Squared bias of the regularizer tr{Ṙ(λ)⊗L̈−1}: Ṙ(λ) is the gradient of the regularizer at the lim-
iting parameters θ∞; the squared regularizer bias is the squared norm of Ṙ(λ) with respect to the
Mahalanobis metric given by L̈. Note that the squared regularizer bias is always positive: it always
increases the risk by an amount which depends on how “wrong” the regularizer is.

Variance reduction provided by the regularizer tr{I``L̈−1R̈(λ)L̈−1}: The key quantity is R̈(λ),
the Hessian of the regularizer, whose impact on the relative risk is channeled through L̈−1 and
I``. For convex regularizers, R̈(λ) � 0, so we always improve the stability of the estimate by
regularizing. Furthermore, if the loss is the negative log-likelihood and our model is well-specified
(that is, p∗(z) = exp{−`(z; θ∞)}), then I`` = L̈ by the first Bartlett identity [4], and the variance
reduction term simplifies to tr{R̈(λ)L̈−1}.

Alignment between regularizer bias and unregularized estimator bias 2B>Ṙ(λ) − tr{I`r(λ)L̈−1}:
The alignment has two parts, the first of which is nonzero only for non-linear models and the second
of which is nonzero only when the regularizer depends on the training data. The unregularized
estimator errs in direction B; we can reduce the risk if the regularizer bias Ṙ(λ) helps correct for the
estimator bias (B>Ṙ(λ) > 0). The second part carries the same intuition: the risk is reduced when
the random regularizer compensates for the loss (tr{I`r(λ)L̈−1} < 0).

2.4 Oracle regularizer

The principal advantage of having a simple expression for L(λ) is that we can minimize it with
respect to λ. Let λ∗ def= argminλ L(λ) and call θ̂λ

∗

n the oracle estimator. We have a closed form for
λ∗ in the important special case that the regularization parameter λ is the strength of the regularizer:
Corollary 1 (Oracle regularization strength). If Rn(λ, θ) = λ

nr(θ) for some r(θ), then

λ∗ = argmin
λ

L(λ) =
tr{I``L̈−1r̈L̈−1}+ 2B>ṙ

ṙ>L̈−1ṙ

def=
C1
C2
, L(λ∗) = − C

2
1

2C2
. (7)

Proof. (6) is a quadratic in λ; solve by differentiation. Compute L(λ∗) by substitution.

In general, λ∗ will depend on θ∞ and hence is not computable from data; Section 2.5 will remedy
this. Nevertheless, the oracle regularizer provides an upper bound on performance and some insight
into the relevant quantities that make a regularizer useful.

Note L(λ∗) ≤ 0, since optimizing λ∗ must be no worse than not regularizing since L(0) = 0.
But what might be surprising at first is that the oracle regularization parameter λ∗ can be negative
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Estimator UNREGULARIZED ORACLE PLUGIN ORACLEPLUGIN

Notation θ̂0n θ̂λ
∗
n θ̂λ̂nn = θ̂•1n θ̂•λ

•∗
n

Relative risk 0 L(λ∗) L•(1) L•(λ•∗)

Table 1: Notation for the various estimators and their relative risks.

(corresponding to “anti-regularization”). But if ∂L(λ)
∂λ = −C1 < 0, then (positive) regularization

helps (λ∗ > 0 and L(λ) < 0 for 0 < λ < 2λ∗).

2.5 Plugin regularizer

While the oracle regularizer Rn(λ∗, θ) given by (7) is asymptotically optimal, λ∗ depends on the
unknown θ∞, so θ̂λ

∗

n is actually not implementable. In this section, we develop the plugin regularizer
as a way to avoid this dependence. The key idea is to substitute λ∗ with an estimate λ̂n

def= λ∗ + εn

where εn = Op(n−
1
2 ). We then use the plugin estimator θ̂λ̂nn

def= argminθ Ln(θ) +Rn(λ̂n, θ).

How well does this plugin estimator work, that is, what is its relative risk E[L(θ̂λ̂nn ) − L(θ̂0
n)]?

