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4.1 Motivation

We have explored a variety of optimization methods in class (e.g., Newton’s method, Gradi-
ent descent), which apply to differentiable functions. However, many functions that arise in
practice are convex but non-differentiable at certain places, then it seems rather natural to
replace gradients by subgradients.

In a lot of applications, the exact subgradient could be difficult to calculate because of
errors in measurements, uncertainty in the data or because of errors in Monte Carlo eval-
uation of a function defined as an expected value. However, it is usually possible to get a
noisy (unbiased) estimate to the subgradient. In this case, we can use the noisy estimate
as the true value in the subgradient method, which is called the stochastic subgradient method.

Our main objective is to minimize a function f defined on R
d given only unbiased esti-

mates f ′
n(θn) of it’s gradient f ′(θn) at certain point θn ∈ R

d.

4.2 Stochastic approximation and machine learning

The minimization of an objective function which is only available through unbiased estimates
of the function values or its gradients is a key methodological problem in many disciplines.
Its analysis has been attacked mainly in two communities : stochastic approximation and
machine learning.

4.2.1 Stochastic approximation

Stochastic approximation methods are a family of iterative stochastic algorithms that at-
tempt to find zeroes or extremas of functions which cannot be computed directly, but only
estimated via noisy observations. The structure of the algorithm for broader applicability
beyond convex optimization is to generate iterates of the form :

θn = θn−1 − γnhn(θn−1) with E[hn(θn−1)|θn−1] = h(θn−1).

For more information on the subject, see [6] and lecture 3.

4.2.2 Machine learning

We make the following assumptions:

• H is a d-dimensional Euclidean space, with d ≥ 1.
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• The observations (xn, yn) ∈ H × {−1, 1} are independent and identically distributed.

• We considere fn(θ) = ℓ(yn, θ
Tφ(xn)) loss for a single pair of observations.

• Convex optimization problems coming from supervised machine learning are typically
of the form f(θ) = Efn(θ) = El(yn, θ

Tφ(xn)), which is the generalization error.

• Expected gradient: f ′(θ) = Ef ′
n(θ) = E{ℓ′(yn, θTφ(xn))}.

4.3 Relationship to online learning

Some stochastic optimization methods can optimize any convex function f over a convex
domain given access only to unbiased estimates of f ′s gradients. This feature makes it
very useful for learning problems. Our goal is to minimize generalization error of θ f(θ) =
Ezℓ(θ, z), using the gradients of single i.i.d. observation.

The goal of a learning system consists of finding the minimum of a function f̂(θ) named
the expected risk function.

4.3.1 Batch learning

The expected risk function f̂(θ) cannot be minimized directly because the ground truth dis-
tribution is unknown. It is however possible to compute an approximation of f̂(θ) by simply
using a finite training set of independent observations z1, ..., zn.

• Given a finite set of observation: z1, ..., zn.

• Empirical risk: f̂(θ) = 1
n

n
∑

k=1

ℓ(θ, zk).

• θ̂ the minimizer of f̂(θ) over a certain class Θ.
• Generalization bound using uniform concentration results (see lecture 1).

4.3.2 Online learning

Online machine learning is a method of machine learning in which data becomes available in
a sequential order and is used to update our best predictor for future data at each step, as
opposed to batch learning techniques which generate the best predictor by learning on the
entire training data set at once.

• Update θ̂n after each new (potentially adversarial) observation zn.

• Cumulative loss: f̂(θ) = 1
n

n
∑

k=1

ℓ(θ̂k−1, zk).

• Online to batch through averaging [7].
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4.4 Convex stochastic approximation

4.4.1 Some key propreries of f and fn

Some key properties will be assumed for f and/or fn :
- Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous.
- f µ-strongly convex.

4.4.2 Some key algorithms

The main algorithms which have emerged (and which we will study) are stochastic gradient
descent (a.k.a. Robbins-Monro algorithm) for which the structure is to generate iterates of
the form:

θn = θn−1 − γnf
′
n(θn−1).

We consider well as a simple modification where iterates are averaged (a.k.a. Polyak-
Ruppert averaging):

θ̄n =
1

n

n−1
∑

k=0

θk.

For the classical learning rate sequence : γn = Cn−α, for α ∈ [0, 1] and C to be deter-
mined.

4.5 Stochastic subgradient “descent” method

We consider the unconstrained minimization of a function f that satisfy the following as-
sumptions:

• fn convex and B-Lipschitz-continuous on {‖θ‖2 ≤ D}.

