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Abstract—We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-

concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set

of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization

problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching

problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the

concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and

concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label

similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with

some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and

handwritten Chinese characters. In all cases, the results are competitive with the state of the art.

Index Terms—Graph algorithms, graph matching, convex programming, gradient methods, machine learning, classification, image

processing.

Ç

1 INTRODUCTION

THE graph matching problem is among the most
important challenges of graph processing and plays a

central role in various fields of pattern recognition. Roughly
speaking, the problem consists in finding a correspondence
between vertices of two given graphs, which is optimal in
some sense. Usually, the optimality refers to the alignment
of graph structures and, when available, of vertices labels,
although other criteria are possible as well. A nonexhaus-
tive list of graph matching applications includes document
processing tasks like optical character recognition [1], [2],
image analysis (2D and 3D) [3], [4], [5], [6], or bioinformatics
[7], [8], [9].

During the last decade, many different algorithms for
graph matching have been proposed. Because of the
combinatorial nature of this problem, it is very hard to solve
it exactly for large graphs, however, some methods based on
incomplete enumeration may be applied to search for an exact
optimal solution in the case of small or sparse graphs. Some
examples of such algorithms may be found in [10], [11], [12].

Another group of methods includes approximate algo-
rithms that are supposed to be more scalable. The price to
pay for the scalability is that the solution found is usually
only an approximation of the optimal matching. Approx-
imate methods may be divided into two groups of
algorithms. The first group is composed of methods, which
use spectral representations of adjacency matrices or
equivalently embed the vertices into a euclidean space,
where linear or nonlinear matching algorithms can be
deployed. This approach was pioneered by Umeyama [13],
while further different methods based on spectral repre-
sentations were proposed in [3], [4], [5], [14], [15]. The
second group of approximate algorithms is composed of
algorithms which work directly with graph adjacency
matrices and typically involve a relaxation of the discrete
optimization problem. The most effective algorithms were
proposed in [6], [16], [17], [18].

An interesting instance of the graph matching problem is
the matching of labeled graphs. In that case, graph vertices
have associated labels, which may be numbers, categorical
variables, etc. The important point is that there is also a
similarity measure between these labels. Therefore, when
we search for the optimal correspondence between vertices,
we search a correspondence which matches not only the
structures of the graphs but also vertices with similar labels.
Some widely used approaches for this application only use
the information about similarities between graph labels. In
vision, one such algorithm is the shape context algorithm
proposed in [19], which involves an efficient algorithm of
node label construction. Another example is the BLAST-
based algorithms in bioinformatics such as the Inparanoid
algorithm [20], where correspondence between different
protein networks is established on the basis of BLAST
scores between pairs of proteins. The main advantages of all
these methods are their speed and simplicity. However, the
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main drawback of these methods is that they do not take
into account information about the graph structure. Some
graph matching methods try to combine information on
graph structures and vertex similarities, examples of such
method are presented in [7], [18].

In this paper, we propose an approximate method for
labeled weighted graph matching, based on a convex-
concave programming approach, which can be applied for
matching of graphs of large sizes. Our method is based on a
formulation of the labeled weighted graph matching
problem as a quadratic assignment problem (QAP) over
the set of permutation matrices, where the quadratic term
encodes the structural compatibility and the linear term
encodes local compatibilities. We propose two relaxations of
this problem, resulting in one quadratic convex and one
quadratic concave minimization problem on the set of
doubly stochastic matrices. While the concave relaxation
has the same global minimum as the initial QAP, solving it is
also a hard combinatorial problem. We find a local minimum
of this problem by following a solution path of a family of
convex-concave minimization problems, obtained by line-
arly interpolating between the convex and concave relaxa-
tions. Starting from the convex formulation with a unique
local (and global) minimum, the solution path leads to a local
optimum of the concave relaxation. We refer to this
procedure as the PATH algorithm.1 We perform an extensive
comparison of this PATH algorithm with several state-of-
the-art matching methods on small simulated graphs and
various QAP benchmarks, and show that it consistently
provides state-of-the-art performances while scaling to
graphs of up to a few thousand vertices on a modern
desktop computer. We further illustrate the use of the
algorithm on two applications in image processing, namely
the matching of retina images based on vessel organization,
and the matching of handwritten Chinese characters.

The rest of the paper is organized as follows: Section 2
presents the mathematical formulation of the graph match-
ing problem. In Section 3, we present our new approach.
Then, in Section 4, we present the comparison of our
method with Umeyama’s algorithm [13] and the linear
programming approach [16] on the example of artificially
simulated graphs. In Section 5, we test our algorithm on the
QAP benchmark library, and compare obtained results with
the results published in [18] for the QBP algorithm and
graduated assignment algorithms. Finally, in Section 6, we
present two examples of applications to the real-world
image processing tasks.

2 PROBLEM DESCRIPTION

A graph G ¼ ðV ;EÞ of size N is defined by a finite set of
vertices V ¼ f1; . . . ; Ng and a set of edges E � V � V . We
consider only undirected graphs with no self-loop, i.e., such
that ði; jÞ 2 E ¼) ðj; iÞ 2 E and ði; iÞ 62 E for any vertices
i; j 2 V . Each such graph can be equivalently represented
by a symmetric adjacency matrix A of size jV j � jV j, where
Aij is equal to one if there is an edge between vertices i and

j, and zero otherwise. An interesting generalization is a
weighted graph which is defined by association of
nonnegative real values wij (weights) to all edges of
graph G. Such graphs are represented by real-valued
adjacency matrices A with Aij ¼ wij. This generalization is
important because in many applications, the graphs of
interest have associated weights for all their edges, and
taking into account, these weights may be crucial in
construction of efficient methods. In the following, when
we talk about “adjacency matrix,” we mean a real-valued
“weighted” adjacency matrix.

Given two graphs G and H with the same number of
vertices N , the problem of matching G and H consists in
finding a correspondence between vertices of G and vertices
of H, which aligns G and H in some optimal way. We will
consider in Section 3.8 an extension of the problem to graphs
of different sizes. For graphs with the same size N , the
correspondence between vertices is a permutation of
N vertices, which can be defined by a permutation
matrix P , i.e., a {0, 1}-valued N �N matrix with exactly
one entry 1 in each column and each row. The matrix P
entirely defines the mapping between vertices of G and
vertices of H, Pij being equal to 1 if the ith vertex of G is
matched to the jth vertex of H, and 0 otherwise. After
applying the permutation defined by P to the vertices of H,
we obtain a new graph isomorphic to H, which we denote
by P ðHÞ. The adjacency matrix of the permuted graph
AP ðHÞ is simply obtained from AH by the equality
AP ðHÞ ¼ PAHP

T .
In order to assess whether a permutation P defines a

good matching between the vertices of G and those of H, a
quality criterion must be defined. Although other choices
are possible, we focus in this paper on measuring the
discrepancy between the graphs after matching, by the
number of edges (in the case of weighted graphs, it will be
the total weight of edges), which are present in one graph
and not in the other. In terms of adjacency matrices, this
number can be computed as

F0ðP Þ ¼ kAG �AP ðHÞk2
F ¼ kAG � PAHP

Tk2
F ; ð1Þ

where k:kF is the Frobenius matrix norm defined by
kAk2

F ¼ trATA ¼ ð
P

i

P
j A

2
ijÞ. A popular alternative to the

Frobenius norm formulation (1) is the 1-norm formulation
obtained by replacing the Frobenius norm by the 1-norm
kAk1 ¼

P
i

P
j jAijj, which is equal to the square of the

Frobenius norm kAk2
F when comparing {0, 1}-valued

matrices, but may differ in the case of general matrices.
Therefore, the problem of graph matching can be

reformulated as the problem of minimizing F0ðP Þ over the
set of permutation matrices. This problem has a combina-
torial nature and there is no known polynomial algorithm to
solve it [21]. It is therefore very hard to solve it in the case of
large graphs and numerous approximate methods have
been developed.