We cannot simply write Ln(λ̂n) and apply Theorem 1 because L(·) can only be applied to non-
random arguments. However, we can still leverage existing machinery by defining a new plugin
regularizer R•n(λ•, θ) def= λ•Rn(λ̂n, θ) with regularization parameter λ• ∈ R. Henceforth, the
superscript • will denote quantities concerning the plugin regularizer. The corresponding estimator
θ̂•λ

•

n
def= argminθ Ln(θ) + R•n(λ•, θ) has relative risk L•n(λ•) = E[L(θ̂•λ

•

n ) − L(θ̂•0n )]. The key
identity is θ̂λ̂nn = θ̂•1n , which means the asymptotic risk of the plugin estimator θ̂λ̂nn is simply L•(1).

We could try to squeeze more out of the plugin regularizer by further optimizing λ• according to
λ•∗

def= argminλ• L•(λ•) and use the oracle plugin estimator θ̂•λ
•∗

n rather than just using λ• =
1. In general, this is not useful since λ•∗ might depend on θ∞, and the whole point of plugin
is to remove this dependence. However, in a fortuitous turn of events, for some linear models
(Sections 3.1 and 3.4), λ•∗ is in fact independent of θ∞, and so θ̂•λ

•∗

n is actually implementable.
Table 1 summarizes all the estimators we have discussed.

The following theorem relates the risks of all estimators we have considered (see [16] for the proof):
Theorem 2 (Relative risk of plugin). The relative risk of the plugin estimator is L•(1) = L(λ∗)+E ,

where E def= limn→∞ nE[tr{L̇n(∇Ṙn(λ∗)εn)>L̈−1}]. If Rn(λ) is linear in λ, then the relative risk
of the oracle plugin estimator is L•(λ•∗) = L•(1) + E2

4L(λ∗) with λ•∗ = 1 + E
2L(λ∗) .

Note that the sign of E depends on the nature of the error εn, so PLUGIN could be either better or
worse than ORACLE. On the other hand, ORACLEPLUGIN is always better than PLUGIN. We can
get a simpler expression for E if we know more about εn (see [16] for the proof):

Theorem 3. Suppose λ∗ = f(θ∞) for some differentiable f : Rd → Rb. If λ̂n = f(θ̂0
n), then the

results of Theorem 2 hold with E = −tr{I``L̈−1∇Ṙ(λ∗)ḟ L̈−1}.

3 Examples

In this section, we apply our results from Section 2 to specific problems. Having made all the
asymptotic derivations in the general setting, we now only need to make a few straightforward
calculations to obtain the asymptotic relative risks and regularization parameters for a given problem.
We first explore two classical examples from statistics (Sections 3.1 and 3.2) to get some intuition
for the theory. Then we consider two important examples in machine learning (Sections 3.3 and 3.4).

3.1 Estimation of normal means

Assume that data are generated from a multivariate normal distribution with d independent compo-
nents (p∗ = N (θ∞, I)). We use the negative log-likelihood as the loss function: `(x; θ) = 1

2 (x−θ)2,
so the model is well-specified.
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In his seminal 1961 paper [14], Stein showed that, surprisingly, the standard empirical risk minimizer
θ̂0
n = X̄

def= 1
n

∑n
i=1Xi is beaten by the James-Stein estimator θ̂JS

n
def= X̄

(
1− d−2

n‖X̄‖2

)
in the sense

that E[L(θ̂JS
n )] < E[L(θ̂0

n)] for all n and θ∞ if d > 2. We will show that the James-Stein estimator
is essentially equivalent to ORACLEPLUGIN with quadratic regularization (r(θ) = 1

2‖θ‖
2).

First compute L̇n = θ∞ − X̄ , L̈ = I , B = 0, ṙ = θ∞, and r̈ = I . By (7), the oracle regularization
weight is λ∗ = d

‖θ∞‖2 , which yields a relative risk of L(λ∗) = − d2

2‖θ∞‖2 .

