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High-Dimensional Analysis of Double Descent for Linear Regression with
Random Projections\ast 
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Abstract. We consider linear regression problems with a varying number of random projections, where we
provably exhibit a double descent curve for a fixed prediction problem, with a high-dimensional
analysis based on random matrix theory. We first consider the ridge regression estimator and review
earlier results using classical notions from nonparametric statistics, namely, degrees of freedom, also
known as effective dimensionality. We then compute asymptotic equivalents of the generalization
performance (in terms of squared bias and variance) of the minimum norm least-squares fit with
random projections, providing simple expressions for the double descent phenomenon.
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1. Introduction. Overparameterized models estimated with some form of gradient de-
scent come in various forms, such as linear regression with potentially nonlinear features,
neural networks, or kernel methods. Originally characterized in simple models [41, 34] (see
also [29] for a complete history), the double descent phenomenon can be seen empirically in
these aforementioned models [6, 17]: Given a fixed prediction problem, when the number of
parameters of the model is increasing from zero to the number of observations, the generaliza-
tion performance traditionally goes down and then up, due to overfitting. Once the number
of parameters exceeds the number of observations, the generalization error decreases again,
as illustrated in Figure 1.

The phenomenon has been theoretically analyzed in several settings, such as random fea-
tures based on neural networks [31], random Fourier features [26], or linear regression [7, 19].
While the analysis of [31, 26] for random features corresponds to a single prediction problem
with a sequence of increasingly larger prediction models, most of the analysis of [19] for linear
regression does not consider a single problem, but varying problems, which does not actually
lead to a double descent curve. Random variable subsampling on a single prediction prob-
lem was analyzed with a simpler model with isotropic covariance matrices in [7], but without
a proper double descent as the model is too simple (e.g., isotropic covariance matrices) to
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Figure 1. Example of a double descent curve, for linear regression with random projections with n = 200
observations, in dimension d = 400 and a nonisotropic covariance matrix. The data are normalized so that
predicting zero leads to an excess risk of 1 and the noise so that the optimal expected risk is 1/4. The empirical
estimate is obtained by sampling 20 datasets and 20 different random projections from the same distribution
and averaging the corresponding excess risks. We plot the empirical performance together with our asymptotic
equivalents from section 6.

account for a U-shaped curve in the underparameterized regime. In work related to ours,
principal component regression was analyzed by [43] with a double descent curve but with
less general assumptions regarding the spectrum of the covariance matrix and the optimal pre-
dictor. In this paper, we consider linear regression problems and consider random projections,
whose number increases, where we provably exhibit a double descent curve for a fixed predic-
tion problem. Earlier work on the same model ([31], [19, section 5.2], and [44]) considers only
isotropic covariance matrices, where the U-shaped curve in the underparameterized regime is
not observed. Our analysis follows the high-dimensional analysis of [19, 16, 36, 25, 5] based
on random matrix theory [2], and we give asymptotic expressions for the (squared) bias and
the variance terms of the excess risk. These expressions and the trade-offs they lead to will
be the same as what can be obtained with ridge regression [21], where a squared Euclidean
penalty is added to the empirical risk.

The paper is organized as follows, first presenting earlier work on the high-dimensional
analysis of regularized least-squares and then presenting in section 6 the novel analysis of
random projections in the same context.

\bullet We first present the asymptotic set-up we will follow in section 2 and review in sec-
tion 3 the results from random matrix theory that we will need for our main result on
random projections.

\bullet We consider in section 4 the ridge regression estimator and, following [10], we reinter-
pret the results of [16, 36, 11, 42, 5] using classical notions from nonparametric sta-
tistics, namely, the degrees of freedom, a.k.a. effective dimensionality [45, 8]. When
going from a fixed design analysis (where inputs are assumed deterministic) to a ran-
dom design analysis (where inputs are random), the prediction performance in terms
of bias and variance has the same expression, but with a larger regularization param-
eter, which corresponds to an additional regularization, which, following [32], we will
refer to as ``self-induced.""

\bullet With our new interpretation, we consider in section 5 the minimum norm least-squares
estimate and analyze its performance (which corresponds to \lambda = 0 above for ridge
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28 FRANCIS BACH

regression), thus recovering the results of [19, 4]. This corresponds to the end of the
double descent curve.

\bullet In section 6, we compute asymptotic equivalents of the generalization performance
(in terms of bias and variance) of the minimum norm least-squares fit with random
projections, providing simple expressions for the double descent phenomenon. If n is
the number of observations and m is the number of random projections, the variance
term goes up and explodes at m= n and then goes down. In contrast, the bias term
may exhibit a U-shaped curve on its own in the underparameterized regime (m<n),
blow up at m = n, and then go down. Our result relies on using a high-dimensional
analysis both on the data and on the random projections.

2. High-dimensional analysis of linear regression. We consider the traditional random
design linear regression model, where x1, . . . , xn \in \BbbR d are sampled independently and with
identical distributions (i.i.d.) with covariance matrix \Sigma \in \BbbR d\times d, and yi = x\top i \theta \ast + \varepsilon i with \varepsilon i
and xi independent, and \BbbE [\varepsilon i] = 0 and var(\varepsilon i) = \sigma 2 for some \theta \ast \in \BbbR d.

We denote y \in \BbbR n the response vector, X \in \BbbR n\times d the design matrix, and \varepsilon \in \BbbR n the noise
vector. We denote by \widehat \Sigma = 1

nX
\top X \in \BbbR d\times d the noncentered empirical covariance matrix, while

XX\top \in \BbbR n\times n is the kernel matrix.
We will characterize the performance of an estimator \^\theta through its excess risk, that is, its

expected square loss on unseen data minus the optimal such loss. It has a simple expression
as a quadratic form \scrR (\^\theta ) = (\^\theta  - \theta \ast )\Sigma (\^\theta  - \theta \ast ). We will always consider expectations with
respect to \varepsilon , thus conditioned on X and on the potential additional random projections. The
expectation of the excess risk will be composed of two terms: a (squared) ``bias"" term\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta )
corresponding to \sigma = 0 (and thus independent of \varepsilon ), and a ``variance"" term \BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )]
corresponding to \theta \ast = 0 (and after taking the expectation with respect to \varepsilon ). All of our
asymptotic results will then be almost surely in all other random quantities (e.g., X and the
random projections S later).

We make similar high-dimensional assumptions as [16, 36], that is, the following hold:
(A1) X = Z\Sigma 1/2 with Z \in \BbbR n\times d with sub-Gaussian i.i.d. components with mean zero and

unit variance.
(A2) The sample size n and the dimension d go to infinity, with d

n tending to \gamma > 0.

(A3) The spectral measure 1
d

\sum d
i=1 \delta \sigma i

of \Sigma converges to a probability distribution \mu on \BbbR +,
where \sigma 1, . . . , \sigma d are the eigenvalues of \Sigma . Moreover, \mu has compact support in \BbbR \ast 

+,
and \Sigma is invertible and bounded in operator norm.

(A4) The measure
\sum d

i=1(v
\top 
i \theta \ast )

2\delta \sigma i
converges to a measure \nu with bounded mass, where vi

is the unit-norm eigenvector of \Sigma associated to \sigma i. The norm of \theta \ast is bounded.
Assumption (A1) does not assume Gaussian data but includes Z with standard Gaussian
components or Rademacher random variables (uniform in \{  - 1,1\} ).

Assumption (A2) states that the ratio of dimensions tends to a constant, but could be
relaxed by a uniform boundedness assumption [37]. See [10] for an analysis that goes beyond
this assumption of n and d being of the same order.

Assumption (A3) implies that for any bounded function r : \BbbR + \rightarrow \BbbR , 1
dtr [r(\Sigma )] \rightarrow \int +\infty 

0 r(\sigma )d\mu (\sigma ). Note that in (A3), we assume that the support of the limiting \mu is bounded
away from zero (e.g., no vanishing eigenvalues).
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DOUBLE DESCENT FOR LINEAR RANDOM PROJECTIONS 29

Assumption (A4) is equivalent to the following: for any bounded function r : \BbbR + \rightarrow \BbbR ,
\theta \top \ast r(\Sigma )\theta \ast \rightarrow 

\int +\infty 
0 r(\sigma )d\nu (\sigma ) and corresponds to \nu having a density with respect to \mu . Moreover,

it is often replaced by \theta \ast being random with mean zero and covariance matrix proportional
to identity [16] or a spectral variant of \Sigma [36].

3. Random matrix theory tools. We consider the kernel matrix XX\top = Z\Sigma Z\top \in \BbbR n\times n

with all components of Z \in \BbbR n\times d being i.i.d. sub-Gaussian with zero mean and unit variance,
that is, following assumption (A1). We also assume (A2) and (A3) throughout this section.
We denote by \widehat \Sigma = 1

nX
\top X \in \BbbR d\times d the empirical covariance matrix.

We now present the tools from random matrix theory that we will need. Most of them have
already been used in the same context [16, 19, 36, 25], but more refined ones will be needed
along the lines of [12, 25] (section 3.3) and we will give explicit interpretations in terms of
degrees of freedom (section 3.1) and self-induced regularization (section 3.2).

3.1. Summary and reinterpretation of existing results. We will need to relate the spec-
tral properties of the empirical covariance matrix \widehat \Sigma to the ones of the population covariance
matrix \Sigma . This typically includes the distribution of eigenvalues, but in this paper, we will only
need spectral functions of the form tr [r(\widehat \Sigma )], or more general quantities, such as tr [Ar(\widehat \Sigma )],
tr [Ar(\widehat \Sigma )Br(\widehat \Sigma )], for matrices A,B \in \BbbR d\times d.

We summarize the relevant results from random matrix theory through the asymptotic
equivalence:1 for any \lambda > 0,

(3.1) tr [\widehat \Sigma (\widehat \Sigma + \lambda I) - 1]\sim tr [\Sigma (\Sigma + \kappa (\lambda )I) - 1],

where \kappa : \BbbR + \rightarrow \BbbR + is an increasing function. Within the analysis of ridge regression, these
are often referred to as the ``degrees of freedom"" [8, 20] and denoted2

\widehat df1(\lambda ) = tr[\widehat \Sigma (\widehat \Sigma + \lambda I) - 1] and df1(\kappa ) = tr[\Sigma (\Sigma + \kappa I) - 1].