An interesting generalization of the graph matching
problem is the problem of labeled graph matching. Here,
each graph has associated labels to all its vertices and the
objective is to find an alignment that fits well graph labels
and graph structures at the same time. If we let Cij denote
the cost of fitness between the ith vertex of G and jth vertex
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1. The PATH algorithm as well as other referenced approximate methods
are implemented in the software GraphM and available at http://
cbio.ensmp.fr/graphm.



of H, then the matching problem based only on label

comparison can be formulated as follows:

min
P2P

trðCTP Þ ¼
XN
i¼1

XN
j¼1

CijPij; ð2Þ

where P denotes the set of permutation matrices. A natural

way of unifying (2) and (1) to match both the graph

structure and the vertices’ labels is then to minimize a

convex combination [18]:

min
P2P
ð1� �ÞF0ðP Þ þ �trðCTP Þ; ð3Þ

which makes explicit, through the parameter � 2 ½0; 1�, the

trade-off between cost of individual matchings and faithful-

ness to the graph structure. A small � value emphasizes the

matching of structures, while a large � value gives more

importance to the matching of labels.

2.1 Permutation Matrices

Before describing how we propose to solve (1) and (3), we

first introduce some notations and bring to notice some

important characteristics of these optimization problems.

They are defined on the set of permutation matrices, which

we denoted by P. The set P is a set of extreme points of the

set of doubly stochastic matrices, that is, matrices with

nonnegative entries and with row sums and column sums

equal to one:D ¼ fA : A1N ¼ 1N;A
T1N ¼ 1N;A � 0g, where

1N denotes the N-dimensional vector of all ones [22]. This

shows that, when a linear function is minimized over the set

of doubly stochastic matrices D, a solution can always be

found in the set of permutation matrices. Consequently,

minimizing a linear function over P is in fact equivalent to a

linear program and can thus be solved in polynomial time

by, e.g., interior point methods [23]. In fact, one of the most

efficient methods to solve this problem is the Hungarian

algorithm, which uses a specific primal-dual strategy to

solve this problem in OðN3Þ [24]. Note that the Hungarian

algorithm allows to avoid the generic OðN7Þ complexity

associated with a linear program with N2 variables.
At the same time, P may be considered as a subset of

orthonormal matrices O ¼ fA : ATA ¼ Ig of D and in fact

P ¼ D \O. An (idealized) illustration of these sets is

presented in Fig. 1: The discrete setP of permutation matrices

is the intersection of the convex set D of doubly stochastic

matrices and the manifold O of orthogonal matrices.

2.2 Approximate Methods: Existing Works

A good review of graph matching algorithms may be found

in [25]. Here, we only present a brief description of some

approximate methods that illustrate well ideas behind two

subgroups of these algorithms. As mentioned in Section 1,

one popular approach to find approximate solutions to the

graph matching problem is based on the spectral decom-

position of the adjacency matrices of the graphs to be

matched. In this approach, the singular value decomposi-

tions of the graph adjacency matrices are used:

AG ¼ UG�GU
T
G; AH ¼ UH�HU

T
H;

where the columns of the orthogonal matrices UG and UH
consist of eigenvectors of AG and AH , respectively, and �G

and �H are diagonal matrices of eigenvalues.
If we consider the rows of eigenvector matrices UG and

UH as graph node coordinates in eigenspaces, then we can
match the vertices with similar coordinates through a
variety of methods [5], [13], [15]. However, these methods
suffer from the fact that the spectral embedding of graph
vertices is not uniquely defined. First, the unit norm
eigenvectors are at most defined up to a sign flip and we
have to choose their signs synchronously. Although it is
possible to use some normalization convention, such as
choosing the sign of each eigenvector in such a way that the
biggest component is always positive, this usually does not
guarantee a perfect sign synchronization, in particular, in
the presence of noise. Second, if the adjacency matrix has
multiple eigenvalues, then the choice of eigenvectors
becomes arbitrary within the corresponding eigensubspace,
as they are defined only up to rotations [26].

One of the first spectral approximate algorithms was
presented by Umeyama [13]. To avoid the ambiguity of
eigenvector selection, Umeyama proposed to consider the
absolute values of eigenvectors. According to this approach,
the correspondence between graph nodes is established by
matching the rows of jUGj and jUH j (which are defined as
matrices of absolute values). The criterion of optimal
matching is the total distance between matched rows,
leading to the optimization problem

min
P2P

kjUGj � P jUH jkF

or, equivalently,

max
P2P

trðjUHkUGjTP Þ: ð4Þ

The optimization problem (4) is a linear program on the set
of permutation matrices, which can be solved by the
Hungarian algorithm in OðN3Þ [27], [28].

The second group of approximate methods consists of
algorithms that work directly with the objective function in
(1) and typically involve various relaxations to optimiza-
tions problems that can efficiently be solved. An example of
such an approach is the linear programming method
proposed by Almohamad and Duffuaa in [16]. They
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Fig. 1. Relation between three matrix sets. O—set of orthogonal

matrices, D—set of doubly stochastic matrices, and P ¼ D \O—set of

permutation matrices.



considered the 1-norm as the matching criterion for a
permutation matrix P 2 P:

F 00ðP Þ ¼ kAG � PAHP
Tk1 ¼ kAGP � PAHk1:

The linear program relaxation is obtained by optimizing
F 00ðP Þ on the set of doubly stochastic matricesD instead of P:

min
P2D

F 00ðP Þ; ð5Þ

where the 1-norm of a matrix is defined as the sum of the
absolute values of all the elements of a matrix. A priori the
solution of (5) is an arbitrary doubly stochastic matrix
X 2 D, so the final step is a projection of X on the set of
permutation matrices (we let denote �PX the projection of
X onto P):

P � ¼ �PX ¼ arg min
P2P

kP �Xk2
F

or, equivalently,

P � ¼ arg max
P2P

XTP: ð6Þ

The projection (6) can be performed with the Hungarian
algorithm, with a complexity cubic in the dimension of the
problem. The main disadvantage of this method is that the
dimensionality (i.e., number of variables and number of
constraints) of the linear program (6) isOðN2Þ, and therefore,
it is quite hard to process graphs of size more than 100 nodes.

Other convex relaxations of (1) can be found in [18] and
[17]. In the next section, we describe our new algorithm
which is based on the technique of convex-concave
relaxations of the initial problems (1) and (3).