Now let us derive PLUGIN (Section 2.5). We have f(θ) = d
‖θ‖2 and ḟ(θ) = −2dθ

‖θ‖4 . By Theorems 2

and 3, E = 2d
‖θ∞‖2 and L•(1) = − d(d−4)

2‖θ∞‖2 . Note that since E > 0, PLUGIN is always (asymptoti-
cally) worse than ORACLE but better than UNREGULARIZED if d > 4.

To get ORACLEPLUGIN, compute λ•∗ = 1− 2
d (note that this doesn’t depend on θ∞), which results

in R•n(θ) = 1
2

1− 2
d

‖X̄‖2 ‖θ‖
2. By Theorem 2, its relative risk is L•(λ•∗) = − (d−2)2

2‖θ∞‖2 , which offers a
small improvement over PLUGIN (and is superior to UNREGULARIZED when d > 2).

Note that the ORACLEPLUGIN and PLUGIN are adaptive: We regularize more or less depend-
ing on whether our preliminary estimate of X̄ is small or large, respectively. By simple al-
gebra, ORACLEPLUGIN has a closed form θ̂•λ

•∗

n = X̄
(

1− d−2
n‖X̄‖2+d−2

)
, which differs from

JAMESSTEIN by a very small amount: θ̂•λ
•∗

n − θ̂JS
n = Op(n−

5
2 ). ORACLEPLUGIN has the added

benefit that it always shrinks towards zero by an amount between 0 and 1, whereas JAMESSTEIN can
overshoot. Empirically, we found that ORACLEPLUGIN generally had a lower expected risk than
JAMESSTEIN when ‖θ∞‖ is large, but JAMESSTEIN was better when ‖θ∞‖ ≤ 1.

3.2 Binomial estimation

Consider the estimation of θ, the log-odds of a coin coming up heads. We use the negative log-
likelihood loss `(x; θ) = −xθ + log(1 + eθ), where x ∈ {0, 1} is the outcome of the coin. This
example serves to provide intuition for the bias B appearing in (6), which is typically ignored in
first-order asymptotics or is zero (for linear models).

Consider a regularizer r(θ) = 1
2 (θ + 2 log(1 + e−θ)), which corresponds to a Beta(λ2 ,

λ
2 ) prior.

Choosing λ has been studied extensively in statistics. Some common choices are the Haldane prior
(λ = 0), the reference (Jeffreys) prior (λ = 1), the uniform prior (λ = 2), and Laplace smoothing
(λ = 4). We will choose λ to minimize expected risk adaptively based on data.

Define µ def= 1
1+e−θ∞

, v def= µ(1 − µ), and b def= µ − 1
2 . Then compute L̈ = v,

...
L = −2vb, ṙ = b,

r̈ = v, B = −v−1b. ORACLE corresponds to λ∗ = 2 + v
b2 . Note that λ∗ > 0, so again (positive)

regularization always helps.

We can compute the difference between ORACLE and PLUGIN: E = 2 − 2v
b2 . If |b| >

√
2

4 , E > 0,
which means that PLUGIN is worse; otherwise PLUGIN is actually better. Even when PLUGIN
is worse than ORACLE, PLUGIN is still better than UNREGULARIZED, which can be verified by
checking that L•(1) = − 5

2vb
−2 − 2v−1b2 < 0 for all θ∞.

3.3 Hybrid generative-discriminative learning

In prediction tasks, we wish to learn a mapping from some input x ∈ X to an output y ∈ Y . A
common approach is to use probabilistic models defined by exponential families, which is defined
by a vector of sufficient statistics (features) φ(x, y) ∈ Rd and an accompanying vector of parameters
θ ∈ Rd. These features can be used to define a generative model (8) or a discriminative model (9):

pθ(x, y) = exp{φ(x, y)>θ −A(θ)}, A(θ) = log
∫
X

∫
Y

exp{φ(x, y)>θ}dydx, (8)

pθ(y | x) = exp{φ(x, y)>θ −A(θ;x)}, A(θ;x) = log
∫
Y

exp{φ(x, y)>θ}dy. (9)
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Misspecification tr{I``v−1
x vv−1

x } 2B>(µ− µxy) tr{(µ− µxy)⊗v−1
x } λ∗ L(λ∗)

0% 5 0 0 ∞ -0.65
5% 5.38 -0.073 0.00098 310 -48

50% 13.8 -1.0 0.034 230 -808

Table 2: The oracle regularizer for the hybrid generative-discriminative estimator. As misspeci-
fication increases, we regularize less, but the relative risk is reduced more (due to more variance
reduction).