In the limit when d tends to infinity, by the definition of \mu in assumption (A3), then 1
ddf1(\kappa )\rightarrow \int +\infty 

0
\sigma d\mu (\sigma )
\sigma +\kappa , which is strictly decreasing in \kappa , with a value of 1 at \kappa = 0. Since tr [\widehat \Sigma (\widehat \Sigma +\lambda I) - 1]\leqslant 

d, this asymptotically defines uniquely \kappa (\lambda ).
The extra knowledge from random matrix theory will be the self-consistency equation

\kappa (\lambda ) - \lambda = \kappa (\lambda ) \cdot \gamma 
\int +\infty 
0

\sigma d\mu (\sigma )
\sigma +\kappa , which allows us to define \kappa (\lambda ), which we will write equivalently

\kappa (\lambda ) - \lambda \sim \kappa (\lambda ) \cdot 1
n
df1(\kappa (\lambda )).

As shown below, for \lambda large, then \kappa (\lambda )\sim \lambda . When \lambda tends to zero (which will be the case in
classical scenarios where we regularize less as we observe more data), \kappa (\lambda ) will tend to zero
only for underparameterized models (\gamma < 1), while for overparameterized model (\gamma > 1), it
will tend to a constant.

1In this paper, we use the asymptotic equivalent notation u \sim v to mean that the ratio u/v tends to one
almost surely when the dimensions n,d go to infinity. This allows us to provide results for diverging quantities
which are more easily interpretable, such as degrees of freedom.

2We use the notation df1 as we will introduce a related notion df2 later.
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30 FRANCIS BACH

In statistical terms, the degrees of freedom for the empirical covariance matrix correspond
to the degrees of freedom of the population covariance matrix with a larger regularization
parameter, leading to an additional regularization.

Beyond (3.1), we will need asymptotic equivalents for the quantities tr [A\widehat \Sigma (\widehat \Sigma +\lambda I) - 1] and
tr [A\widehat \Sigma (\widehat \Sigma + \lambda I) - 1B\widehat \Sigma (\widehat \Sigma + \lambda I) - 1] for matrices A,B \in \BbbR d\times d. They will be valid when certain
quantities for the matrices A and B converge (see Propositions 3.1 and 3.2 below).

These results recover existing work with A,B = I or \Sigma [24, 16] and lead to the same for-
mulas as [12, 25] obtained with similar assumptions. They are needed for the ridge regression
results in section 4 and for the random projection results in section 6, where they will, for
example, be used with A= \theta \ast \theta 

\top 
\ast .

3.2. Self-induced regularization. We consider the Stieltjes transform of the spectral mea-
sure of the kernel matrix XX\top \in \BbbR n\times n with z \in \BbbC \setminus \BbbR +:

\widehat \varphi (z) = 1

n
tr
\Bigl[ \Bigl( 1

n
XX\top  - zI

\Bigr)  - 1\Bigr] 
= tr[(XX\top  - nzI) - 1].

This transform is known to fully characterize the spectral distribution of XX\top (see, e.g., [2]
and references therein). Then for all z \in \BbbC \setminus \BbbR +, assuming (A1), (A2), and (A3), \widehat \varphi (z) is known
to converge almost surely, and its limit \varphi (z) satisfies the following equation (see Appendix A.1
for a simple argument leading to it) [2, 24]:

(3.2)
1

\varphi (z)
+ z = \gamma 

\int +\infty 

0

\sigma d\mu (\sigma )

1 + \sigma \varphi (z)
.

When \Sigma = \sigma I, this allows us to compute \varphi (z) and, by inversion of the Stieltjes transform,
to recover the Marchenko--Pastur distribution. In this paper, we will not need to know the
limiting density (which is anyway not convenient to describe for general \Sigma ) and only access it
through its Stieltjes transform.

Indeed, for z = - \lambda for \lambda > 0, we get \widehat \varphi ( - \lambda ) = tr [(XX\top +n\lambda I) - 1]\rightarrow \varphi ( - \lambda ) almost surely,
with

(3.3)
1

\varphi ( - \lambda )
 - \lambda = \gamma 

\int +\infty 

0

\sigma d\mu (\sigma )

1 + \sigma \varphi ( - \lambda )
.

In the ridge regression context, as mentioned above, the quantity df1(\kappa ) = tr [\Sigma (\Sigma +
\kappa I) - 1]\in [0, d] is referred to as the ``degrees of freedom."" It is a strictly decreasing function of

\kappa with df1(0) = rank(\Sigma ). It is asymptotically equivalent to
\sum d

i=1
\sigma i

\sigma i+\kappa \sim d
\int +\infty 
0

\sigma d\mu (\sigma )
\sigma +\kappa . Thus,

we can rewrite (3.3) as

1

\varphi ( - \lambda )
 - \lambda \sim 1

\varphi ( - \lambda )
\cdot 1
n
df1

\Bigl( 1

\varphi ( - \lambda )

\Bigr) 
.

Therefore, we can define our equivalent regularization parameter \kappa (\lambda ) = 1
\varphi ( - \lambda ) \in \BbbR +, which is

the almost sure limit of 1/tr [(XX\top + n\lambda I) - 1], and such that

(3.4) \kappa (\lambda ) - \lambda \sim \kappa (\lambda ) \cdot 1
n
df1(\kappa (\lambda )) \leftrightarrow \lambda \sim \kappa (\lambda )

\Bigl( 
1 - 1

n
df1(\kappa (\lambda ))

\Bigr) 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 2. Implicit regularization parameter \kappa (\lambda ) in the three regimes for isotropic covariance matrices, with
\sigma = 1. See text for details.

Depending on the relationship between d and n (that is, d< n or d> n), we have different
behaviors for the function \kappa (see below), but \kappa (\lambda ) is always larger than \lambda . This additional
regularization has been explored in a number of works [25, 23, 10], and we refer to it as
self-induced.

Note that in order to compute \kappa (\lambda ), we can either solve (3.4) if we can compute df1(\kappa (\lambda ))
or simply use that \kappa (\lambda ) - 1 is the almost sure limit of tr [(XX\top + n\lambda I) - 1], when n,d go to
infinity. We now provide properties of the function \kappa .

Isotropic covariance matrices. We consider the case \Sigma = \sigma I to first study the dependence
between \kappa (\lambda ) and \lambda . By the use of Jensen's inequality, this will lead to bounds in the general
case. In this isotropic situation, we have 1

ndf1(\kappa ) = \gamma \sigma 
\sigma +\kappa , and (3.4) is equivalent to \lambda =

\kappa (\lambda )(1 - \gamma \sigma 
\sigma +\kappa ). We can solve it in closed form as

(3.5) \kappa (\lambda ) =
1

2

\Bigl( 
\lambda  - \sigma (1 - \gamma ) +

\sqrt{} 
(\sigma (1 - \gamma ) - \lambda )2 + 4\lambda \sigma 

\Bigr) 
.

We then have three cases, as illustrated in Figure 2. The function \kappa is always increasing with
the same asymptote \lambda + \sigma \gamma at infinity, but different behaviors at 0 (see a more thorough
discussion in [25, section 5.4.1]):

\bullet \gamma < 1: \kappa (0) = 0 with \kappa \prime (0) = 1/(1 - \gamma ).
\bullet \gamma > 1: \kappa (0) = (\gamma  - 1)\sigma > 0.
\bullet \gamma = 1: \kappa (0) = 0 with \kappa \prime (0) =+\infty , and \kappa \sim 

\surd 
\lambda around 0.

General case. Beyond isotropic covariance matrices, we have a similar behavior in the
general case; in particular, by Jensen's inequality, the expression in (3.5) is an upper-bound
with \sigma replaced by 1

dtr (\Sigma ).
\bullet Underparameterized (\gamma < 1 \leftrightarrow d < n): we then have df1(\kappa (\lambda )) \leqslant d < n, and the

function \lambda \mapsto \rightarrow \kappa (\lambda ) is strictly increasing with \kappa (0) = 0 and \kappa (\lambda ) \in [\lambda ,\lambda /(1  - d/n)],
with an equivalent \kappa (\lambda ) \sim \lambda + 1

ntr\Sigma when \lambda tends to infinity, and the equivalent
\kappa (\lambda )\sim \lambda /(1 - d/n) when \lambda tends to zero (since we have assumed that rank(\Sigma ) = d).

\bullet Overparameterized (\gamma > 1 \leftrightarrow d > n): we then have \kappa (0) > 0, which is defined by
df1(\kappa (0)) = n. The function \lambda \mapsto \rightarrow \kappa (\lambda ) is still strictly increasing, with an equivalent
\kappa (\lambda )\sim \lambda + 1

ntr\Sigma when \lambda tends to infinity. By Jensen's inequality, we have df1(\kappa (\lambda ))\leqslant 
\mathrm{t}\mathrm{r}\Sigma 

\kappa (\lambda )+\mathrm{t}\mathrm{r}\Sigma /d \leqslant \mathrm{t}\mathrm{r}\Sigma 
\kappa (\lambda ) . This in turn implies that \kappa (\lambda ) \in [\lambda ,\lambda + \mathrm{t}\mathrm{r}\Sigma 

n ] and also a finer

bound based on (3.5) with \sigma replaced by 1
dtr (\Sigma ). Moreover, we have the bound

\kappa (0)\leqslant \mathrm{t}\mathrm{r}\Sigma 
n (1 - n/d) = \mathrm{t}\mathrm{r}\Sigma 

d (\gamma  - 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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32 FRANCIS BACH

``Classical"" statistical asymptotic behaviors. Within positive-definite kernel methods [8], it
is common to have infinite-dimensional covariance operators, with a sequence of eigenvalues
of the form \lambda k = \tau 

k\alpha with \alpha > 1 and k \geqslant 1. To make it correspond to the high-dimensional
framework with k \in \{ 1, . . . , d\} with d tending to infinity, we need to rescale the eigenvalues by
d\alpha , so that the spectral measure is \widehat \mu = 1

d

\sum d
k=1 \delta \tau (d/k)\alpha , which converges to the distribution of

\tau /u\alpha for u uniform on [0,1]. The support of this distribution is bounded from below, but not
from above, and thus does not satisfy our assumptions (but in our simulations, our asymptotic
equivalents match the empirical behavior). See [10, section 4.2] for an analysis that covers
explicitly this spectral behavior.

In terms of degrees of freedom, we then have, using the same rescaling by d\alpha , and with
the change of variable v= ud(\kappa /\tau )1/\alpha ,

df1(\kappa d
\alpha )\sim d

\int 1

0

\tau u - \alpha du

\tau u - \alpha + d\alpha \kappa 
= d

\int 1

0

du

1 + (ud)\alpha \kappa \tau  - 1
\sim (\tau /\kappa )1/\alpha 

\int +\infty 

0

dv

1 + v\alpha 
.