3 CONVEX-CONCAVE RELAXATION

Let us start the description of our algorithm for unlabeled
weighted graphs. The generalization to labeled weighted
graphs is presented in Section 3.7. The graph matching
criterion we consider for unlabeled graphs is the square of
the Frobenius norm of the difference between adjacency
matrices (1). Since permutation matrices are also orthogonal
matrices (i.e., PPT ¼ I and PTP ¼ I), we can rewrite F0ðP Þ
on P as follows:

F0ðP Þ ¼ kAG � PAHP
Tk2

F ¼ kðAG � PAHP
T ÞPk2

F

¼ kAGP � PAHk2
F :

The graph matching problem is then the problem of
minimizing F0ðP Þ over P, which we call GM:

GM: min
P2P

F0ðP Þ: ð7Þ

3.1 Convex Relaxation

A first relaxation of GM is obtained by expanding the
convex quadratic function F0ðP Þ on the set of doubly
stochastic matrices D:

QCV: min
P2D

F0ðP Þ: ð8Þ

The QCV problem is a convex quadratic program that can
be solved in polynomial time, e.g., by the Frank-Wolfe
algorithm [29] (see Section 3.5 for more details). However,
the optimal value is usually not an extreme point of D, and

therefore, not a permutation matrix. If we want to use only
QCV for the graph matching problem, we therefore have to
project its solution on the set of permutation matrices, and
to make, e.g., the following approximation:

arg min
P

F0ðP Þ � �P arg min
D

F0ðP Þ: ð9Þ

Although the projection �P can be made efficiently in
OðN3Þ by the Hungarian algorithm, the difficulty with this
approach is that if arg minD F0ðP Þ is far from P, then the
quality of the approximation (9) may be poor: In other
words, the work performed to optimize F0ðP Þ is partly lost
by the projection step, which is independent of the cost
function. The PATH algorithm that we present later can be
thought of as an improved projection step that takes into
account the cost function in the projection.

3.2 Concave Relaxation

We now present a second relaxation of GM, which results
in a concave minimization problem. For that purpose, let us

introduce the diagonal degree matrix D of an adjacency
matrix A, which is the diagonal matrix with entries Dii ¼
dðiÞ ¼

PN
i¼1 Aij for i ¼ 1; . . . ; N , as well as the Laplacian

matrix L ¼ D�A. A having only nonnegative entries, it is
well known that the Laplacian matrix is positive semide-

finite [30]. We can now rewrite F0ðP Þ as follows:

F0ðP Þ ¼ kAGP � PAHk2
F

¼ kðDGP � PDHÞ � ðLGP � PLHÞk2
F

¼ kDGP � PDHk2
F

� 2tr½ðDGP � PDHÞT ðLGP � PLHÞ�
þ kLGP � PLHk2

F :

ð10Þ

Let us now consider more precisely the second term in this
last expression:

tr½ðDGP � PDHÞT ðLGP � PLHÞ�
¼ trPPTDT

GLG|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}P
d2
G
ðiÞ

þ trLHD
T
HP

TP|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}P
d2
H
ðiÞ

� trPTDT
GPLH|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}P

dGðiÞdP ðHÞðiÞ

� trDT
HP

TLGP|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}P
dP ðHÞðiÞdGðiÞ

¼
X
ðdGðiÞ � dP ðHÞðiÞÞ2 ¼ kDG �DP ðHÞk2

F

¼ kDGP � PDHk2
F :

ð11Þ

By plugging (11) into (10), we obtain

F0ðP Þ ¼ kDGP � PDHk2
F � 2kDGP � PDHk2

F

þ kLGP � PLHk2
F

¼ �kDGP � PDHk2
F þ kLGP � PLHk

2
F

¼ �
X
i;j

PijðDGðjÞ �DHðiÞÞ2 þ trðPPT|ffl{zffl}
I

LTGLGÞ

þ tr
�
LTH P

TP|ffl{zffl}
I

LH
�
� 2 tr

�
PTLTGPLH

�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
vecðP ÞT ðLT

H
	LT

G
ÞvecðP Þ

¼ �trð�P Þ þ tr
�
L2
G

�
þ tr

�
L2
H

�
� 2vecðP ÞT

�
LTH 	 LTG

�
vecðP Þ;

ð12Þ
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where we introduced the matrix �i;j ¼ ðDHðj; jÞ �DGði; iÞÞ2
and used 	 to denote the Kronecker product of two
matrices (definition of the Kronecker product and some
important properties may be found in Appendix B).

Let us denote F1ðP Þ the part of (12), which depends on P :

F1ðP Þ ¼ �trð�P Þ � 2vecðP ÞT
�
LTH 	 LTG

�
vecðP Þ:

From (12), we see that the permutation matrix which
minimizes F1 over P is the solution of the graph matching
problem. Now, minimizing F1ðP Þ over D gives us a
relaxation of (7) on the set of doubly stochastic matrices.
Since graph Laplacian matrices are positive semidefinite, the
matrix LH 	 LG is also positive semidefinite as a Kronecker
product of two symmetric positive semidefinite matrices
[26]. Therefore, the function F1ðP Þ is concave on D and we
obtain a concave relaxation of the graph matching problem

QCC: min
P2D

F1ðP Þ: ð13Þ

Interestingly, the global minimum of a concave function is
necessarily located at a boundary of the convex set, where it is
minimized [31], so the minimum of F1ðP Þ onD is in fact inP.

At this point, we have obtained two relaxations of GM as
nonlinear optimization problems on D: The first one is the
convex minimization problem QCV (8), which can be
solved efficiently but leads to a solution in D that must then
be projected onto P, and the other is the concave
minimization problem QCC (13), which does not have an
efficient (polynomial) optimization algorithm but has the
same solution as the initial problem GM. We note that these
convex and concave relaxations of the graph matching
problem can be more generally derived for any quadratic
assignment problems [32].

3.3 PATH Algorithm

We propose to approximately solve QCC by tracking a path
of local minima over D of a series of functions that linearly
interpolate between F0ðP Þ and F1ðP Þ, namely,

F�ðP Þ ¼ ð1� �ÞF0ðP Þ þ �F1ðP Þ;

for 0 
 � 
 1. For all � 2 ½0; 1�, F� is a quadratic function
(which is, in general, neither convex nor concave for � away

from zero or one). We recover the convex function F0 for
� ¼ 0 and the concave function F1 for � ¼ 1. Our method
searches sequentially local minima of F�, where � moves
from 0 to 1. More precisely, we start at � ¼ 0, and find the
unique local minimum of F0 (which is, in this case, its
unique global minimum) by any classical QP solver. Then,
iteratively, we find a local minimum of F�þd� given a local
minimum of F� by performing a local optimization of F�þd�
starting from the local minimum of F�, using, for example,
the Frank-Wolfe algorithm. Repeating this iterative process
for d� small enough, we obtain a path of solutions P �ð�Þ,
where P �ð0Þ ¼ arg minP2D F0ðP Þ and P �ð�Þ is a local
minimum of F� for all � 2 ½0; 1�. Noting that any local
minimum of the concave function F1 on D is in P, we finally
output P �ð1Þ 2 P as an approximate solution of GM.