Given these definitions, we can either use a generative estimator θ̂gen
n

def= argminθ Gn(θ), where

Gn(θ) = − 1
n

∑n
i=1 log pθ(x, y) or a discriminative estimator θ̂dis

n
def= argminθDn(θ), where

Dn(θ) = − 1
n

∑n
i=1 log pθ(y | x).

There has been a flurry of work on combining generative and discriminative learning [7, 20, 15,
18, 17]. [17] showed that if the generative model is well-specified (p∗(x, y) = pθ∞(x, y)), then
the generative estimator is better in the sense that L(θ̂gen

n ) ≤ L(θ̂dis
n ) − c

n + Op(n−
3
2 ) for some

c ≥ 0; if the model is misspecified, the discriminative estimator is asymptotically better. To create a
hybrid estimator, let us treat the discriminative and generative objectives as the empirical risk and the
regularizer, respectively, so `((x, y); θ) = − log pθ(y | x), so Ln = Dn and Rn(λ, θ) = λ

nGn(θ).
As n→∞, the discriminative objective dominates as desired. Our approach generalizes the analysis
of [6], which applies only to unbiased estimators for conditionally well-specified models.

By moment-generating properties of the exponential family, we arrive at the following quanti-
ties (write φ for φ(X,Y )): L̈ = vx

def= Ep∗(X)[Vpθ∞ (Y |X)[φ|X]], Ṙ(λ) = λ(µ − µxy) def=

λ(Epθ∞ (X,Y )[φ] − Ep∗(X,Y )[φ]), and R̈(λ) = λv
def= λVpθ∞ (X,Y )[φ]. The oracle regularization

parameter is then

λ∗ =
tr{I``v−1

x vv−1
x }+ 2B>(µ− µxy)− tr{I`rv−1

x }
tr{(µ− µxy)⊗v−1

x }
. (10)

The sign and magnitude of λ∗ provides insight into how generative regularization improves pre-
diction as a function of the model and problem: Specifically, a large positive λ∗ suggests regu-
larization is helpful. To simplify, assume that the discriminative model is well-specified, that is,
p∗(y | x) = pθ∞(y | x) (note that the generative model could still be misspecified). In this case,
I`` = L̈, I`r = vx, and so the numerator reduces to tr{(v − vx)v−1

x }+ 2B>(µ− µxy).

Since v � vx (the key fact used in [17]), the variance reduction (plus the random alignment term
from I`r) is always non-negative with magnitude equal to the fraction of missing information pro-
vided by the generative model. There is still the non-random alignment term 2B>(µ− µxy), whose
sign depends on the problem. Finally, the denominator (always positive) affects the optimal magni-
tude of the regularization. If the generative model is almost well-specified, µ will be close to µxy ,
and the regularizer should be trusted more (large λ∗). Since our analysis is local, misspecification
(how much pθ∞(x, y) deviates from p∗(x, y)) is measured by a Mahalanobis distance between µ
and µxy , rather than something more stringent and global like KL-divergence.

An empirical example To provide some concrete intuition, we investigated the oracle regularizer
for a synthetic binary classification problem of predicting y ∈ {0, 1} from x ∈ {0, 1}k. Using
features φ(x, y) = (I[y = 0]x>, I[y = 1]x>)> defines the corresponding generative (Naive Bayes)
and discriminative (logistic regression) estimators. We set k = 5, θ∞ = ( 1

10 , · · · ,
1
10 ,

3
10 , · · · ,

3
10 )>,

and p∗(x, y) = (1 − ε)pθ∞(x, y) + εpθ∞(y)pθ∞(x1 | y)I[x1 = · · · = xk]. The amount of mis-
specification is controlled by 0 ≤ ε ≤ 1, the fraction of examples whose features are perfectly
correlated.