We get the usual explosion of degrees of freedom in \kappa  - 1/\alpha [8]. It can then be shown, if our
formulas apply, that \kappa (0) \propto 1

n\alpha . See [11] for a detailed analysis of the consequences of the
ridge regression asymptotic equivalents when such assumptions are made.

3.3. Asymptotic equivalents for spectral functions. Following [24, 16], we can provide
asymptotic equivalents for quantities depending on the spectrum of \widehat \Sigma . We prove in Appen-
dix A.2 the following result, with two asymptotic equivalents matching the earlier work of [12,
Lemma 10] that was obtained for the special case of Gaussian distributions. See also [37, 15]
for a proof of (3.6) and [14] for subcases of (3.7). The asymptotic equivalents will be expressed
in terms of a different notion of degrees of freedom, that is, df2(\kappa ) = tr [\Sigma 2(\Sigma + \kappa I) - 2] (see
sections 4.2 and 5.2 for a discussion relating the two definitions of degrees of freedom).

Proposition 3.1. Assume (A1), (A2), (A3), that A and B are bounded in operator norm,
and that the measures

\sum d
i=1 v

\top 
i Avi \cdot \delta \sigma i

and
\sum d

i=1 v
\top 
i Bvi \cdot \delta \sigma i

converge to measures \nu A and \nu B
with bounded total variation. Then, for z \in \BbbC \setminus \BbbR +, with \varphi (z) satisfying (3.2),

tr [A\widehat \Sigma (\widehat \Sigma  - zI) - 1]\sim tr
\Bigl[ 
A\Sigma 

\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

,(3.6)

tr [A\widehat \Sigma (\widehat \Sigma  - zI) - 1B\widehat \Sigma (\widehat \Sigma  - zI) - 1]\sim tr
\Bigl[ 
A\Sigma 

\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B\Sigma 
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

(3.7)

+
1

\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))
.

Equation (3.6) can formally be seen as the limit 1
dtr [A

\widehat \Sigma (\widehat \Sigma  - zI) - 1]\rightarrow 
\int +\infty 
0

\sigma d\nu A(\sigma )
\sigma +1/\varphi (z) , and

a similar result holds for (3.7). From (3.6) and (3.7), as shown in Appendix A.2, we can also
derive results for slightly modified traces, with \widehat \Sigma (\widehat \Sigma  - zI) - 1 replaced by (\widehat \Sigma  - zI) - 1, as

tr [A(\widehat \Sigma  - zI) - 1]\sim  - 1

z\varphi (z)
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

,(3.8)
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DOUBLE DESCENT FOR LINEAR RANDOM PROJECTIONS 33

tr
\Bigl[ 
A(\widehat \Sigma  - zI) - 1B(\widehat \Sigma  - zI) - 1

\Bigr] 
\sim 1

z2\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

(3.9)

+
1

z2\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))
.

Expectation of kernel matrices. Through the matrix inversion lemma, we have \widehat \Sigma (\widehat \Sigma  - 
zI) - 1 = X\top X(X\top X  - nzI) - 1 = X\top (XX\top  - nzI)X, and thus we obtain another set of
asymptotic results, where we can replace \Sigma 1/2A\Sigma 1/2 by A, matching the earlier results of [25,
Theorem 4.6].

Proposition 3.2. Assume (A1), (A2), (A3), that A and B are bounded in operator norm,
and that the measures

\sum d
i=1 v

\top 
i Avi \cdot \delta \sigma i

and
\sum d

i=1 v
\top 
i Bvi \cdot \delta \sigma i

converge to measures \nu A and \nu B
with bounded total variation. Then, for z \in \BbbC \setminus \BbbR +, with \varphi (z) satisfying (3.2),

tr [AZ\top (Z\Sigma Z\top  - nzI) - 1Z]\sim tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

,

(3.10)

tr [AZ\top (Z\Sigma Z\top  - nzI) - 1ZBZ\top (Z\Sigma Z\top  - nzI) - 1Z]\sim tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2\Bigr] 

\cdot tr
\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2\Bigr] 

\cdot 1

n - df2(1/\varphi (z))
.

(3.11)

Like in [25, Theorem 4.6], (3.11) can be rewritten more intuitively as

Z\top (Z\Sigma Z\top  - nzI) - 1ZBZ\top (Z\Sigma Z\top  - nzI) - 1Z \sim 
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

(B + \mu (z)I)
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

with \mu (z) = 1
\varphi (z)2

\mathrm{t}\mathrm{r} [B(\Sigma + 1

\varphi (z)
I) - 2]

n - \mathrm{d}\mathrm{f}2(1/\varphi (z))
.

Letting \lambda \rightarrow 0 for \gamma > 1. Following arguments from [16, Lemma 6.2], in the high-
dimensional situation where \gamma > 1, we can take the limit \lambda = 0 with the implicit regularization
parameter \kappa (0) > 0 defined in section 3.1, which is such that df1(\kappa (0)) = n. This works for
the kernel version since we can write

\widehat \Sigma (\widehat \Sigma  - zI) - 1 =X\top X(X\top X - nzI) - 1 =X\top (XX\top  - nzI) - 1X =\Sigma 1/2Z\top (Z\Sigma Z\top  - nzI) - 1\Sigma 1/2,

which makes sense even with z = 0, as the kernel matrix XX\top is then asymptotically almost
surely invertible (since \Sigma is invertible, and ZZ\top almost surely is [3]). This will be used in the
overparameterized regime in section 5 and for random projections in section 6.

Letting \lambda \rightarrow 0 for \gamma < 1. In this situation, \kappa (\lambda ) tends to zero, and we can use (3.8) and

(3.9) instead, that is, tr [A(\widehat \Sigma + \lambda I) - 1]\sim \kappa (\lambda )
\lambda tr [A(\Sigma + \kappa (\lambda )I) - 1] with \kappa (\lambda )

\lambda \sim 1
1 - \gamma when \lambda goes

to zero, and \kappa (0) = 0, leading to

tr [A\widehat \Sigma  - 1]\sim 1

1 - d/n
tr [A\Sigma  - 1].(3.12)

Equipped with the proper random matrix theory tools, we can apply them to least-squares
regression, starting with ridge regression in section 4, its limit when \lambda \rightarrow 0 in section 5, and
then with random projections in section 6.
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34 FRANCIS BACH

4. Analysis of ridge regression. We consider the ridge regression estimator, obtained as
the unique minimizer of 1

n

\sum n
i=1(yi  - x\top i \theta )

2 + \lambda \| \theta \| 22, which is equal to

\^\theta = (X\top X + n\lambda I) - 1X\top y=X\top (XX\top + n\lambda I) - 1y.

In the fixed design framework, its analysis is explicit and leads to usual bias/variance trade-offs
based on simple quantities.

4.1. Fixed design analysis of ridge regression. In the fixed design set-up where inputs
x1, . . . , xn are assumed deterministic, we obtain an expected excess risk, with \Sigma replaced with\widehat \Sigma , which considerably simplifies the analysis (see, e.g., [22]):

\BbbE \varepsilon [(\^\theta  - \theta \ast )
\top \widehat \Sigma (\^\theta  - \theta \ast )] = \lambda 2\theta \top \ast (\widehat \Sigma + \lambda I) - 2\widehat \Sigma \theta \ast + \sigma 2

n
tr[\widehat \Sigma 2(\widehat \Sigma + \lambda I) - 2].

The (squared) bias term \lambda 2\theta \top \ast (\widehat \Sigma + \lambda I) - 2\widehat \Sigma \theta \ast is increasing in \lambda and depends on how the true
\theta \ast aligns with eigenvectors of \widehat \Sigma , and ``source conditions"" are typically used to characterize
this alignment [8].

This leads us to introduce the two classical different notions of degrees of freedom, df1(\lambda ) =
tr [\Sigma (\Sigma +\lambda I) - 1] and df2(\lambda ) = tr [\Sigma 2(\Sigma +\lambda I) - 2], as key quantities [22]. Typically, they behave
similarly when \lambda tends to zero (in particular, they are both equal to the rank of \Sigma for \lambda = 0).
We will see in section 5 that when they differ significantly, this has consequences regarding
the relevance of the end of the double descent curve.

Our goal is to obtain similar results to those for fixed design, using degrees of freedom and
(squared) bias of the form \lambda 2\theta \top \ast (\Sigma +\lambda I) - 2\Sigma \theta \ast . While bounds can be obtained in expectations
[33] or high probability [8], we aim here at getting asymptotic equivalents.

4.2. Random design analysis of ridge regression. In this section, we recover the results
from [16, 33, 5] with an explicit interpretation in terms of degrees of freedom.

We have, separating the noise from the part coming from \theta \ast ,

\^\theta = (X\top X + n\lambda I) - 1X\top y= (X\top X + n\lambda I) - 1X\top X\theta \ast + (X\top X + n\lambda I) - 1X\top \varepsilon (4.1)

= (\widehat \Sigma + \lambda I) - 1\widehat \Sigma \theta \ast + (\widehat \Sigma + \lambda I) - 1X
\top \varepsilon 

n
.

This leads to the following proposition, with the same expressions as [5, Theorem 4.13] (see
also [10] for the same expressions in a more general context).