Our approach is similar to graduated nonconvexity [33]:
This approach is often used to approximate the global
minimum of a nonconvex objective function. This function
consists of two parts, the convex component and nonconvex
component, and the graduated nonconvexity framework
proposes to track the linear combination of the convex and
nonconvex parts (from the convex relaxation to the true
objective function) to approximate the minimum of the
nonconvex function. The PATH algorithm may indeed be
considered as an example of such an approach. However,
the main difference is the construction of the objective
function. Unlike [33], we construct two relaxations of the
initial optimization problem, which lead to the same value
on the set of interest (P), the goal being to choose convex/
concave relaxations that approximate in the best way the
objective function on the set of permutation matrices.

The pseudocode for the PATH algorithm is presented in
Fig. 2. The rationale behind it is that among the local
minima of F1ðP Þ on D, we expect the one connected to the
global minimum of F0 through a path of local minima to be
a good approximation of the global minima. Such a
situation is, for example, shown in Fig. 3, where in one-
dimension, the global minimum of a concave quadratic
function on an interval (among two candidate points) can
be found by following the path of local minima connected
to the unique global minimum of a convex function.
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Fig. 2. Schema of the PATH algorithm.

Fig. 3. Illustration for path optimization approach. F0 (� ¼ 0)—initial
convex function, F1 (� ¼ 1)—initial concave function, and bold black
line—path of function minima P �ð�Þ ð� ¼ 0 . . . 0:1 . . . 0:2 . . . 0:3 . . .
0:75 . . . 1).



More precisely, and although we do not have any
formal result about the optimality of the PATH optimiza-
tion method (beyond the lack of global optimality, see
Appendix A), we can mention a few interesting properties
of this method as follows:

. We know from (12) that for P 2 P; F1ðP Þ ¼ F0ðP Þ �
�, where � ¼ trðL2

GÞ þ trðL2
HÞ is a constant indepen-

dent of P . As a result, it holds for all � 2 ½0; 1� that,
for P 2 P:

F�ðP Þ ¼ F0ðP Þ � ��:

This shows that if for some � the global minimum of
F�ðP Þ over D lies in P, then this minimum is also the
global minimum of F0ðP Þ over P, and therefore, the
optimal solution of the initial problem. Hence, if, for
example, the global minimum of F� is found on P by
the PATH algorithm (for instance, if F� is still
convex), then the PATH algorithm leads to the
global optimum of F1. This situation can be seen in
Fig. 3, where, for � ¼ 0:3, F� has its unique
minimum at the boundary of the domain.

. The suboptimality of the PATH algorithm comes
from the fact that, when � increases, the number of
local minima of F� may increase and the sequence of
local minima tracked by PATH may not be global
minima. However, we can expect the local minima
followed by the PATH algorithm to be interesting
approximations for the following reason. First,
observe that if P1 and P2 are two local minima of F�
for some � 2 ½0; 1�, then the restriction of F� to ðP1; P2Þ
being a quadratic function it has to be concave and P1

and P2 must be on the boundary of D. Now, let �1 be
the smallest � such that F� has several local minima
on D. If P1 denotes the local minima followed by the
PATH algorithm and P2 denotes the “new” local
minimum of F�1

, then necessarily the restriction of
F�1

to ðP1; P2Þmust be concave and have a vanishing
derivative in P2 (otherwise, by continuity of F� in �,
there would be a local minimum of F� near P2 for �
slightly smaller than �1). Consequently, we necessa-
rily have F�1

ðP1Þ < F�1
ðP2Þ. This situation is illu-

strated in Fig. 3, where, when the second local
minimum appears for � ¼ 0:75, it is worse than the
one tracked by the PATH algorithm. More generally,
when “new” local minima appear, they are strictly
worse than the one tracked by the PATH algorithm.
Of course, they may become better than the PATH
solution when � continues to increase.

Of course, in spite of these justifications, the PATH
algorithm only gives an approximation of the global
minimum in the general case. In Appendix A, we provide
two simple examples when the PATH algorithm, respec-
tively, succeeds and fails to find the global minimum of the
graph matching problem.

3.4 Numerical Continuation Method Interpretation

Our path following algorithm may be considered as a
particular case of numerical continuation methods (some-
times called path following methods) [34]. These allow to
estimate curves given in the following implicit form:

T ðuÞ ¼ 0; where T is a mapping T : RKþ1 ! RK: ð14Þ

In fact, our PATH algorithm corresponds to a particular
implementation of the so-called Generic Predictor Corrector
Approach [34] widely used in numerical continuation
methods.

In our case, we have a set of problems minP2D ð1 �
�ÞF0ðP Þ þ �F1ðP Þ parameterized by � 2 ½0; 1�. In other
words, for each �, we have to solve the following system
of Karush-Kuhn-Tucker (KKT) equations:

ð1� �ÞrPF0ðP Þ þ �rPF1ðP Þ þBT� þ �S ¼ 0;

BP� 12N ¼ 0;

PS ¼ 0;

where S is a set of active constraints, i.e., of pairs of indices
ði; jÞ that satisfy Pij ¼ 0, BP� 12N ¼ 0 codes the conditionsP

j Pij ¼ 1 8i and
P

i Pij ¼ 1 8j, � and �S are dual variables.
We have to solve this system for all possible sets of active
constraints S on the open set of matrices P that satisfy Pi;j >
0 for ði; jÞ 62 S, in order to define the set of stationary points
of the functions F�. Now if we let T ðP; �; �; �Þ denote the left-
hand part of the KKT equation system, then we have exactly
(14) with K ¼ N2 þ 2N þ#S. From the implicit function
theorem [35], we know that for each set of constraints S,

WS ¼ fðP; �; �S; �Þ : T ðP; �; �S; �Þ ¼ 0 and

T 0ðP; �; �S; �Þ has the maximal possible rankg

is a smooth one-dimensional curve or the empty set and can
be parameterized by �. In terms of the objective function
F�ðP Þ, the condition on T 0ðP; �; �S; �Þmay be interpreted as
a prohibition for the projection of F�ðP Þ on any feasible
direction to be a constant. Therefore, the whole set of
stationary points of F�ðP Þ when � is varying from 0 to 1
may be represented as a union Wð�Þ ¼ [SWSð�Þ, where
each WSð�Þ is homotopic to a one-dimensional segment.
The set Wð�Þ may have quite complicated form. Some of
WSð�Þ may intersect each other, in this case, we observe a
bifurcation point, some of WSð�Þmay connect each other, in
this case, we have a transformation point of one path into
another, some of WSð�Þ may appear only for � > 0 and/or
disappear before � reaches 1. At the beginning, the PATH
algorithm starts from W;ð0Þ, then it follows W;ð�Þ until the
border of D (or a bifurcation point). If such an event occurs
before � ¼ 1, then PATH moves to another segment of
solutions corresponding to different constraints S and
keeps moving along segments and sometimes jumping
between segments until � ¼ 1. As stated in the previous
section, one of the interesting properties of PATH algorithm
is the fact that if WS � ð�Þ appears only when � ¼ �1 and
WS � ð�1Þ is a local minimum, then the value of the objective
function F�1

in WS � ð�1Þ is greater than at the point traced
by the PATH algorithm.