Table 2 shows how the oracle regularizer changes with ε. As ε increases, λ∗ decreases (we regularize
less) as expected. But perhaps surprisingly, the relative risk is reduced with more misspecification;
this is due to the fact that the variance reduction term increases and has a quadratic effect on L(λ∗).

Figure 1(a) shows the relative risk Ln(λ) for various values of λ. The vertical line corresponds
to λ∗, which was computed numerically by sampling. Note that the minimum of the curves
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(argminλ Ln(λ)), the desired quantity, is quite close to λ∗ and approaches λ∗ as n increases, which
empirically justifies our asymptotic approximations.

Unlabeled data One of the main advantages of having a generative model is that we can lever-
age unlabeled examples by marginalizing out their hidden outputs. Specifically, suppose we have
m i.i.d. unlabeled examples Xn+1, . . . , Xn+m ∼ p∗(x), with m → ∞ as n → ∞. Define the
unlabeled regularizer as Rn(λ, θ) = − λ

nm

∑m
i=1 log pθ(Xn+i).

We can compute Ṙ = µ − µxy using the stationary conditions of the loss function at θ∞. Also,
R̈ = v − vx, and I`r = 0 (the regularizer doesn’t depend on the labeled data). If the model is
conditionally well-specified, we can verify that the oracle regularization parameter λ∗ is the same as
if we had regularized with Gn. This equivalence suggests that the dominant concern asymptotically
is developing an adequate generative model with small bias and not exactly how it is used in learning.

3.4 Multi-task regression

The intuition behind multi-task learning is to share statistical strength between tasks [3, 12, 2, 13].
Suppose we have K regression tasks. For each task k = 1, . . . ,K, we generate each data point
i = 1, . . . , n independently as follows: Xk

i ∼ p∗(Xk
i ) and Y ki ∼ N (Xk>

i θk∞, 1). We can treat this
as a single task problem by concatenating the vectors for all the tasks: Xi = (X1>

i , . . . , XK>

i )> ∈
RKd, Y = (Y 1, . . . , Y K)> ∈ RK , and θ = (θ1>, . . . , θK>)> ∈ RKd. It will also be useful to
represent θ ∈ RKd by the matrix Θ = (θ1, . . . , θK) ∈ Rd×K . The loss function is `((x, y), θ) =
1
2

∑K
k=1(yk − xk>θk)2. Assume the model is conditionally well-specified.

We would like to be flexible in case some tasks are more related than others, so let us define a positive
definite matrix Λ ∈ RK×K of inter-task affinities and use the quadratic regularizer: r(Λ, θ) =
1
2θ
>(Λ⊗ Id)θ. For simplicity, assume EXk⊗

i = Id, which implies that I`` = L̈ = IKd.

Most of the computations that follow parallel those of Section 3.1, only extended to matrices. Sub-
stituting the relevant quantities into (6) yields the relative risk: L(Λ) = 1

2 tr{Λ2Θ>∞Θ∞} − dtr{Λ}.
Optimizing with respect to Λ produces the oracle regularization parameter Λ∗ = d(Θ>∞Θ∞)−1 and
its associated relative risk L(Λ∗) = − 1

2d
2tr{(Θ>∞Θ∞)−1}.

To analyze PLUGIN, first compute ḟ = −d(Θ>∞Θ∞)−1(2Θ>∞(·))(Θ>∞Θ∞)−1; we find that PLUGIN
increases the asymptotic risk by E = 2dtr{(Θ>∞Θ∞)−1}. However, the relative risk of PLUGIN is
still favorable when d > 4, as L•(1) = − 1

2d(d− 4)tr{(Θ>∞Θ∞)−1} < 0 for d > 4.

We can do slightly better using ORACLEPLUGIN (λ•∗ = 1 − 2
d ), which results in a relative risk of

L•(λ•∗) = − 1
2 (d − 2)2tr{(Θ>∞Θ∞)−1}. For comparison, if we had solved the K regression tasks

completely independently with K independent regularization parameters, our relative risk would
have been − 1

2 (d− 2)2(
∑K
k=1 ‖θk∞‖−2) (following similar but simpler computations).