Proposition 4.1. Assume (A1), (A2), (A3), and (A4). For the ridge regression estimator
in (4.1), we have

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )]\sim \sigma 2

n
df2(\kappa (\lambda )) \cdot 

1

1 - 1
ndf2(\kappa (\lambda ))

,

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta )\sim \kappa (\lambda )2\theta \top \ast \Sigma (\Sigma + \kappa (\lambda )I) - 2\theta \ast \cdot 
1

1 - 1
ndf2(\kappa (\lambda ))

with \kappa (\lambda ) related to \lambda by \kappa (\lambda )(1 - 1
ndf1(\kappa (\lambda )))\sim \lambda .
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DOUBLE DESCENT FOR LINEAR RANDOM PROJECTIONS 35

Proof. The variance term is exactly the same as the one from [16], and we simply provide
here a reinterpretation with degrees of freedom. We obtain it by taking expectations starting
from (4.1) to get \BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] = \sigma 2

n tr [\Sigma (\widehat \Sigma + \lambda I) - 2\widehat \Sigma ]. We can then use (3.8) and (3.9) with
A= I, B =\Sigma , and z = - \lambda to get, using \kappa (\lambda )tr [\Sigma (\Sigma + \kappa (\lambda )I) - 2] = df1(\kappa (\lambda )) - df2(\kappa (\lambda )),

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] =
\sigma 2

n
tr [\Sigma (\widehat \Sigma + \lambda I) - 2\widehat \Sigma ] = \sigma 2

n
tr [\Sigma (\widehat \Sigma + \lambda I) - 1] - \lambda 

\sigma 2

n
tr [\Sigma (\widehat \Sigma + \lambda I) - 2]

\sim \sigma 2

n

\kappa (\lambda )

\lambda 
tr [\Sigma (\Sigma + \kappa (\lambda )I) - 1] - \sigma 2

n

\kappa (\lambda )2

\lambda 
tr [\Sigma (\Sigma + \kappa (\lambda )I) - 2]

 - \sigma 2

n

\kappa (\lambda )2

\lambda 
tr [\Sigma 2(\Sigma + \kappa (\lambda )I) - 2] \cdot tr [\Sigma (\Sigma + \kappa (\lambda )I) - 2] \cdot 1

n - df2(\kappa (\lambda ))

=
\sigma 2

n

\kappa (\lambda )

\lambda 
df2(\kappa (\lambda )) - 

\sigma 2

n

\kappa (\lambda )2

\lambda 
tr [\Sigma (\Sigma + \kappa (\lambda )I) - 2] \cdot df2(\kappa (\lambda ))

n - df2(\kappa (\lambda ))

=
\sigma 2

n

\kappa (\lambda )

\lambda 
df2(\kappa (\lambda )) - 

\sigma 2

n

\kappa (\lambda )

\lambda 
(df1(\kappa (\lambda )) - df2(\kappa (\lambda ))) \cdot 

df2(\kappa (\lambda ))

n - df2(\kappa (\lambda ))

=
\sigma 2

n

\kappa (\lambda )

\lambda 

df2(\kappa (\lambda ))(n - df1(\kappa (\lambda )))

n - df2(\kappa (\lambda ))
= \sigma 2 df2(\kappa (\lambda ))

n - df2(\kappa (\lambda ))
.

For the bias term, we have

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = \| \Sigma 1/2((\widehat \Sigma + \lambda I) - 1\widehat \Sigma  - I)\theta \ast \| 22 = \lambda 2\theta \top \ast (\widehat \Sigma + \lambda I) - 1\Sigma (\widehat \Sigma + \lambda I) - 1\theta \ast .

We then apply (3.9) with A=\Sigma and B = \theta \ast \theta 
\top 
\ast , which applies because of assumption (A4), to

get

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = \kappa (\lambda )2\theta \top \ast (\Sigma + \kappa (\lambda )I) - 2\Sigma \theta \ast 

+ \kappa (\lambda )2tr [\Sigma 2(\Sigma + \kappa (\lambda )I) - 2] \cdot \theta \top \ast (\Sigma + \kappa (\lambda )I) - 2\Sigma \theta \ast \cdot 
1

n - df2(\kappa (\lambda ))

= \kappa (\lambda )2\theta \top \ast (\Sigma + \kappa (\lambda )I) - 2\Sigma \theta \ast \cdot (1 +
df2(\kappa (\lambda ))

n - df2(\kappa (\lambda ))
),

which concludes the proof.

Up to the term 1
1 - \mathrm{d}\mathrm{f}2(\kappa (\lambda ))/n

, we exactly recover the fixed design analysis for the new larger

regularization parameter \kappa (\lambda ). Note that in most situations, for the optimal regularization
parameter, we usually have df1(\kappa (\lambda )) \ll n and df2(\kappa (\lambda )) \ll n so that the exploding term
disappears, and the fixed and random design analyses lead to the same expressions. For
vanishing \lambda in section 5, the variance term will only be able to go to zero when the two
degrees of freedom differ significantly from each other.

We thus see two effects when we go from fixed design to random design: (1) an additional
self-induced regularization due to moving from \lambda to \kappa (\lambda ) \geqslant \lambda and (2) an explosion of the
excess risk if the degrees of freedom get too large.

In the next section, we consider the limit when \lambda tends to zero.

5. Minimum norm least-square estimation. The ridge regression estimator converges to
the minimum \ell 2-norm estimator when \lambda tends to zero. It turns out that this is precisely the
estimator found by gradient descent started from zero [18]. We consider first the underpa-
rameterized case (\gamma < 1) and then the overparameterized one (\gamma > 1).
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36 FRANCIS BACH

5.1. Underparameterized regime (ordinary least-squares). When \gamma < 1 (that is, n> d),
then the OLS estimator is \^\theta = (X\top X) - 1X\top y= (X\top X) - 1X\top (X\theta \ast + \varepsilon ) = \theta \ast +(X\top X) - 1X\top \varepsilon ,
and thus we have \scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = 0, and

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] = \Sigma 2tr[X(X\top X) - 1\Sigma (X\top X) - 1X\top ] =
\sigma 2

n
tr[\Sigma \widehat \Sigma  - 1].

Using (3.12), we obtain the classical equivalent \sigma 2 \gamma 
1 - \gamma \sim \sigma 2 d

n - d , as derived, e.g., in [19]. Note

that for Gaussian data, this is, in fact, almost an equality, that is, \BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] = \sigma 2 d
n - d - 1

for n> d+ 1.

5.2. Overparameterized regime. We now consider the case \gamma > 1 (that is, d > n). We
can see it as the limit when \lambda tends to zero within ridge regression. This is exactly what
was obtained in [19] (in a nonasymptotic framework), here with an interpretation in terms of
degrees of freedom. We obtain, with \kappa (0) such that df1(\kappa (0)) = n,

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )]\sim \sigma 2

n
df2(\kappa (0)) \cdot 

1

1 - 1
ndf2(\kappa (0))

,

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta )\sim \kappa (0)2\theta \top \ast \Sigma (\Sigma + \kappa (0)I) - 2\theta \ast \cdot 
1

1 - 1
ndf2(\kappa (0))

.

Following [4, 19], we can try to understand when the overparameterized limit with no
regularization makes statistical sense, with two questions in mind: (1) does it lead to cat-
astrophic overfitting? and (2) can it lead to a good performance? The answers to these
questions will depend on how df1(\kappa (\lambda )) and df2(\kappa (\lambda )) are related. Since df1(\kappa (\lambda )) = n, we
have df2(\kappa (\lambda ))\leqslant df1(\kappa (\lambda )) = n, but how much smaller?

Equivalent degrees of freedom. In many standard situations, the two degrees of freedom
are constants away from each other, in particular in the infinite-dimensional cases described
at the end of section 3.2. Thus the variance term is proportional to \sigma 2, while the bias term is
proportional to \kappa (\lambda )2\theta \top \ast \Sigma (\Sigma + \kappa (\lambda )I) - 2\theta \ast . There is no catastrophic overfitting, but the vari-
ance term cannot go to zero as n tends to infinity, and we cannot expect a good performance
when \sigma is far from zero. However, in noiseless problems where \sigma = 0, the bias term can lead
to a better performance than what can be obtained with underparameterized problems (see
also section 6).

Unbalanced degrees of freedom. If df2(\kappa (\lambda )) \ll df1(\kappa (\lambda )) = n, then the variance term
can indeed go to zero when n tends to infinity. This happens only in particular situations
thoroughly described by [4, 19, 36].

6. Random projections. We consider a random projection matrix S \in \BbbR d\times m, sampled
independently from X with the following assumptions:
(A5) S \in \BbbR d\times m has sub-Gaussian i.i.d. components with mean zero and unit variance.
(A6) The number of projections m tends to infinity with m

n tending to \delta > 0.
As for the linear regression assumptions, we do not assume Gaussian random projections,
and in all of our experiments, we used Rademacher random variables in \{  - 1,1\} . Given the
matrix S, we consider projecting each covariate x \in \BbbR d to S\top x \in \BbbR m. Thus, if \^\eta \in \BbbR m is the
minimum norm minimizer of \| y - XS\eta \| 22, we consider \^\theta = S\^\eta \in \BbbR d. Note that this is different
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DOUBLE DESCENT FOR LINEAR RANDOM PROJECTIONS 37

from applying the random projection on the left of y and X, which is often referred to as
``sketching"" [13, 35].

The asymptotic performance can be characterized as follows (again, apart from the ex-
pectation with respect to the noise variable \varepsilon , all results are meant almost surely). See [28,
Theorem 4.4] for a partial similar result for the bias term.

Proposition 6.1. Assume (A1), (A2), (A3), (A4), (A5), (A6). For the minimum norm
least-squares estimator \^\theta based on random projections, we have for the underparameterized
regime (m<n)

\BbbE \varepsilon [\scrR 
\mathrm{v}\mathrm{a}\mathrm{r}

(\^\theta )]\sim \sigma 2m

n - m
=

1

1 - m
n

\cdot \sigma 
2m

n
,

\scrR \mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s}

(\^\theta )\sim 1

1 - m
n

\cdot \kappa m\theta \top \ast \Sigma (\Sigma + \kappa mI) - 1\theta \ast 

with \kappa m defined by df1(\kappa m) \sim m. In the overparameterized regime, we get, for \kappa n such that
df1(\kappa n)\sim n,

\BbbE \varepsilon [\scrR 
\mathrm{v}\mathrm{a}\mathrm{r}

(\^\theta )]\sim \sigma 2

n
\cdot df2(\kappa n)

1 - 1
ndf2(\kappa n)

+ \sigma 2 n

m - n
,

\scrR \mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s}

(\^\theta )\sim \kappa 2n\theta 
\top 
\ast \Sigma (\Sigma + \kappa nI)

 - 2\theta \ast \cdot 
1

1 - 1
ndf2(\kappa n)

+ \kappa n\theta 
\top 
\ast \Sigma (\Sigma + \kappa nI)

 - 1\theta \ast \cdot 
n

m - n
.