3.5 Some Implementation Details

In this section, we provide a few details relevant for the
efficient implementation of the PATH algorithms.

3.5.1 Frank-Wolfe

Among the different optimization techniques for the
optimization of F�ðP Þ starting from the current local
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minimum tracked by the PATH algorithm, we use in our
experiments the Frank-Wolfe algorithm, which is particu-
larly suited to optimization over doubly stochastic matrices
[36]. The idea of the this algorithm is to sequentially
minimize linear approximations of F0ðP Þ. Each step
includes three operations as follows:

1. estimation of the gradient rF�ðPnÞ,
2. resolution of the linear program

Pn� ¼ arg min
P2D
hrF�ðPnÞ; P i;

and
3. line search: finding the minimum of F�ðP Þ on the

segment ½Pn P �n �.
An important property of this method is that the second
operation can be done efficiently by the Hungarian
algorithm, in OðN3Þ.

3.5.2 Efficient Gradient Computations

Another essential point is that we do not need to store
matrices of size N2 �N2 for the computation of rF1ðP Þ
because the tensor product in rF1ðP Þ ¼ �vecð�T Þ �
2ðLTH 	 LTGÞvecðP Þ can be expressed in terms of N �N
matrix multiplication:

rF1ðP Þ ¼ �vecð�T Þ � 2
�
LTH 	 LTG

�
vecðP Þ

¼ �vecð�T Þ � 2vec
�
LTGPLH

�
:

The same thing may be done for the gradient of the convex
component

rF0ðP Þ ¼ r½vecðP ÞTQvecðP Þ�;

where Q ¼
�
I 	AG �AT

H 	 I
�T �

I 	AG �AT
H 	 I

�
;

rF0ðP Þ ¼ 2QvecðP Þ
¼ 2vec

�
A2
GP �AT

GPA
T
H �AGPAH þ PA2

H

�
:

3.5.3 Initialization

The proposed algorithm can be accelerated by the applica-
tion of Newton algorithm as the first step of QCV
(minimization of F0ðP Þ). First, let us rewrite the QCV
problem as follows:

min
P2D

kAGP � PAHk2
F ,

min
P2D

vecðP ÞTQvecðP Þ ,

minP vecðP ÞTQvecðP Þ
such that

BvecðP Þ ¼ 12N;

vecðP Þ � 0N2 ;

8>>><
>>>:

ð15Þ

whereB is the matrix which codes the conditions
P

j Pi;j ¼ 1
and

P
i Pi;j ¼ 1. The Lagrangian has the following form:

LðP; �; �Þ ¼ vecðP ÞTQvecðP Þ þ �T ðBvecðP Þ � 12NÞ
þ �TvecðP Þ;

where � and � are Lagrange multipliers. Now we would
like to use Newton method for constrained optimization
[36] to solve (15). Let �a denote the set of variables
associated to the set of active constraints vecðP Þ ¼ 0 at the

current points, then the Newton step consists of solving the
following system of equations:

2Q BT Ia
B 0 0
Ia 0 0

2
4

3
5 vecðP Þ

�
�a

2
4

3
5 ¼ 0

1
0

2
4
3
5 N2 elements;

2N elements;
# of act: ineq: cons:

ð16Þ

More precisely, we have to solve (16) for P . The problem
is that, in general situations, this problem is computation-
ally demanding because it involves the inversion of
matrices of size OðN2Þ �OðN2Þ. In some particular cases,
however, the Newton step becomes feasible. Typically, if
none of the constraints vecðP Þ � 0 are active, then (16)
takes the following form:2

2Q BT

B 0

� �
vecðP Þ
�

� �
¼ 0

1

� �
N2 elements;
2N elements:

ð17Þ

The solution is then obtained as follows:

vecðP ÞKKT ¼
1

2
Q�1BT ðBQ�1BT Þ�112N: ð18Þ

Because of the particular form of matrices Q and B, (18)
may be computed very simply with the help of Kronecker
product properties in OðN3Þ instead of OðN6Þ. More
precisely, the first step is the calculation of M ¼ BQ�1BT ,
where Q ¼ ðI 	AG �AT

H 	 IÞ
2. Matrix Q�1 may be repre-

sented as follows:

Q�1 ¼ ðUH 	 UGÞðI 	 �G � �H 	 IÞ�2ðUH 	 UGÞT : ð19Þ

Therefore, the ði; jÞth element of M is the following product:

BiQ
�1BT

j ¼ vec
�
UT
H
fBi

TUG
�T Þð�G � �HÞ�2

� vec
�
UT
G
fBj

TUH
�
;

ð20Þ

where Bi is the ith row of B and fBi is Bi reshaped into an
N �N matrix. The second step is an inversion of the 2N �
2N matrix M and a sum over columns Ms ¼M�112N . The
last step is a multiplication of Q�1 by BTMs, which can be
done with the same tricks as the first step. The result is the
value of matrix PKKT . We then have two possible scenarios:

1. If PKKT 2 D, then we have found the solution of (15).
2. Otherwise, we take the point of intersection of the

line ðP0; PKKT Þ and the border @D as the next point
and continue with Frank-Wolfe algorithm. Unfortu-
nately, we can do the Newton step only once, then
some of P � 0 constraints become active and
efficient calculations are not feasible anymore. But
even in this case, the Newton step is generally very
useful because it decreases a lot the value of the
objective function.

3.5.4 d�-Adaptation Strategy

In practice, we found it useful to have the parameter d� in
the algorithm given in Fig. 2 vary between iterations.
Intuitively, d� should depend on the form of the objective
function as follows: If F�

� ðP Þ is smooth and if increasing the
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parameter � does not change a lot the form of the function,
then we can afford large steps, in contrast, we should do a
lot of small steps in the situation, where the objective
function is very sensitive to changes in the parameter �. The
adaptive scheme we propose is the following. First, we fix a
constant d�min ¼ 10�5, which represents the lower limit for
d�. When the PATH algorithm starts, d� is set to d�min. If we
see after an update �new ¼ �þ d� that jF�newðP �ð�ÞÞ �
F�ðP �ð�ÞÞj 
 ��, then we double d� and keep multiplying
d� by 2 as long as jF�newðP �ð�ÞÞ � F�ðP �ð�ÞÞj 
 ��. On the
contrary, if d� is too large in the sense that jF�newðP �ð�ÞÞ �
F�ðP �ð�ÞÞj > ��, then we divide d� by 2 until the criterion
jF�newðP �ð�ÞÞ � F�ðP �ð�ÞÞj 
 �� is met or d� ¼ d�min. Once
the update on d� is done, we run the optimization (Frank-
Wolfe) for the new value �þ d�. The idea behind this
simple adaptation schema is to choose d� which keeps
jF�newðP �ð�ÞÞ � F�ðP �ð�ÞÞj just below ��.

3.5.5 Stopping Criterion

The choice of the update criterion jF�newðP �ð�ÞÞ � F�ðP �ð�ÞÞj
is not unique. Here, we check whether the function value
has been changed a lot at the given point. But in fact, it may
be more interesting to trace the minimum of the objective
function. To compare the new minimum with the current
one, we need to check the distance between these minima
and the difference between function values. It means that
we use the following condition as the stopping criterion:

jF�newðP �ð�newÞÞ � F�ðP �ð�ÞÞj < �F� and

jjP �ð�newÞ � P �ð�Þjj < �P� :

Although this approach takes a little bit more computa-
tions (we need to run Frank-Wolfe on each update of d�), it
is quite efficient if we use the adaptation schema for d�.