• (fn) i.i.d. function such that Efn = f.

• θ∗ global optimum of f on C = {‖θ‖2 ≤ D}.

Here we need to be a bit careful if we want to analyze this scheme under the three as-
sumptions. Indeed we have a control on the size of the subgradients only in a ball of radiusD.
Furthermore we also know that the minimizer of the function lies in this ball. Thus it makes
sense to enforce that if we leave the ball, then we first project back the point to the ball
before taking another gradient step. This gives the (projected) subgradient “descent”. (note
that the method may occasionally go up).

The update of the iterate θ is as follows:

θn = ΠD

(

θn−1 −
2D

B
√
n
f ′
n(θn−1)

)

.

The following elementary result gives a rate of convergence for the subgradient method.
Theorem :
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Ef

(

1
n

n−1
∑

k=0

θk

)

− f(θ∗) ≤ 2DB√
n
.

Proof:

• Fn :information up to time n.
• ‖ f ′

n(θ ‖2≤ B and ‖ θ ‖2≤ D, unbiased gradients/function E(fn | Fn−1) = f .

By contractivity of the projection we get:

‖ θn − θ∗ ‖22≤‖ θn−1 − θ∗ − γnf
′
n(θn−1) ‖22 .

Then because ‖ f ′
n(θn−1) ‖2≤ B we have:

‖ θn − θ∗ ‖22≤‖ θn−1 − θ∗ ‖22 +B2γ2n − 2γn(θn−1 − θ∗)
Tf ′

n(θn−1).

E[ ‖ θn − θ∗ ‖22 |Fn−1] ≤‖ θn−1 − θ∗ ‖22 +B2γ2n − 2γn(θn−1 − θ∗)
Tf ′(θn−1).

From the subgradient proprety we have:

E[ ‖ θn − θ∗ ‖22 |Fn−1] ≤‖ θn−1 − θ∗ ‖22 +B2γ2n − 2γn[f(θn−1)− f(θ∗)].

E ‖ θn − θ∗ ‖22≤ E ‖ θn−1 − θ∗ ‖22 +B2γ2n − 2γn[Ef(θn−1)− f(θ∗)].

Leading to:

Ef(θn−1)− f(θ∗) ≤
B2γn
2

+
1

2γn
[E ‖ θn−1 − θ∗ ‖22 −E ‖ θn − θ∗ ‖22] (∗).

Starting from (∗) we have :
n
∑

u=1

[Ef(θu−1)− f(θ∗)] ≤
n
∑

u=1

B2γu
2

+
n
∑

u=1

1
2γu

[E ‖ θu−1 − θ∗ ‖22 −E ‖ θu − θ∗ ‖22].

≤
n
∑

u=1

B2γu
2

+ 4D2

2γn
≤ 2DB

√
n with γn = 2D

B
√
n
.

By using convexity we get the following result: Ef

(

1
n

n−1
∑

k=0

θk

)

− f(θ∗) ≤ 2DB√
n
.

Remarks:

- Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012).
- Running-time complexity: O(dn) after n iterations. Note the difference with the O(dn2)

complexity of minimizing the empirical risk with the subgradient method.

4.6 Stochastic subgradient method: Extension to online

learning

Assume different and arbitrary functions fn : R
d =⇒ R.

-Observations of f ′
n(θn−1) + ǫn.

-with E(ǫ|Fn−1) = 0 and ‖f ′
n(θn−1) + ǫn‖ ≤ B Almost surely.

The performance criterion : (normalized) regret is defined as follows:

4-4



Lecture 4 — March 24th 2016

1
n

n
∑

u=1

fi(θi−1)− inf
‖θ‖2≤D

1
n

n
∑

i=1

fi(θ).

Remarks

- The regret is ofter not normalized.
- May not be non-negative (typically is).

Theorem :

The iteration of the algorithm is given as

θ = ΠD(θn−1 − γn(f
′
n(θn−1) + ǫn)).

for which the learning rate sequence is γn = 2D
B
√
n
.

Proof : (essentially the same as for stochastic approximation)

• Fn : information up to time n.
• θ an arbitrary point such that ‖ θ ‖≤ D.
• ‖ f ′

n(θn−1) + ǫn ‖2≤ B and ‖ θ ‖2≤ D, unbiased gradients E(ǫn|Fn−1) = 0.