Proof. We will consider the \ell 2-regularized estimator, with a regularization parameter \lambda 
that we will let go to zero. The validity of such limits follows from the same arguments as
[16, Lemma 6.2]. We thus consider

\^\theta = S(S\top X\top XS + n\lambda I) - 1S\top X\top y

= S(S\top X\top XS + n\lambda I) - 1S\top X\top X\theta \ast + S(S\top X\top XS + n\lambda I) - 1S\top X\top \varepsilon 

=M\theta \ast + S(S\top X\top XS + n\lambda I) - 1S\top X\top \varepsilon 

with M = S(S\top X\top XS + n\lambda I) - 1S\top X\top X.
Conditioned on S and X, the expected risk is equal to, for the variance part,

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] = \sigma 2tr [XS(S\top X\top XS + n\lambda I) - 1S\top \Sigma S(S\top X\top XS + n\lambda I) - 1S\top X\top ]

= \sigma 2tr [S\top \Sigma S(S\top X\top XS + n\lambda I) - 2S\top X\top XS],(6.1)

while, for the bias, we have

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = (M\theta \ast  - \theta \ast )
\top \Sigma (M\theta \ast  - \theta \ast ) = \theta \top \ast \Sigma \theta \ast + \theta \top \ast M

\top \Sigma M\theta \ast  - 2\theta \top \ast M
\top \Sigma \theta \ast 

= \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast X
\top XS(S\top X\top XS + n\lambda I) - 1S\top \Sigma \theta \ast (6.2)

+ \theta \top \ast X
\top XS(S\top X\top XS + n\lambda I) - 1S\top \Sigma S(S\top X\top XS + n\lambda I) - 1S\top X\top X\theta \ast .

For the proof, we separate the two regimes m < n and m < n. For both of them,
we provide asymptotic expansions in two steps, first with respect to X and then S in the
underparameterized regime and vice versa for the overparameterized regime.
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38 FRANCIS BACH

Underparameterized regime: Expansion with respect to X. We consider S fixed and use
the random matrix theory arguments from section 3 for X. We have a covariance matrix
S\top \Sigma S \in \BbbR m\times m of rank m, so underparameterized results apply, and we get the following for
the variance term (first term above), for S fixed, where we can directly consider \lambda = 0 (because
of cancellations):

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] = \sigma 2tr(S\top \Sigma S(S\top X\top XS) - 1)\sim \sigma 2

n - m
tr(S\top \Sigma S(S\top \Sigma S) - 1) =

\sigma 2m

m - n
,

independently of the sketching matrix S. Note here that S\top \Sigma S is a random kernel matrix
satisfying assumptions of section 3; thus, its spectral measure has a limit.

For the bias term, the computation is more involved. With T =\Sigma 1/2S and X =\Sigma 1/2Z, it
is equal to

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast \Sigma 
1/2Z\top ZT (T\top Z\top ZT + n\lambda I) - 1T\top \Sigma 1/2\theta \ast 

+ \theta \top \ast \Sigma 
1/2Z\top ZT (T\top Z\top ZT + n\lambda I) - 1T\top T (T\top Z\top ZT + n\lambda I) - 1T\top Z\top Z\Sigma 1/2\theta \ast .

Using the matrix inversion lemma, we get

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast \Sigma 
1/2Z\top (ZTT\top Z\top + n\lambda I) - 1ZTT\top \Sigma 1/2\theta \ast 

+ \theta \top \ast \Sigma 
1/2Z\top (ZTT\top Z\top + n\lambda I) - 1ZTT\top TT\top Z\top (ZTT\top Z\top + n\lambda I) - 1Z\Sigma 1/2\theta \ast .

Denoting C = TT\top , we then have

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast \Sigma 
1/2Z\top (ZCZ\top + n\lambda I) - 1ZC\Sigma 1/2\theta \ast 

+ \theta \top \ast \Sigma 
1/2Z\top (ZCZ\top + n\lambda I) - 1ZC2Z\top (ZCZ\top + n\lambda I) - 1Z\Sigma 1/2\theta \ast .

To find expansions of the red terms above, we can directly use the results from section 3.3,
using (3.10) with A = C\Sigma 1/2\theta \ast \theta 

\top 
\ast \Sigma 

1/2, and (3.11) with A = \Sigma 1/2\theta \ast \theta 
\top 
\ast \Sigma 

1/2 and B = C2, with
the covariance matrix C, and thus with degrees of freedom and the implicit regularization pa-
rameter \~\kappa (\lambda ) associated to C.3 We can apply Proposition 3.2 since C = TT\top =\Sigma 1/2SS\top \Sigma 1/2

has almost surely a limiting spectral measure and the resulting needed traces involving the
matrices A and B have well-defined limits. We get, for any \lambda ,

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta )\sim \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast \Sigma 
1/2(C + \~\kappa (\lambda )I) - 1C\Sigma 1/2\theta \ast 

+ \theta \top \ast \Sigma 
1/2(C + \~\kappa (\lambda )I) - 1CC(C + \~\kappa (\lambda )I) - 1\Sigma 1/2\theta \ast 

+ \~\kappa (\lambda )2
\theta \top \ast \Sigma 

1/2(C + \~\kappa (\lambda )I) - 2\Sigma 1/2\theta \ast \cdot tr [C2(C + \~\kappa (\lambda )I) - 2]

n - \widetilde df2(\~\kappa (\lambda ))
\sim \theta \top \ast \Sigma 

1/2(I  - C(C + \~\kappa (\lambda )I) - 1)2\Sigma 1/2\theta \ast 

+ \~\kappa (\lambda )2
\theta \top \ast \Sigma 

1/2(C + \~\kappa (\lambda )I) - 2\Sigma 1/2\theta \ast \cdot tr [C2(C + \~\kappa (\lambda )I) - 2]

n - \widetilde df2(\~\kappa (\lambda )) .

3We use the notation \~\kappa (\lambda ) to avoid confusion with \kappa \lambda , which is defined from the covariance matrix \Sigma .
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When \lambda goes to zero, we have \~\kappa (\lambda ) \rightarrow 0, \widetilde df2(\~\kappa (\lambda )) \rightarrow m, as well as C(C + \~\kappa (\lambda )I) - 1 =
TT\top (TT\top + \~\kappa (\lambda )I) - 1 = T (T\top T + \~\kappa (\lambda )I) - 1T\top \rightarrow \Sigma 1/2S(S\top \Sigma S) - 1S\top \Sigma 1/2, and \~\kappa (\lambda )(C +
\~\kappa (\lambda )I) - 1 = I  - C(C + \~\kappa (\lambda )I) - 1 \rightarrow I  - \Sigma 1/2S(S\top \Sigma S) - 1S\top \Sigma 1/2. This leads to

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta )\sim \theta \top \ast \Sigma 
1/2(I  - \Sigma 1/2S(S\top \Sigma S) - 1S\top \Sigma 1/2)2\Sigma 1/2\theta \ast 

+
\theta \top \ast \Sigma 

1/2(I  - T (T\top T ) - 1T\top )2\Sigma 1/2\theta \ast \cdot m
n - m

= \theta \top \ast (\Sigma  - \Sigma S(S\top \Sigma S) - 1S\top \Sigma )\theta \ast \cdot 
\Bigl( 
1+

m

n - m

\Bigr) 
.(6.3)

Underparameterized regime: Full expansion. Using results from section 3.3, this time with
Z = S\top and the covariance matrix \Sigma , with \kappa m defined by df1(\kappa m) =m, we get from Propo-
sition 3.2 the equivalent \Sigma  - \Sigma S(S\top \Sigma S) - 1S\top \Sigma \sim \Sigma  - \Sigma 1/2(\Sigma + \kappa mI) - 1\Sigma 1/2, and thus, from
(6.3), we get the desired result: \scrR \mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s}

(\^\theta )\sim 1
1 - m/n\kappa m\theta \top \ast \Sigma (\Sigma + \kappa mI) - 1\theta \ast .

Overparameterized regime: Expansion with respect to S. We have, from (6.1),

\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )] =
\sigma 2

n
tr (\Sigma S(S\top \widehat \Sigma S + \lambda I) - 1S\top \widehat \Sigma S(S\top \widehat \Sigma XS + \lambda I) - 1S\top ).

To obtain an expansion of the red term, we can use Proposition 3.2 with covariance matrix \widehat \Sigma 
and thus degrees of freedom and \~\kappa associated to \widehat \Sigma :
\BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )]\sim \sigma 2

n
tr [\Sigma \widehat \Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 2] +

\sigma 2

n
\~\kappa (\lambda )2

tr [\Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 2] \cdot tr [\widehat \Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 2]

m - \widetilde df2(\~\kappa (\lambda )) .

Using that \~\kappa (\lambda )\rightarrow 0 when \lambda \rightarrow 0, \widehat \Sigma (\widehat \Sigma +\~\kappa (\lambda )I) - 2 = nX\top X(X\top X+n\~\kappa (\lambda )I) - 2 can be rewritten
as nX\top (XX\top +n\~\kappa (\lambda )I) - 2X \rightarrow nX\top (XX\top ) - 2X, and \~\kappa (\lambda )2(\widehat \Sigma +\~\kappa (\lambda )I) - 2 = n2\~\kappa (\lambda )2(X\top X+
n\~\kappa (\lambda )I) - 2 = (I - X\top (XX\top +n\~\kappa (\lambda )I) - 1X)2 \rightarrow (I - X\top (XX\top ) - 1X)2 = (I - X\top (XX\top ) - 1X),
and we thus get

(6.4) \BbbE \varepsilon [\scrR (\mathrm{v}\mathrm{a}\mathrm{r})(\^\theta )]\sim \sigma 2tr [\Sigma X\top (XX\top ) - 2X] +
tr [\Sigma (I - X\top (XX\top ) - 1X)] \cdot tr [(XX\top ) - 1]

m - n
.