To fix the values �F� and �P� , we use a parameter M which
defines a ratio between these parameters and the para-
meters of the stopping criterion used in the Frank-Wolfe
algorithm, �FFW (limit value of function decrement) and �PFW
(limit value of argument changing): �F� ¼M�FFW and
�P� ¼M�PFW . The parameter M represents an authorized
level of stopping criterion relaxation when we increment �.
In practice, it means that when we start to increment �, we
may move away from the local minima and the extent of
this move is defined by the parameter M. The larger the
value of M, the further we can move away and the larger d�
may be used. In other words, the parameter M controls the
width of the tube around the path of optimal solutions.

3.6 Algorithm Complexity

Here, we present the complexity of the algorithms
discussed in the paper as follows.

. Umeyama’s algorithm has three components: matrix
multiplication, calculation of eigenvectors, and
application of the Hungarian algorithm for (4).
Complexity of each component is equal to OðN3Þ.
Thus, Umeyama’s algorithm has complexity OðN3Þ.

. LP approach (5) has complexity OðN7Þ (worst case)
because it may be rewritten as an linear optimization
problem with 3N2 variables [23].

In the PATH algorithm, there are three principal
parameters that have a big impact on the algorithm

complexity. These parameters are �FFW , �PFW , M, and N .
The first parameter �FW defines the precision of the Frank-
Wolfe algorithm, in some cases, its speed may be sublinear
[36]; however it should work much better when the
optimization polytope has a “smooth” border [36].

The influence of the ratio parameter M is more
complicated. In practice, in order to ensure that the
objective function takes values between 0 and 1, we usually
use the normalized version of the objective function:

FnormðP Þ ¼
kAGP � PAHk2

F

kAGk2
F þ kAHk2

F

:

In this case, if we use the simple stopping criterion based on

the value of the objective function, then the number of

iteration over � (number of Frank-Wolfe algorithm runs) is

at least equal to C
M�F

FW

, where C ¼ minP Fnorm �minD Fnorm.

The most important thing is how the algorithm complex-

ity depends on the graph size N . In general, the number of

iterations of the Frank-Wolfe algorithm scales as Oð �
�F
FW

Þ,
where � is the conditional number of the Hessian matrix

describing the objective function near a local minima [36]. It

means that in terms of numbers of iterations, the

parameter N is not crucial. N defines the dimensionality

of the minimization problem, while � may be close to zero

or one depending on the graph structures, not explicitly on

their size. On the other hand, N has a big influence on the

cost of one iteration. Indeed, in each iteration step, we need

to calculate the gradient and minimize a linear function

over the polytope of doubly stochastic matrices. The

gradient estimation and the minimization may be done in

OðN3Þ. In Section 4.2, we present the empirical results on

how algorithm complexity and optimization precision

depend on M (Fig. 7b) and N (Fig. 8).

3.7 Vertex Pairwise Similarities

If we match two labeled graphs, then we may increase the
performance of our method by using information on
pairwise similarities between their nodes. In fact, one method
of image matching uses only this type of information, namely
shape context matching [19]. To integrate the information on
vertex similarities, we use the approach proposed in (3), but
in our case, we use F�ðP Þ instead of F0ðP Þ

min
P

F�
� ðP Þ ¼ min

P
ð1� �ÞF�ðP Þ þ �trðCTP Þ: ð21Þ

The advantage of the last formulation is that F�
� ðP Þ is just

F�ðP Þ with an additional linear term. Therefore, we can use
the same algorithm for the minimization of F�

� ðP Þ as the
one we presented for the minimization of F�ðP Þ.

3.8 Matching Graphs of Different Sizes

Often, in practice, we have to match graphs of different sizes

NG and NH (suppose, for example, that NG > NH). In this

case, we have to match all vertices of graph H to a subset of

vertices of graph G. In the usual case when NG ¼ NH , the

error (1) corresponds to the number of mismatched edges
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(edges which exist in one graph and do not exist in the other

one). When we match graphs of different sizes, the situation is

a bit more complicated. Let V þG � VG denote the set of vertices

of graphG that are selected for matching to vertices of graph

H, let V �G ¼ VG n V þG denote all the rest. Therefore, all edges of

the graph G are divided into four parts EG ¼ EþþG [
Eþ�G [E�þG [E��G , where EþþG are edges between vertices

from V þG , E��G are edges between vertices from V �G , and Eþ�G
and Eþ�G are edges from V þG to V �G and from V �G to V þG ,

respectively. For undirected graphs, the setsEþ�G andEþ�G are

the same (but, for directed graphs, we do not consider, they

would be different). The edges from E��G , Eþ�G , and E�þG are

always mismatched and a question is whether we have to take

them into account in the objective function or not. According

to the answer, we have three types of matching error (four for

directed graphs) with interesting interpretations:

1. We count only the number of mismatched edges
between H and the chosen subgraph Gþ � G. It
corresponds to the case when the matrix P from (1)
is a matrix of size NG �NH and NG �NH rows of P
contain only zeros.

2. We count the number of mismatched edges between
H and the chosen subgraph Gþ � G. And we also
count all edges from E��G , Eþ�G , and E�þG . In this
case, P from (1) is a matrix of size NG �NG. And
we transform matrix AH into a matrix of size NG �
NG by adding NG �NH zero rows and zero
columns. It means that we add dummy isolated
vertices to the smallest graph and then match
graphs of the same size.

3. We count the number of mismatched edges between
H and chosen subgraph Gþ � G. And we also count
all edges from Eþ�G (or E�þG ). It means that we count
matching error between H and Gþ and we also count
the number of edges, which connect Gþ and G�. In
other words, we are looking for subgraph Gþ, which
is similar toH and maximally isolated in the graphG.

Each type of error may be useful according to the context

and interpretation, but a priori, it seems that the best choice

is the second one where we add dummy nodes to the

smallest graph. The main reason is the following. Suppose

that graph H is quite sparse and graph G has two candidate

subgraphs Gþs (also quite sparse) and Gþd (dense). The

upper bound for the matching error between H and Gþs is

#VH þ#VGþs , the lower bound for the matching error

between H and Gþd is #VGþ
d
�#VH . So, if #VH þ#VGþs <

#VGþ
d
�#VH , then we will always choose the graph Gþs

with the first strategy, even if it is not similar at all to the

graph H. The main explanation of this effect lies in the fact

that the algorithm tries to minimize the number of

mismatched edges, but not to maximize the number of

well-matched edges. In contrast, when we use dummy

nodes, we do not have this problem because if we take a

very sparse subgraph Gþ, it increases the number of edges

in G�(the common number of edges in Gþ and G� is

constant and equal to the number of edges in G), and

finally, it decreases the quality of matching.