By contractivity of projections we have:

‖ θn − θ ‖22≤‖ θn−1 − θ − γn(f
′
n(θn−1) + ǫn) ‖22 .

Since ‖ f ′
n(θn−1) + ǫn ‖2 then :

‖ θn − θ ‖22≤‖ θn−1 − θ ‖22 +B2γ2n − 2γn(θn−1 − θ)T (f ′
n(θn−1) + ǫn)

.
E[‖ θn − θ ‖22 |Fn−1] ≤‖ θn−1 − θ ‖22 +B2γ2n − 2γn(θn−1 − θ)Tf ′

n(θn−1).

From subgradient proprety we have:

E[‖ θn − θ ‖22 |Fn−1] ≤‖ θn−1 − θ ‖22 +B2γ2n − 2γn[fn(θn−1)− fn(θ)]

E ‖ θn − θ ‖22≤ E ‖ θn−1 − θ ‖22 +B2γ2n − 2γn[Efn(θn−1)− fn(θ)].

Leading to:

Efn(θn−1)− fn(θ) ≤
B2γn
2

+
1

2γn
[E ‖ θn−1 − θ ‖22 −E ‖ θn − θ ‖22] (∗).

Starting from (∗), we have :

n
∑

u=1

[Efu(θu−1)− fu(θ)] ≤
n
∑

u=1

B2γu
2

+

n
∑

u=1

1

2γu
[E ‖ θu−1 − θ ‖22 −E ‖ θu − θ ‖22].
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Finally, for any θ such that ‖ θ ‖≤ D :

1

n

n
∑

k=1

Efk(θk−1)−
1

n

n
∑

k=1

fk(θ) ≤
2DB√
n
.

Online to batch conversion: assuming convexity, we can get back the results from stochas-
tic approximation by using Jensen’s inequality.

4.7 Stochastic subgradient descent -strong convexity 1-

Now we will talk about another property of convex functions that can significantly speed-up
the convergence : strong convexity. We say that f : Rn → R is α-strongly convex if it
satisfies:

f(x)− f(y) ≤ ▽f(x)T (x− y)− α

2
‖ x− y ‖2 .

Of course this definition does not require differentiability of the function f .
In this section we investigate the setting where f is strongly convex but potentially non-

smooth. As we have already seen in a previous section, in the case of non-smooth functions
we have to project back on the set where we control the norm of the gradients.

We consider the unconstrained minimization of a function f that satisfies the following
requirements:

• fn convex and B-Lipschitz-continuous.

• (fn) i.i.d function such that Efn = f.

• fµ-srongly convex on {‖θ‖2 ≤ D}. Note that we do not assume fn to be strongly-
convex.

• θ∗ global optimum of f over {‖θ‖2 ≤ D}.

Theorem:

We consider the projected subgradient descent algorithm with time-varying step size,
that is:

θn = ΠD

(

θn−1 −
2

µ(n+ 1)
f ′
n(θn−1)

)

,

with the bound

Ef

(

2

n(n + 1)

n
∑

k=1

kθk−1

)

− f(θ∗) ≤
2B2

µ(n+ 1)
.
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Proof:

As in the previous cases, by contractivity of projection we have:

‖ θn − θ∗ ‖22≤‖ θn−1 − θ∗ − γnf
′
n(θt−1) ‖22 .

Because ‖ f ′
n(θt−1) ‖2≤ B we have:

‖ θn − θ∗ ‖22≤‖ θn−1 − θ∗ ‖22‖ +B2γ2n − 2γn(θn−1 − θ∗)
Tf ′

n(θt−1),

E(.|Fn−1) ≤‖ θn−1 − θ∗ ‖22‖ +[f(θn−1 − f(θ∗)) +
µ

2
‖ θn−1 − θ∗ ‖22].

Therefore this leads to :

Ef(θn−1)− f(θ∗) ≤ B2γn
2

+ 1
2
[ 1
γn

− µ] ‖ θn−1 − θ∗ ‖22 − 1
2γn

‖ θn − θ∗ ‖22 .

≤ B2

µ(n+1)
+ µ

2
[n−1

2
] ‖ θn−1 − θ∗ ‖22 −µ(n+1)

4
‖ θn − θ∗ ‖22 .