We can now take care of the (squared) bias term with the same technique, with \lambda \rightarrow 0, starting
from (6.2):

\scrR (\mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s})(\^\theta ) = \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast \Sigma 
1/2S(S\top \widehat \Sigma S + \lambda I) - 1S\top \widehat \Sigma \theta \ast 

+ \theta \top \ast \widehat \Sigma S(S\top \widehat \Sigma S + \lambda I) - 1S\top \Sigma S(S\top X\top XS + n\lambda I) - 1S\top \widehat \Sigma \theta \ast 
\sim \theta \top \ast \Sigma \theta \ast  - 2\theta \top \ast \Sigma 

1/2(\widehat \Sigma + \~\kappa (\lambda )I) - 1\widehat \Sigma \theta \ast + \theta \top \ast \widehat \Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 1\Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 1\widehat \Sigma \theta \ast 
+ \~\kappa (\lambda )2

tr [\Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 2] \cdot \theta \top \ast \widehat \Sigma (\widehat \Sigma + \~\kappa (\lambda )I) - 2\widehat \Sigma \theta \ast 
m - \widetilde df2(\~\kappa (\lambda ))

\sim \| \Sigma 1/2(I  - X\top (XX\top + \~\kappa (\lambda )I) - 1X)\theta \ast \| 22

+ \~\kappa (\lambda )2
tr [\Sigma (X\top X + \~\kappa (\lambda )I) - 2] \cdot \theta \top \ast X\top X(X\top X + \~\kappa (\lambda )I) - 2X\top X\theta \ast 

m - \widetilde df2(\~\kappa (\lambda ))
\sim \theta \top \ast (I  - X\top (XX\top ) - 1X)\Sigma (I  - X\top (XX\top ) - 1X)\theta \ast 

+
1

m - n
\theta \top \ast X

\top (XX\top ) - 1X\theta \ast \cdot tr [\Sigma (I  - X\top (XX\top ) - 1X)].(6.5)
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40 FRANCIS BACH

Overparameterized regime: Full expansion. For \kappa n defined as df1(\kappa n) = n for the full co-
variance matrix \Sigma (which is exactly the value of \kappa m above for m= n), we get, using Proposi-
tion 3.2, with (6.4) and (6.5),

\BbbE [\scrR \mathrm{v}\mathrm{a}\mathrm{r}

(\^\theta )]\sim \sigma 2 df2(\kappa n)

df1(\kappa n) - df2(\kappa n)
+ \sigma 2 n

m - n
,

\scrR \mathrm{b}\mathrm{i}\mathrm{a}\mathrm{s}

(\^\theta )\sim \kappa 2n\theta 
\top 
\ast \Sigma (\Sigma + \kappa nI)

 - 2\theta \ast \cdot 
df1(\kappa n)

df1(\kappa n) - df2(\kappa n)
+ \kappa n\theta 

\top 
\ast \Sigma (\Sigma + \kappa nI)

 - 1\theta \ast \cdot 
n

m - n
,

which is the desired result.
We can make the following observations:
\bullet In the underparameterized regime, we recover the traditional bias and variance terms4

divided by 1 - m
n , which leads to the expected catastrophic overfitting when m is close

to n. Moreover, while the variance term goes up from m= 0 to m= n, the bias term
has one decreasing term \kappa m\theta \top \ast \Sigma (\Sigma +\kappa mI) - 1\theta \ast and one increasing term (1 - m

n )
 - 1. In

some cases (e.g., for \theta \ast and \Sigma isotropic), the overall performance always goes up, but in
many situations, we obtain the traditional U-shaped curve in the underparameterized
regime.

\bullet In the overparameterized regime, the limit when m tends to infinity is exactly the
same as the limit \lambda tending to zero for ridge regression in section 5.2, since \kappa n is
exactly what was referred to as \kappa (0). Moreover, we have, for both variance and bias,
a decreasing function of m. Thus, once in this regime, it is always best to take m as
large as possible. Note that to achieve the performance for m = \infty , we can simply
take \^\theta =X\top (XX\top ) - 1y, and there is no need to solve a problem in dimension m with
m large.

\bullet Combining the two regimes, we indeed see an actual double descent in many scenarios.
See illustrative experiments in section 7.

7. Experiments. In this section, we present illustrative experiments to showcase our as-
ymptotic equivalents from section 6.5

Testing the asymptotic limit. We consider a fixed spectral measure \mu = \pi 1\delta \sigma 1
+\pi 2\delta \sigma 2

already
considered by [19, 36] and the fixed measure \nu = \mu for the optimal predictor, for which we can
compute all of the asymptotic equivalents in section 6 in closed form. We take \gamma = d/n = 2
and plot bias and variance as functions of \delta =m/n. We then compare them to experiments
with finite n (and the corresponding d = \gamma n and m = \delta n), where we sample \theta \ast and \Sigma from
their distributions (with a matrix of eigenvectors uniformly at random in the set of orthogonal
matrices). We have here, for \delta \in [0,1],

\kappa (\delta ) =
1

2

\Bigl( \gamma 
\delta 
(\pi 1\sigma 1 + \pi 2\sigma 2) - \sigma 1  - \sigma 2 +

\Bigl[ \Bigl( \gamma 
\delta 
(\pi 1\sigma 1 + \pi 2\sigma 2) - \sigma 1  - \sigma 2

\Bigr) 2
+ 4\sigma 1\sigma 2

\Bigl( \gamma 
\delta 
 - 1

\Bigr) \Bigr] 1/2\Bigr) 
.

In Figure 3, we can see that as n gets larger, each realization of the experiment tends to the
asymptotic limit, illustrating almost sure convergence (which we conjecture to be of order

4For the variance term, they match the results for ridge regression, up to df2 being replaced by df1, with a
similar relationship for the bias term, where a slightly different notion of bias is used.

5MATLAB code to reproduce figures can be downloaded from https://www.di.ens.fr/\sim fbach/dd\.rp.zip.
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Figure 3. Comparison of theoretical bounds and empirical estimates for a spectral measure with two Diracs
(see text for details): (left) variance, (right) bias, with three different numbers of observations, with n = 10
(top), n= 100 (middle), and n= 1000 (bottom). We plot ten realizations with the same spectral properties, as
well as the average excess risk.

O(1/
\surd 
n)), while, when we consider expectations with respect to several realizations, we get

a faster convergence (which we conjecture to be of order O(1/n)).
Illustration of the double descent phenomenon. We consider a fixed covariance matrix \Sigma 

of size d, with uniformly random eigenvectors and eigenvalues proportional to 1/k, for k \in 
\{ 1, . . . , d\} (nonisotropic) or constant (isotropic). We normalize the matrix so that tr (\Sigma ) = 1.
We generate a vector \theta \ast \in \BbbR d from a standard Gaussian distribution and then normalize it so
that \theta \top \ast \Sigma \theta \ast = 1. Given this unique prediction problem, we generate 40 replications of Z and
S from Rademacher random variables and plot the empirical performance for the bias and
the variance. For the bounds, we compute \kappa m from \kappa  - 1

m =\BbbE [tr [(S\top \Sigma S) - 1]], using an average
over 40 replications.

In Figure 4, we show the results for the nonisotropic covariance matrix, where we see a U-
shaped curve for the bias term. In contrast, in Figure 5, we show the results for the isotropic
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Figure 4. (Left) Variance with \sigma = 1 and tr (\Sigma ) = 1. (Right) Bias with \theta \top \ast \Sigma \theta \ast = 1. We consider n = 200,
d= 400, with Z and S sampled from Rademacher random variables, and eigenvalues of \Sigma proportional to 1/k.
For the empirical curve, we plot the average performance over 40 replications as well as the standard deviation
in dotted.
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Figure 5. (Left) Variance with \sigma = 1 and tr (\Sigma ) = 1. (Right) Bias with \theta \top \ast \Sigma \theta \ast = 1. We consider n = 200,
d = 400, with Z and S sampled from Rademacher random variables and uniform eigenvalues for \Sigma . For the
empirical curve, we plot the average performance over 40 replications as well as the standard deviation in dotted.

covariance matrix, where we do not see a U-shaped curve for the bias term (and thus, there
cannot be a U-shaped curve when summing bias and variance). The asymptotic limits from
section 6 closely match the empirical behavior in both cases.

8. Conclusion. In this paper, we have provided a high-dimensional asymptotic analysis of
the double descent phenomenon for random projections. This was done using an interpretation
of random matrix theory results for empirical covariance matrices based on degrees of freedom.
Several avenues are worth exploring, such as going beyond least-squares using tools from
[27, 30], characterizing how quickly our asymptotic analysis kicks in using tools from [1],
looking at more general random projection matrices [25], or relating it to the related sketching
procedures that perform linear regression on Ty \in \BbbR m and TX \in \BbbR m\times d, where the random
matrix T \in \BbbR m\times n now acts on the left of the design matrix rather than on the right, leading
to a form of downsampling often referred to as sketching [13, 35]; see [9] for a recent work in
this direction.

Appendix A. Random matrix theory results. In this appendix, we provide a sketch of
proof for classical random matrix theory results presented in sections 3.1 and 3.2, with a proof
for the new results from section 3.3. For more details, see [40, 2].
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A.1. Self-consistency equation. We follow the proof of [39] and derive it in three steps.
First step. We consider n\widehat \Sigma = X\top X =

\sum n
i=1 xix

\top 
i for xi \in \BbbR d sampled with covariance

matrix \Sigma (but not necessarily Gaussian) and write, using the matrix inversion lemma,

tr [X\top X(X\top X  - nzI) - 1] =

n\sum 
i=1

tr
\Bigl[ 
xix

\top 
i

\Bigl( \sum 
j \not =i

xjx
\top 
j  - nzI + xix

\top 
i

\Bigr)  - 1\Bigr] 
=

n\sum 
i=1

x\top i (
\sum 

j \not =i xjx
\top 
j  - nzI) - 1xi

1 + x\top i (
\sum 

j \not =i xjx
\top 
j  - nzI) - 1xi

= n - 
n\sum 

i=1

1

1 + x\top i (
\sum 

j \not =i xjx
\top 
j  - nzI) - 1xi

.

Together with tr [X\top X(X\top X - nzI) - 1] = tr [(XX\top  - nzI+nzI)(XX\top  - nzI) - 1] = n+nz \widehat \varphi (z),
this leads to the identity

(A.1)  - z \widehat \varphi (z) = 1

n

n\sum 
i=1

1

1 + x\top i (
\sum 

j \not =i xjx
\top 
j  - nzI) - 1xi

.

We also have more generally

(A.2) \widehat \Sigma (\widehat \Sigma  - zI) - 1=

n\sum 
i=1

xix
\top 
i

\Bigl( \sum 
j \not =i

xjx
\top 
j  - nzI + xix

\top 
i

\Bigr)  - 1
=

n\sum 
i=1

xix
\top 
i (

\sum 
j \not =i xjx

\top 
j  - nzI) - 1

1 + x\top i (
\sum 

j \not =i xjx
\top 
j  - nzI) - 1xi

.

Second step. We have, owing to (A.1), with the notation \widehat \Sigma  - i = 1
n

\sum 
j \not =i xjx

\top 
j for i \in 

\{ 1, . . . , n\} , and using A - 1  - B - 1 = - B - 1(A - B)B - 1:

(\widehat \Sigma  - zI) - 1 - ( - z \widehat \varphi (z)\Sigma  - zI) - 1 = (z \widehat \varphi (z)\Sigma + zI) - 1
\Bigl( \widehat \Sigma  - ( - z \widehat \varphi (z)\Sigma )\Bigr) (\widehat \Sigma  - zI) - 1

= (z \widehat \varphi (z)\Sigma + zI) - 1
\Bigl( 1

n

n\sum 
i=1

xix
\top 
i  - ( - z \widehat \varphi (z)\Sigma )\Bigr) (\widehat \Sigma  - zI) - 1

= (z \widehat \varphi (z)\Sigma +zI) - 1
n\sum 

i=1

xix
\top 
i (

\sum 
j \not =i xjx

\top 
j  - nzI) - 1 - \Sigma (n\widehat \Sigma  - nzI) - 1

1+x\top i (
\sum 

j \not =i xjx
\top 
j  - nzI) - 1xi

= (z \widehat \varphi (z)\Sigma + zI) - 1 1

n

n\sum 
i=1

xix
\top 
i (

\widehat \Sigma  - i  - zI) - 1  - \Sigma (\widehat \Sigma  - zI) - 1

1 + x\top i (n
\widehat \Sigma  - i  - nzI) - 1xi

.