4 SIMULATIONS

4.1 Synthetic Examples

In this section, we compare the proposed algorithm with
some classical methods on artificially generated graphs.
Our choice of random graph types is based on [37], where
the authors discuss different types of random graphs which
are the most frequently observed in various real-world
applications (World Wide Web, collaborations networks,
social networks, etc.). Each type of random graphs is
defined by the distribution function of node degree
Probðnode degree ¼ kÞ ¼ VDðkÞ. The vector of node degrees
of each graph is supposed to be an i.i.d sample from VDðkÞ.
In our experiments, we have used the following types of
random graphs.

The schema of graph generation is as follows:

1. generate a sample d ¼ ðd1; . . . ; dNÞ from VDðkÞ;
2. if

P
i di is odd, then go to step 1;

3. while
P

i di > 0

a. choose randomly two nonzero elements from d:
dn1 and dn2,

b. add edge ðn1; n2Þ to the graph,
c. dn1  dn1 � 1 dn2  dn2 � 1.

If we are interested in isomorphic graph matching, then we
compare just the initial graph and its randomly permuted
copy. To test the matching of nonisomorphic graphs, we
add randomly �NE edges to the initial graph and its
permitted copy, where NE is the number of edges in the
original graph and � is the noise level.

4.2 Results

The first series of experiments are experiments on small size
graphs (N ¼ 8), here, we are interested in comparison of the
PATH algorithm (see Fig. 2), the QCV approach (8),
Umeyama spectral algorithm (4), the linear programming
approach (5), and exhaustive search which is feasible for the
small size graphs. The algorithms were tested on the three
types of random graphs (binomial, exponential, and
power). The results are presented in Fig. 4. The same
experiment was repeated for middle-sized graphs (N ¼ 20,
Fig. 5) and large graphs (N ¼ 100, Fig. 6).

In all cases, the PATH algorithm works much better
than all other approximate algorithms. There are some
important things to note here. First, the choice of norm in
(1) is not very important—results of QCV and LP are about
the same. Second, following the solution paths is very
useful compared to just minimizing the convex relaxation
and projecting the solution on the set of permutation
matrices (PATH algorithms works much better than QCV).
Another noteworthy observation is that the performance of
PATH is very close to the optimal solution when the latter
can be evaluated.

We note that sometimes the matching error decreases as
the noise level increases (e.g., in Figs. 6c and 5c), which can
be explained as follows. The matching error is upper
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bounded by the minimum of the total number of zeros in

the adjacency matrices AG and AH , so, in general, this upper

bound decreases when the edge density increases. When

the noise level increases, it makes graphs denser, and

consequently, the upper bound of matching error decreases.

The general behavior of graph matching algorithms as

functions of the graph density is presented in Fig. 7a. Here

again the matching error decreases when the graph density

becomes very large.
The parameter M (see Section 3.5.5) defines how

precisely the PATH algorithm tries to follow the path of

local minima. The larger M, the faster the PATH algorithm.

At the extreme, when M is close to 1/�FW , we jump directly

from the convex function (� ¼ 0) to the concave one (� ¼ 1).

Fig. 7b shows in more detail how algorithm speed and

precision depend on M.

Another important aspect to compare the different

algorithms is their runtime complexity as a function of N .

Fig. 8 shows the time needed to obtain the matching between

two graphs as a function of the number of vertices N (for N

between 10 and 100) for the different methods. These curves

are coherent with theoretical values of algorithm complex-

ities summarized in Section 3.6. In particular, we observe

that Umeyama’s algorithm is the fastest method, but that

QCV and PATH have the same complexity in N . The LP

method is competitive with QCV and PATH for small

graphs, but has a worse complexity in N .

5 QAP BENCHMARK LIBRARY

The problem of graph matching may be considered as a

particular case of the QAP. The minimization of the loss
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Fig. 4. Matching error (mean value over sample of size 100) as a function of noise. Graph size N ¼ 8. U—Umeyama’s algorithm, LP—linear

programming algorithm, QCV—convex optimization, PATH—path minimization algorithm, OPT—an exhaustive search (the global minimum). The

range of error bars is the standard deviation of matching errors. (a) Bin, (b) exp, and (c) pow.

Fig. 5. Matching error (mean value over sample of size 100) as a function of noise. Graph size N ¼ 20. U—Umeyama’s algorithm, LP—linear

programming algorithm, QCV—convex optimization, PATH—path minimization algorithm. (a) Bin, (b) exp, and (c) pow.

Fig. 6. Matching error (mean value over sample of size 100) as a function of noise. Graph size N ¼ 100. U—Umeyama’s algorithm, QCV—convex

optimization, PATH—path minimization algorithm. (a) Bin, (b) exp, and (c) pow.



function (1) is equivalent to the maximization of the

following function:

max
P

tr
�
PTAT

GPAH

�
:

Therefore, it is interesting to compare our method with

other approximate methods proposed for QAP. Cremers

et al. [18] proposed the QPB algorithm for that purpose

and tested it on matrices from the QAP benchmark library

[38], QPB results were compared to the results of

graduated assignment algorithm GRAD [17] and Umeya-

ma’s algorithm. Results of PATH application to the same

matrices are presented in Table 1, scores for QPB and

graduated assignment algorithm are taken directly from

the publication [18]. We observe that on 14 out of

16 benchmarks, PATH is the best optimization method

among the methods tested.

6 IMAGE PROCESSING

In this section, we present two applications in image

processing. The first one (Section 6.1) illustrates how taking

into account information on graph structure may increase

image alignment quality. The second one (Section 6.2) shows

that the structure of contour graphs may be very important

in classification tasks. In both examples, we compare the

performance of our method with the shape context approach

[19], a state-of-the-art method for image matching.

6.1 Alignment of Vessel Images

The first example is dedicated to the problem of image

alignment. We consider two photos of vessels in human

eyes. The original photos and images of extracted vessel

contours (obtained from the method of [39]) are presented

in Fig. 9. To align the vessel images, the shape context

algorithm uses the context radial histograms of contour

points (see [19]). In other words, according to the shape

context algorithm, one aligns points that have similar
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Fig. 7. (a) Algorithm performance as a function of graph density. (b) Precision and speed of the PATH algorithm as a function of M, the relaxation

constant used in the PATH algorithm (see Section 3.5.5). In both cases, graph size N ¼ 100, noise level � ¼ 0:3, and sample size is equal to 30.

Error bars represent standard deviation of the matching error (not averaged).

Fig. 8. Timing of U, LP, QCV, and PATH algorithms as a function of graph size, for the different random graph models. LP slope � 6:7, U, QCV, and

PATH slope � 3:4. (a) Bin, (b) exp, and (c) pow.

TABLE 1
Experiment Results for QAPLIB Benchmark Data Sets



context histograms. The PATH algorithm uses also in-

formation about the graph structure. When we use the

PATH algorithm, we have to tune the parameter � (21), we

tested several possible values and took the one which

produced the best result. To construct graph, we use all

points of vessel contours as graph nodes and connect all

nodes within a circle of radius r (in our case, we use r ¼ 50).

Finally, to each edge ði; jÞ, we associate the weight

wi;j ¼ expð�jxi � yjjÞ.