From Ef(θn−1)− f(θ∗) ≤ B2

µ(n+1)
+ µ

2
[n−1

2
]E ‖ θn−1 − θ∗ ‖22 −µ(n+1)

4
E ‖ θn − θ∗ ‖22 .

n
∑

u=1

u[Ef(θu−1)− f(θ∗)] ≤
n
∑

u=1

B2u

µ(u+ 1)
+
1

4

n
∑

u=1

u(u− 1)E ‖ θu−1 − θ∗ ‖22 −u(u+ 1)E ‖ θu − θ∗ ‖.

≤
n
∑

u=1

B2u
µ(u+1

+ 1
4

n
∑

u=1

u(u− 1)E ‖ θn − θ∗ ‖22 ≤ B2n
µ
.

• Using convexity :

Ef

(

2
n(n+1)

n
∑

u=1

uθu−1

)

− g(θ∗) ≤ 2B2

n+1
.

Remarks:

- ”Same ” proof than deterministic case (Lacoste-Julien et al., 2012)
- This the minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012).

4.8 Stochasic subgradient descent -strong convexity 2-

• Assumptions: we consider an unconstrained regularized problem.

- fn convex and B-Lipschitz-continuous.
- (fn) i.i.d. dunctions such that Efn = f.
- θ∗ global optimum of g = f + µ

2
‖ . ‖22 .

- No compactness assumption - no projections (note the impossibility of having a strongly
convex Lipschitz-continuous function on R

d)
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• Algorithm:

θn = θn−1 − 2
µ(n+1)

g′n(θn−1) = θn−1 − 2
µ(n+1)

[f ′
n(θn−1) + µθn−1]

• Bound:

Eg

(

2

n(n + 1)

n
∑

k=1

kθk−1

)

− g(θ∗) ≤
2B2

µ(n+ 1)
.

• Minimax convergence rate.

4.9 Strong convexity -Proof with log n factor-

Theorem:

Under the assumptions ‖ f ′
n(θ) ‖2≤ B, ‖ θ ‖2≤ D and µ − strong convexity of f, the

iteration of the algorithm is given as

θn = ΠD(θn−1 − γnf
′
n(θt−1) with γn =

1

µn

Proof:

by contractivity of projections we get:

‖ θn − θ∗ ‖22≤‖ θn−1 − θ∗ − γnf
′
n(θt−1) ‖22

Since ‖ f ′
n(θt−1) ‖2≤ B then:

‖ θn − θ∗ ‖22≤‖ θn−1 − θ∗ ‖22 +B2γ2n − 2γn(θn−1 − θ∗)
Tf ′

n(θt−1)

Using the proprety of subgradient and strong convexity:

E(.|Fn−1) ≤‖ θn−1 − θ∗ ‖22 +B2γ2n − 2γ[f(θn−1)− f(θ∗) +
µ

2
‖ θn−1 − θ∗ ‖22]

Leading to :

Ef(θn−1)− f(θ∗) ≤
B2γn
2

+
1

2
[
1

γn
− µ] ‖ θn−1 − θ∗ ‖22 −

1

2γ2
‖ θn − θ∗ ‖22

≤ B2γn
2µn

+ µ
2
[n− 1] ‖ θn−1 − θ∗ ‖22 −nµ

2
‖ θn − θ∗ ‖22 (⋆).

From (⋆):

n
∑

u=1

[Ef(θu−1)− f(θ∗)] ≤
n
∑

u=1

B2

2nµ
+

1

2

n
∑

u=1

[(u− 1)E ‖ θn − θ∗ ‖22 −uE ‖ θu − θ∗ ‖22]
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≤ B2logn
2µ

+ 1
2
[0− nE ‖ θn − θ∗ ‖22] ≤ B2 logn

2µ
.

Using convexity : Ef

(

1
n

n
∑

u=1

θu−1

)

− f(θ∗ ≤ B2 logn
2nµ

.

4.9.1 Relationship to online learning

Uniform averaging allows to get a bound for online learning.
For all θ :

1

n

n
∑

i=1

fi(θi−1)−
1

n

n
∑

i=1

fi(θ) ≤
B2 logn

2nµ

Note that the log n term is not optimal; see Hazan and Kale (2012).

4.10 Beyond convergence in expectation

◮ Typical result : Ef

(

1
n

n−1
∑

k=0

θk

)

− f(θ∗) ≤ 2DB√
n
.

-Obtained with simple conditioning arguments.