We thus get

(\widehat \Sigma  - zI) - 1 = ( - z \widehat \varphi (z)\Sigma  - zI) - 1
\Bigl( 
I  - 1

n

n\sum 
i=1

xix
\top 
i (

\widehat \Sigma  - i  - zI) - 1  - \Sigma (\widehat \Sigma  - zI) - 1

1 + x\top i (n
\widehat \Sigma  - i  - nzI) - 1xi

\Bigr) 
(A.3)

= ( - z \widehat \varphi (z)\Sigma  - zI) - 1(I  - \Delta ).

The main property we will leverage is that \Delta will almost certainly be ``negligible."" For
this, we need that tr [(  - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta ] = o(d), and we simply need to study each of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

5/
24

 to
 1

94
.2

09
.1

0.
19

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



44 FRANCIS BACH

the n terms and show that they are o(d). The key is that (\widehat \Sigma  - i  - zI) - 1 is independent of
xi and that for any deterministic (or independent random bounded) matrix, tr [(ziz

\top 
i  - I)N ]

is small enough with a strong probabilistic control [40, Lemma 3.1]. This is where we need
i.i.d. components for zi with sufficient moments (we assumed sub-Gaussian for simplicity,
but weaker assumptions could be used to obtain the same almost-sure result). We can, for
example, rely on the Hanson--Wright inequality [38], which leads to, for a constant c > 0,

\BbbP 
\Bigl[ 
| z\top i Nzi  - tr(N)| \leqslant c(t\| N\| \mathrm{o}\mathrm{p} +

\surd 
t\| N\| F )

\Bigr] 
\geqslant 1 - 2e - t.

This is then applied to N dominated by \Sigma , and thus \| N\| F =O(\| \Sigma \| F ) =O(
\surd 
d) = o(d), which

is sufficient for the asymptotic result and hints at a rate in O(1/
\surd 
d) [1]. See [39] for a detailed

proof.
Overall, once we can neglect the term in \Delta , we get tr [( - z \widehat \varphi (z)\Sigma  - zI) - 1]\sim tr [(\widehat \Sigma  - zI) - 1],

and thus

(A.4) tr [(\widehat \Sigma  - zI) - 1]\sim  - 1

z \widehat \varphi (z)tr\Bigl[ \Bigl( \Sigma +
1\widehat \varphi (z)I\Bigr)  - 1\Bigr] 

=
 - d

z
+

1

z
tr
\Bigl[ 
\Sigma 
\Bigl( 
\Sigma +

1\widehat \varphi (z)I\Bigr)  - 1\Bigr] 
.

Third step. We can rewrite

tr [(\widehat \Sigma  - zI) - 1] =
1

z
tr [(zI  - \widehat \Sigma + \widehat \Sigma )(\widehat \Sigma  - zI) - 1]

= - d

z
+

1

z
tr [\widehat \Sigma (\widehat \Sigma  - zI) - 1] = - d

z
+

1

z
tr [XX\top (XX\top  - nzI) - 1]

= - d

z
+

1

z
tr [(XX\top  - nzI + nzI)(XX\top  - nzI) - 1] =

n - d

z
+ n\widehat \varphi (z).(A.5)

Following [39] and combining (A.4) and (A.5), this leads to \widehat \varphi (z)\sim \varphi (z), with

(A.6) \varphi (z) +
1

z
=

1

nz
tr
\Bigl[ 
\Sigma 
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

,

which is the desired self-consistent equation in (3.3) in section 3.2. Note that the quantity
\varphi (z) still depends on n.

And even more intuitively, since tr [\widehat \Sigma (\widehat \Sigma  - zI) - 1] = d+ ztr [(\widehat \Sigma  - zI) - 1] = nz(\widehat \varphi (z)+ 1
z ), we

get (3.1) from section 3.1:

(A.7) tr [\widehat \Sigma (\widehat \Sigma  - zI) - 1]\sim tr
\Bigl[ 
\Sigma 
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

.

We have for z = - \lambda , with \lambda > 0 tr [\widehat \Sigma (\widehat \Sigma + \lambda I) - 1]\sim tr
\Bigl[ 
\Sigma 
\Bigl( 
\Sigma + 1

\varphi ( - \lambda )I
\Bigr)  - 1\Bigr] 

, and thus

\varphi ( - \lambda ) - 1

\lambda 
= - 1

n\lambda 
tr
\Bigl[ 
\Sigma 
\Bigl( 
\Sigma +

1

\varphi ( - \lambda )
I
\Bigr)  - 1\Bigr] 

= - 1

n\lambda 
df1

\Bigl( 1

\varphi ( - \lambda )

\Bigr) 
,

leading to \lambda \varphi ( - \lambda ) = 1  - 1
ndf1

\Bigl( 
1

\varphi ( - \lambda )

\Bigr) 
, and thus the desired inequality with \kappa (\lambda ) = 1

\varphi ( - \lambda ) ,

presented in section 3.2.
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DOUBLE DESCENT FOR LINEAR RANDOM PROJECTIONS 45

A.2. Equivalents of spectral functions. In this section, we prove Propositions 3.1 and 3.2.
Following [16], we start with an asymptotic equivalent based on differentiation (see formal
justification in [16]). See [12, 25] for similar results based more strongly on differentiation
(which is only used here to derive an equivalent for tr [(\widehat \Sigma  - zI) - 2]).

Using differentiation. We have, by differentiating (A.6) with respect to z,

\varphi (z) + z\varphi \prime (z) =
1

n
tr

\biggl[ 
\Sigma 

\biggl( 
\Sigma +

1

\varphi (z)
I

\biggr)  - 2\biggr] \varphi \prime (z)

\varphi (z)2
,

which leads to \varphi (z)
\varphi \prime (z) =

1
ntr

\Bigl[ 
\Sigma 
\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2\Bigr] 

1
\varphi (z)2  - z. Thus, differentiating (A.7) with respect

to z and using the bound on \varphi (z)
\varphi \prime (z) above, we get

tr [\widehat \Sigma (\widehat \Sigma  - zI) - 2]\sim tr

\biggl[ 
\Sigma 

\biggl( 
\Sigma +

1

\varphi (z)
I

\biggr)  - 2\biggr] \varphi \prime (z)

\varphi (z)2
=

n tr [\Sigma (\Sigma + 1
\varphi (z)I)

 - 2]

tr [\Sigma (\Sigma + 1
\varphi (z)I)

 - 2] 1
\varphi (z)  - nz\varphi (z)

=
n tr [\Sigma (\Sigma + 1

\varphi (z)I)
 - 2]

tr [\Sigma (\Sigma + 1
\varphi (z)I)

 - 2] 1
\varphi (z) + n - tr [\Sigma (\Sigma + 1

\varphi (z)I)
 - 1]

=
n tr [\Sigma (\Sigma + 1

\varphi (z)I)
 - 2]

n - tr [\Sigma 2(\Sigma + 1
\varphi (z)I)

 - 2]
.

This leads to the asymptotic equivalent

tr [(\widehat \Sigma  - zI) - 2] =
1

z
tr [(zI  - \widehat \Sigma + \widehat \Sigma )(\widehat \Sigma  - zI) - 2] =

1

z
tr [\widehat \Sigma (\widehat \Sigma  - zI) - 2] - 1

z
tr [(\widehat \Sigma  - zI) - 1]

\sim 1

z

ntr [\Sigma (\Sigma + 1
\varphi (z)I)

 - 2]

n - tr [\Sigma 2(\Sigma + 1
\varphi (z)I)

 - 2]
 - 1

z
tr [( - z\varphi (z)\Sigma  - zI) - 1],(A.8)

which we will need later.
Proof of (3.6) and (3.8). We now first show

tr [A(\widehat \Sigma  - zI) - 1]\sim tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1]\sim tr [A( - z\varphi (z)\Sigma  - zI) - 1]

=
 - 1

z\varphi (z)
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

,

where the last quantity is equivalent to  - d
z

\int +\infty 
0

d\nu A(\sigma )
1+\sigma \varphi (z) . We have, using (A.3),

tr[A(\widehat \Sigma  - zI) - 1] - tr[A( - z \widehat \varphi (z)\Sigma  - zI) - 1] = - tr[A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta ],

which is negligible as soon as \| A\| \mathrm{o}\mathrm{p} is bounded (using the same arguments as in Appen-

dix A.1). We can then express tr [A(\Sigma + 1
\varphi (z)I)

 - 1] as
\int +\infty 
0

d\nu A(\sigma )
\sigma + 1

\varphi (z)

. This leads to the desired

result in Proposition 3.1.
Proof of (3.7) and (3.9). For the quadratic form, we have for any matrices A and B, still

using (A.3),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

5/
24

 to
 1

94
.2

09
.1

0.
19

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



46 FRANCIS BACH

tr [A(\widehat \Sigma  - zI) - 1B(\widehat \Sigma  - zI) - 1]

= tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1(I  - \Delta )B( - z \widehat \varphi (z)\Sigma  - zI) - 1(I  - \Delta )]

= tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1B( - z \widehat \varphi (z)\Sigma  - zI) - 1]

+ tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta B( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta ]

 - tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta B( - z \widehat \varphi (z)\Sigma  - zI) - 1

 - tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1B( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta ].