A graph matching algorithm produces an alignment of

image contours, then to align two images, we have to expand

this alignment to the rest of the image. For this purpose, we

use a smooth spline-based transformation [40]. In other

words, we estimate parameters of the spline transformation

from the known alignment of contour points and then apply

this transformation to the whole image. Results of image

matching based on shape context algorithm and PATH

algorithm are presented in Fig. 10, where black lines
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Fig. 9. (a) Eye photos and (b) vessel contour extraction.

Fig. 10. Comparison of (a) alignment based on the shape context and (b) PATH optimization algorithm. For each algorithm, we present two

alignments: image “1” on image “2” and the inverse. Each alignment is a spline-based transformation (see text).



designate connections between associated points. We ob-
serve that the context shape method creates many unwanted
matching, while PATH produces a matching that visually
corresponds to a correct alignment of the structure of vessels.
The main reason why graph matching works better than
shape context matching is the fact that shape context does not
take into account the relational positions of matched points
and may lead to totally incoherent graph structures. In
contrast, graph matching tries to match pairs of the nearest
points in one image with pairs of the nearest points in
another one.

Among graph matching methods, different results are
obtained with different optimization algorithms. Table 2
shows the matching errors produced by different algorithms
on this vessel alignment problem. The PATH algorithm has
the smallest matching error, with the alignment shown in
Fig. 10. QCV comes next, with an alignment that is also
visually correct. On the other hand, the Umeyama algorithm
has a much larger matching error and visually fails to find a
correct alignment, similar to the shape context method.

6.2 Recognition of Handwritten Chinese Characters

Another example that we consider in this paper is the
problem of Chinese character recognition from the ETL9B
data set [41]. The main idea is to use a score of optimal
matching as a similarity measure between two images of
characters. This similarity measure can be used then in
machine learning algorithms, K-nearest neighbors (KNNs),
for instance, for character classification. Here, we compare
the performance of four methods: linear support vector
machine (SVM), SVM with gaussian kernel, KNN based on
score of shape context matching, and KNN based on scores
from graph matching which combines structural and shape
context information. As a score, we use just the value of the
objective function (21) at the (locally) optimal point. We

have selected three Chinese characters known to be difficult
to distinguish by automatic methods. Examples of these
characters as well as extracted graphs (obtained by thinning
and uniformly subsampling the images) are presented in
Fig. 11. For SVM-based algorithms, we use directly the
values of image pixels (so each image is represented by a
binary vector), in graph matching algorithm, we use binary
adjacency matrices of extracted graphs and shape context
matrices (see [19]).

Our data set consists of 50 examples (images) of each
class. Each image is represented by 63� 64 binary matrix.
To compare different methods, we use the cross validation
error (fivefold). The dependency of classification error from
two algorithm parameters (�—coefficient of linear combi-
nation (21) and k—number of the nearest neighbors used in
KNN) is shown in Fig. 12.

Two extreme choices � ¼ 1 and � ¼ 0 correspond,
respectively, to pure shape context matching, i.e., when
only node labels information is used, and pure unlabeled
graph matching. It is worth observing here that KNN based
just on the score of unlabeled graph matching does not work
very well, the classification error being about 60 percent. An
explanation of this phenomenon is the fact that learning
patterns have very unstable graph structure within one
class. The pure shape context method has a classification
error of about 39 percent. The combination of shape context
and graph structure information allows to decrease the
classification error down to 25 percent. Beside the PATH
algorithm, we tested also the QCV and Umeyama algo-
rithms, the Umeyama algorithm almost does not decrease
the classification error. The QCV algorithm works better
than the Umeyama algorithm, but still worse than the PATH
algorithm. Complete results can be found in Table 3.

7 CONCLUSION

We have presented the PATH algorithm, a new technique
for graph matching based on convex-concave relaxations of
the initial integer programming problem. PATH allows to
integrate the alignment of graph structural elements with
the matching of vertices with similar labels. Its results are
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TABLE 2
Alignment of Vessel Images, Algorithm Performance

Fig. 11. Chinese characters from the ETL9B data set.



competitive with state-of-the-art methods in several graph
matching and QAP benchmark experiments. Moreover,
PATH has a theoretical and empirical complexity compe-
titive with the fastest available graph matching algorithms.

Two points can be mentioned as interesting directions
for further research. First, the quality of the convex-concave
approximation is defined by the choice of convex and
concave relaxation functions. Better performances may be
achieved by more appropriate choices of these functions.
Second, another interesting point concerns the construction
of a good concave relaxation for the problem of directed
graph matching, i.e., for asymmetric adjacency matrix. Such
generalizations would be interesting also as possible
polynomial-time approximate solutions for the general
QAP problem.

APPENDIX A

A TOY EXAMPLE

The PATH algorithm does not generally find the global
optimum of the NP-complete optimization problem. In this
section, we illustrate with two examples how the set of
local optima tracked by PATH may or may not lead to the
global optimum.

More precisely, we consider two simple graphs with the
following adjacency matrices:

G ¼
0 1 1
1 0 0
1 0 0

2
4

3
5 and H ¼

0 1 0
1 0 0
0 0 0

2
4

3
5:

Let C denote the cost matrix of vertex association

C ¼
0:1691 0:0364 1:0509
0:6288 0:5879 0:8231
0:8826 0:5483 0:6100

2
4

3
5:

Let us assume that we have fixed the trade-off � ¼ 0:5 and
our objective is then to find the global minimum of the
following function:

F0ðP Þ ¼ 0:5kGP � PHk2
F þ 0:5trðC0P Þ; P 2 P: ð22Þ

As explained before, the main idea underlying the PATH
algorithm is to try to follow the path of global minima of
F�
� ðP Þ (21). This may be possible if all global minima P ��

form a continuous path, which is not true in general. In the
case of small graphs, we can find the exact global minimum
of F�

� ðP Þ for all �. The trace of global minima as functions of
� is presented in Fig. 13a (i.e., we plot the values of the nine
parameters of the doubly stochastic matrix, which are, as
expected, all equal to zero or one when � ¼ 1). When � is
near 0.2, there is a jump of global minimum from one face to
another. However, if we change the linear term C to

C0 ¼
0:4376 0:3827 0:1798
0:3979 0:3520 0:2500
0:1645 0:2653 0:5702

2
4

3
5;

then the trace becomes smooth (see Fig. 13b) and the PATH
algorithm then finds the globally optimum point. Char-
acterizing cases where the path is indeed smooth is the
subject of ongoing research.

APPENDIX B

KRONECKER PRODUCT

The Kronecker product of two matrices A	B is defined
as follows:

A	B ¼
Ba11 � � � Ba1n

..

. . .
. ..

.

Bam1 � � � Bamn

2
64

3
75:

Two important properties of Kronecker product that we
use in this paper are:
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Fig. 12. (a) Classification error as a function of �. (b) Classification error as a function of k. Classification error is estimated as cross-validation error

(fivefold, 50 repetitions), the range of the error bars is the standard deviation of test error over onefold (not averaged over folds and repetition).

TABLE 3
Classification of Chinese Characters

(CV ; STD)—Mean and standard deviation of test error over cross-
validation runs (fivefold, 50 repetitions).



ðAT 	BÞvecðXÞ ¼ vecðBXAÞ
and trðXTAXBT Þ ¼ vecðXÞT ðB	AÞvecðXÞ:
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