◮ High probability bounds

-Markov inequality: P

(

f

(

1
n

n−1
∑

k=0

θk

)

− f(θ∗ ≥ ǫ

)

≤ 2DB√
nǫ
.

-Concentration inequality (Nemirovski et al., 2009; Nesterov, 2009)

P

(

f

(

1
n

n−1
∑

k=0

θk

)

− f(θ∗) ≥ 2DB√
n
(2 + 4t)

)

≤ 2 exp(−t2).

◮ See also Bach (2013) for logistic regression.

4.10.1 Stochastic subgradient method - high probability

We note that for a deterministic problem with extremely large scale ,using randomness may
makes it easier or tractable. Then it will be crucial to derive some sort of probabilistic
control of the algorithm and obtain some sort of “with high probability” convergence results.

Consider stochastic subgradient method with iteration:

θn = ΠD(θn−1 − γnf
′
n(θn−1))

where γn = 2D
B
√
n
, let Fn be the information from time 1 up to time n , ‖f ′

n(θ)‖2 6 B and

‖θ‖2 6 D, the unbiased gradients/functions are given as:

E(fn|Fn−1) = f
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then we can have the following inequalities:

‖θn − θ∗‖22 6 ‖θn−1 − θ∗ − γnf
′
n(θn−1)‖22 by contractivity of projections

6 ‖θn−1 − θ∗‖22 +B2γ2n − 2γn(θn−1 − θ∗)
⊤f ′

n(θn−1) because ‖f ′
n(θn−1)‖2 6 B

and

E
[

‖θn − θ∗‖22|Fn−1

]

6 ‖θn−1 − θ∗‖22 +B2γ2n − 2γn(θn−1 − θ∗)
⊤f ′(θn−1)

6 ‖θn−1 − θ∗‖22 +B2γ2n − 2γn
[

f(θn−1)− f(θ∗)
]

(subgradient property)

Set Zn = −2γn(θn−1 − θ∗)
⊤[f ′

n(θn−1)− f ′(θn−1)], then we can have that:

‖θn − θ∗‖22 6 ‖θn−1 − θ∗‖22 +B2γ2n − 2γn
[

f(θn−1)− f(θ∗)
]

+ Zn

f(θn−1)− f(θ∗) 6
1

2γn

[

‖θn−1 − θ∗‖22 − ‖θn − θ∗‖22
]

+
B2γn
2

+
Zn
2γn

it follows the result that:

n
∑

u=1

[

f(θu−1)− f(θ∗)
]

6

n
∑

u=1

B2γu
2

+
n
∑

u=1

1

2γu

[

‖θu−1 − θ∗‖22 − ‖θu − θ∗‖22
]

+
n
∑

u=1

Zu
2γu

6

n
∑

u=1

B2γu
2

+
4D2

2γn
+

n
∑

u=1

Zu
2γu

6
2DB√
n

+
n
∑

u=1

Zu
2γu

with γn =
2D

B
√
n

The inequality above involves the analysis of the properties of

n
∑

u=1

Zu
2γu

,

where E(Zn|Fn−1) = 0 and |Zn| 6 8γnDB.
With the conditions of Zn above, we also have E( Zn

2γn
|Fn−1) = 0 and | Zn

2γn
| 6 4DB, if we

take Xn =

n
∑

u=1

Zu
2γu

, then we have {Xk : k = 0, 1, 2, ...} is a martingale and |Xk − Xk−1| ≤

4DB, which allows also to use the Azuma–Hoeffding inequality who gives a concentration
result for the values of martingales that have bounded differences which is :

P

(

n
∑

u=1

Zu
2γu

> t
√
n · 4DB

)

6 exp
(

− t2

2

)

.

4.11 Beyond stochastic gradient method

In machine learning, online algorithms operate by repetitively drawing random examples,
one at a time, and adjusting the learning variables using simple calculations that are usually
based on the single example only. The low computational complexity (per iteration) of online
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algorithms is often associated with their slow convergence and low accuracy in solving the
underlying optimization problems. But the combined low complexity and low accuracy, to-
gether with other tradeoffs in statistical learning theory, still make online algorithms favorite
choices for solving large-scale learning problems. Nevertheless, traditional online algorithms,
such as stochastic gradient descent, have limited capability of exploiting problem structure
in solving regularized learning problems.