We now compare joint versus independent regularization. Let A = Θ>∞Θ∞ with eigendecompo-
sition A = UDU>. The difference in relative risks between joint and independent regularization
is ∆ = − 1

2 (d − 2)2(
∑
kD
−1
kk −

∑
k A
−1
kk ) (∆ < 0 means joint regularization is better). The gap

between joint and independent regularization is large when the tasks are non-trivial but similar (θk∞s
are close, but ‖θk∞‖ is large). In that case, D−1

kk is quite large for k > 1, but all the A−1
kk s are small.

MHC-I binding prediction We evaluated our multitask regularization method on the IEDB
MHC-I peptide binding dataset created by [19] and used by [13]. The goal here is to predict the
binding affinity (represented by log IC50) of a MHC-I molecule given its amino-acid sequence (rep-
resented by a vector of binary features, reduced to a 20-dimensional real vector using SVD). We
created five regression tasks corresponding to the five most common MHC-I molecules.

We compared four estimators: UNREGULARIZED, DIAGCV (Λ = cI), UNIFORMCV (using
the same task-affinity for all pairs of tasks with Λ = c(1⊗ + 10−5I)), and PLUGINCV (Λ =
cd(Θ̂>n Θ̂n)−1), where c was chosen by cross-validation.3 Figure 1 shows the results averaged over

3We performed three-fold cross-validation to select c from 21 candidates in [10−5, 105].
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Figure 1: (a) Relative risk (Ln(λ)) of the hybrid generative/discriminative estimator for various λ;
the λ attaining the minimum of Ln(λ) is close to the oracle λ∗ (the vertical line). (b) On the MHC-
I binding prediction task, test risk for the four multi-task estimators; PLUGINCV (estimating all
pairwise task affinities using PLUGIN and cross-validating the strength) works best.

30 independent train/test splits. Multi-task regularization actually performs worse than independent
learning (DIAGCV) if we assume all tasks are equally related (UNIFORMCV). By learning the full
matrix of task affinities (PLUGINCV), we obtain the best results. Note that setting theO(K2) entries
of Λ via cross-validation is not computationally feasible, though other approaches are possible [13].

4 Related work and discussion

The subject of choosing regularization parameters has received much attention. Much of the learning
theory literature focuses on risk bounds, which approximate the expected risk (L(θ̂λn)) with upper
bounds. Our analysis provides a different type of approximation—one that is exact in the first few
terms of the expansion. Though we cannot make a precise statement about the risk for any given n,
exact control over the first few terms offers other advantages, e.g., the ability to compare estimators.

To elaborate further, risk bounds are generally based on the complexity of the hypothesis class,
whereas our analysis is based on the variance of the estimator. Vanilla uniform convergence bounds
yield worst-case analyses, whereas our asymptotic analysis is tailored to a particular problem (p∗
and θ∞) and algorithm (estimator). Localization techniques [5], regret analyses [9], and stability-
based bounds [8] all allow for some degree of problem- and algorithm-dependence. As bounds,
however, they necessarily have some looseness, whereas our analysis provides exact constants, at
least the ones associated with the lowest-order terms.

Asymptotics has a rich tradition in statistics. In fact, our methodology of performing a Taylor
expansion of the risk is reminiscent of AIC [1]. However, our aim is different: AIC is intended
for model selection, whereas we are interested in optimizing regularization parameters. The Stein
unbiased risk estimate (SURE) is another method of estimating the expected risk for linear models
[21], with generalizations to non-linear models [11].

In practice, cross-validation procedures [10] are quite effective. However, they are only feasible
when the number of hyperparameters is very small, whereas our approach can optimize many hy-
perparameters. Section 3.4 showed that combining the two approaches can be effective.

To conclude, we have developed a general asymptotic framework for analyzing regularization, along
with an efficient procedure for choosing regularization parameters. Although we are so far restricted
to parametric problems with smooth losses and regularizers, we think that these tools provide a
complementary perspective on analyzing learning algorithms to that of risk bounds, deepening our
understanding of regularization.
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