The last two terms are negligible with the same arguments as in Appendix A.1 as soon as
\| A\| \mathrm{o}\mathrm{p} and \| B\| \mathrm{o}\mathrm{p} are bounded. We have, for the second term,

tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta B( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta ]

= 1
n2

\sum n
i,j=1 tr

\Bigl[ 
A( - z \widehat \varphi (z)\Sigma  - zI) - 1 (xix\top 

i  - \Sigma )(\widehat \Sigma  - i - zI)
 - 1

1+x\top 
i (n\widehat \Sigma  - i - nzI)

 - 1
xi

B( - z \widehat \varphi (z)\Sigma  - zI) - 1 (xjx\top 
j  - \Sigma )(\widehat \Sigma  - j - zI)

 - 1

1+x\top 
j (n\widehat \Sigma  - j - nzI)

 - 1
xj

\Bigr] 
= 1

n2

\sum n
i,j=1

\mathrm{t}\mathrm{r}[A( - z \widehat \varphi (z)\Sigma  - zI) - 1
(xix\top 

i  - \Sigma )(\widehat \Sigma  - i - zI)
 - 1

B( - z \widehat \varphi (z)\Sigma  - zI) - 1
(xjx\top 

j  - \Sigma )(\widehat \Sigma  - j - zI)
 - 1
]

(1+x\top 
i (n\widehat \Sigma  - i - nzI)

 - 1
xi)(1+x\top 

j (n\widehat \Sigma  - j - nzI)
 - 1

xj)
.

When i \not = j, then we can separate terms with xix
\top 
i  - \Sigma and xjx

\top 
j  - \Sigma , which end up being

negligible, thus leading to an equivalent

1

n2

n\sum 
i=1

tr[A( - z \widehat \varphi (z)\Sigma  - zI) - 1(xix
\top 
i  - \Sigma )(\widehat \Sigma  - i - zI) - 1B( - z \widehat \varphi (z)\Sigma  - zI) - 1(xix

\top 
i  - \Sigma )(\widehat \Sigma  - i - zI) - 1]

(1 + x\top i (n
\widehat \Sigma  - i - nzI) - 1xi)

2
.

To study its asymptotic limit, we need to characterize the asymptotic equivalent of the quan-
tity tr [C(xix

\top 
i  - \Sigma )D(xix

\top 
i  - \Sigma )] = tr [\Sigma 1/2C\Sigma 1/2(ziz

\top 
i  - I)\Sigma 1/2D\Sigma 1/2(ziz

\top 
i  - I)] with C and

D bounded in operator norm. For M =\Sigma 1/2C\Sigma 1/2 and N =\Sigma 1/2D\Sigma 1/2, we can write

tr [M(ziz
\top 
i  - I)N(ziz

\top 
i  - I)] - tr (M)tr (N)

= (z\top i Mzi - tr (M))(z\top i Nzi - tr (N))

+ tr (M)(z\top i Nzi - tr (N)) + tr (N)(z\top i Mzi - tr (M))

 - tr [(MN +NM)(ziz
\top 
i  - I)]

=Op(\| M\| F \cdot \| N\| F+tr (M)\| N\| F+tr (N)\| M\| F+\| NM\| F ),

using the property from Appendix A.1, obtained from the i.i.d. assumption on the components
of zi, which is negligible compared to the term tr (M)tr (N). Thus, using in addition that \widehat \Sigma  - j

is asymptotically equivalent to \widehat \Sigma , we get the equivalent

1

n2

n\sum 
i=1

tr[(\widehat \Sigma  - zI) - 1A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Sigma ] \cdot tr[(\widehat \Sigma  - zI) - 1B( - z \widehat \varphi (z)\Sigma  - zI) - 1\Sigma ]

(1 + x\top i (n
\widehat \Sigma  - i  - nzI) - 1xi)

2
.

We thus overall have

tr [A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Delta B\Delta \top ( - z \widehat \varphi (z)\Sigma  - zI) - 1]

\sim tr [(\widehat \Sigma  - zI) - 1A( - z \widehat \varphi (z)\Sigma  - zI) - 1\Sigma ] \cdot tr [(\widehat \Sigma  - zI) - 1B( - z \widehat \varphi (z)\Sigma  - zI) - 1\Sigma ] \cdot \square 
\sim tr [A( - z\varphi (z)\Sigma  - zI) - 2\Sigma ] \cdot tr [B( - z\varphi (z)\Sigma  - zI) - 2\Sigma ] \cdot \square 
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DOUBLE DESCENT FOR LINEAR RANDOM PROJECTIONS 47

with \square = 1
n2

\sum n
i=1

1

(1+x\top 
i (n\widehat \Sigma  - i - nzI)

 - 1
xi)

2 . This leads to

tr [A(\widehat \Sigma  - zI) - 1B(\widehat \Sigma  - zI) - 1]\sim tr [A( - z\varphi (z)\Sigma  - zI) - 1B( - z\varphi (z)\Sigma  - zI) - 1]

+ tr [A( - z\varphi (z)\Sigma  - zI) - 2\Sigma ] \cdot tr [B( - z\varphi (z)\Sigma  - zI) - 2\Sigma ] \cdot \square .

To obtain an equivalent of \square , we consider the case A=B = I to get

tr [(\widehat \Sigma  - zI) - 2]\sim tr [( - z\varphi (z)\Sigma  - zI) - 2] + (tr [( - z\varphi (z)\Sigma  - zI) - 2\Sigma ])2 \cdot \square ,

which allows us to compute an equivalent of \square , as, using (A.8), with z\varphi (z)\sim df1(1/\varphi (z)) - 1
n :

\square \sim tr [(\widehat \Sigma  - zI) - 2] - tr [( - z\varphi (z)\Sigma  - zI) - 2]

(tr [( - z\varphi (z)\Sigma  - zI) - 2\Sigma ])2

\sim 
1
z

n\mathrm{t}\mathrm{r} [\Sigma (\Sigma + 1

\varphi (z)
I)

 - 2
]

n - \mathrm{d}\mathrm{f}2(1/\varphi (z))
 - 1

z tr [( - z\varphi (z)\Sigma  - zI) - 1] - tr [( - z\varphi (z)\Sigma  - zI) - 2]

(tr [( - z\varphi (z)\Sigma  - zI) - 2\Sigma ])2

\sim 
1
z

n\mathrm{t}\mathrm{r} [\Sigma (\Sigma + 1

\varphi (z)
I)

 - 2
]

n - \mathrm{d}\mathrm{f}2(1/\varphi (z))
+ 1

z2\varphi (z)tr
\Bigl[ \Bigl( 

\Sigma + 1
\varphi (z)I

\Bigr)  - 1\Bigr] 
 - 1

z2\varphi (z)tr
\Bigl[ 

1
\varphi (z)

\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2\Bigr] 

\Bigl( 
1

z2\varphi (z)tr
\Bigl[ 

1
\varphi (z)

\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2

\Sigma 
\Bigr] \Bigr) 2

\sim 
1
z

n\mathrm{t}\mathrm{r} [\Sigma (\Sigma + 1

\varphi (z)
I)

 - 2
]

n - \mathrm{d}\mathrm{f}2(1/\varphi (z))
+ 1

z2\varphi (z)tr
\Bigl[ 
\Sigma 
\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2\Bigr] 

\Bigl( 
1

z2\varphi (z)tr
\Bigl[ 

1
\varphi (z)

\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2

\Sigma 
\Bigr] \Bigr) 2 \sim 

1
z

n
n - \mathrm{d}\mathrm{f}2(1/\varphi (z))

+ 1
z2\varphi (z)\Bigl( 

1
z2\varphi (z)

\Bigr) 2
1

\varphi (z)tr
\Bigl[ 

1
\varphi (z)

\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2

\Sigma 
\Bigr] 

\sim 
nz\varphi (z)

n - \mathrm{d}\mathrm{f}2(1/\varphi (z))
+ 1

1
z2\varphi (z)2 tr

\Bigl[ 
1

\varphi (z)

\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2

\Sigma 
\Bigr] =

\mathrm{d}\mathrm{f}1(1/\varphi (z)) - n
n - \mathrm{d}\mathrm{f}2(1/\varphi (z))

+ 1

1
z2\varphi (z)2 tr

\Bigl[ 
1

\varphi (z)

\Bigl( 
\Sigma + 1

\varphi (z)I
\Bigr)  - 2

\Sigma 
\Bigr] 

\sim 
\mathrm{d}\mathrm{f}1(1/\varphi (z)) - n
n - \mathrm{d}\mathrm{f}2(1/\varphi (z))

+ 1

1
z2\varphi (z)2 (df1(1/\varphi (z)) - df2(1/\varphi (z)))

=
z2\varphi (z)2

n - df2(1/\varphi (z))
.

Overall, we get

tr [A(\widehat \Sigma  - zI) - 1B(\widehat \Sigma  - zI) - 1]

\sim 1

z2\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

z4\varphi (z)4
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot z2\varphi (z)2

n - df2(1/\varphi (z))

\sim 1

z2\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

z2\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))
,

which is (3.9).
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48 FRANCIS BACH

We also have, by writing \widehat \Sigma (\widehat \Sigma  - zI) - 1 = I + z(\widehat \Sigma  - zI) - 1,

tr [A\widehat \Sigma (\widehat \Sigma  - zI) - 1B(\widehat \Sigma  - zI) - 1]

= ztr [A(\widehat \Sigma  - zI) - 1B(\widehat \Sigma  - zI) - 1] + tr [AB(\widehat \Sigma  - zI) - 1]

\sim  - 1

z\varphi (z)
tr

\biggl[ 
AB

\biggl( 
\Sigma +

1

\varphi (z)
I

\biggr)  - 1\biggr] 
+

1

z\varphi (z)2
tr

\biggl[ 
A

\biggl( 
\Sigma +

1

\varphi (z)
I

\biggr)  - 1

B

\biggl( 
\Sigma +

1

\varphi (z)
I

\biggr)  - 1\biggr] 
+

1

z\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))

\sim  - 1

z\varphi (z)
tr
\Bigl[ 
AB

\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

z\varphi (z)
tr
\Bigl[ 
A

1

\varphi (z)

\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

z\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))

\sim  - 1

z\varphi (z)
tr
\Bigl[ 
A\Sigma 

\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

z\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))
.

We also finally have by using again \widehat \Sigma (\widehat \Sigma  - zI) - 1 = I + z(\widehat \Sigma  - zI) - 1,

tr [A\widehat \Sigma (\widehat \Sigma  - zI) - 1B\widehat \Sigma (\widehat \Sigma  - zI) - 1]

\sim tr
\Bigl[ 
A\Sigma 

\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1

B\Sigma 
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 1\Bigr] 

+
1

\varphi (z)2
tr
\Bigl[ 
A
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot tr

\Bigl[ 
B
\Bigl( 
\Sigma +

1

\varphi (z)
I
\Bigr)  - 2

\Sigma 
\Bigr] 
\cdot 1

n - df2(1/\varphi (z))
,

which is (3.7).
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