Some studies on the new class of online algorithms were developed by adding a proximal
step, the regularized stochastic learning problems considered are of the following form:

min
θ∈Rd

f(θ) + Ω(θ) = Efn(θ) + Ω(θ)

and remplace the recursion θn = θn−1 − γnf
′
n(θn) by

θn = min
θ∈Rd

∥

∥θ − θn−1 + γnf
′
n(θn)

∥

∥

2

2
+ CΩ(θ)

Related work can be find by Xiao (2010); Hu et al. (2009). In addition, the simulation
results by Ghadimi and Lan (2013) showing that the proposed algorithms have behavior
similar to that of accelerated stochastic subgradient method and the primal-dual averaging
method of Nesterov.

The related frameworks can be classed in two groups:

• Regularized dual averaging (Nesterov, 2009; Xiao, 2010) .

• Mirror descent (Nemirovski et al., 2009; Lan et al.,2012).

The following section will focus on The Mirror Descent Algorithm.

4.12 Mirror Descent

The key advantage of the subgradient algorithm is its simplicity, provided that projections
can be easily computed, which is the case when the constraints set is described by simple
sets, e.g., hyperplanes, balls, bound constraints, etc. Its main drawback is that it has a very
slow rate of convergence.

The idea of the Mirror Descent algorithm is based on dealing with the structure of
the Euclidean norm rather than with local behavior of the objective function in problem.
Roughly speaking, the method originated from functional analytic arguments arising within
the infinite dimensional setting, between primal and dual spaces. So we can see Mirror
Descent as projected (stochastic) gradient descent adapted to Euclidean geometry which
have the bound:

maxθ,θ′∈Θ ‖θ − θ′‖2 ·maxθ∈Θ ‖f ′(θ)‖2√
n

.

If we consider other norms instead of Euclidean norm in our model, the bound will have
some changes, for example: natural bound on maxθ∈Θ ‖f ′(θ)‖∞ leads to

√
d factor, and

avoidable with mirror descent, which leads to factor
√
log d. Some related work can be also

find in Nemirovski et al. (2009); Lan et al. (2012).
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4.12.1 Mirror descent set-up

For better understanding of Mirror descent, we should be familiar with the following notions:

• Objective function f is defined on domain C ;

• Arbitrary norm ‖ · ‖ with dual norm is defined as ‖s‖∗ = sup‖θ‖61 θ
⊤s;

• f is a B-Lipschitz-continuous function w.r.t. ‖ · ‖ such that: ‖f ′(θ)‖∗ 6 B;

• Given a strictly-convex function Φ, define the Bregman divergence

DΦ(θ, η) = Φ(θ)− Φ(η)− Φ′(η)⊤(θ − η)

Φ(θ)

η

Φ(η)+Φ'(η).(θ−η)

DΦ (θ,η)

θ

4.12.2 Mirror map

Consider a strongly-convex function Φ : CΦ → R such that

(a) the gradient Φ′ takes all possible values in R
d which leads to a bijection from CΦ to R

d;

(b) the gradient Φ′ diverges on the boundary of CΦ;

(c) CΦ contains the closure of the domain C of the optimization problem;

Then Bregman projection on C uniquely defined on CΦ:

ΠΦ
C (θ) = arg min

η∈CΦ∩C
DΦ(η, θ)

= arg min
η∈CΦ∩C

Φ(η)− Φ(θ)− Φ′(θ)⊤(η − θ)

= arg min
η∈CΦ∩C

Φ(η)− Φ′(θ)⊤η

4-12
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4.12.3 Mirror descent

The iteration for Mirror descent is described as:

θt = ΠΦ
C
(

Φ′−1
[

Φ′(θt−1)− γf ′(θt−1)
])

θt−1

θt

CCΦ
R

d

Φ′(θt−1)

Φ′(θt−1)− γf ′(θt−1)

(Φ′)−1[Φ′(θt−1)− γf ′(θt−1)]

Φ′

(Φ′)−1

ΠΦ
C

Convergence

Assume (a) D2 = supθ∈C Φ(θ)− infθ∈C Φ(θ), (b) Φ is α-strongly convex with respect to ‖ · ‖
and (c) f is B-Lipschitz-continuous wr.t. ‖ · ‖. Then with γ = D

B

√

2α
t
, we have:

f

(

1

t

t
∑

u=1

θu

)

6 DB

√

2

αt

Remark:

• See detailed proof in Bubeck (2015, p. 299).

• “Same” as subgradient method but allows stochastic gradients.

Proof (1)Define Φ′(ηt) = Φ′(θt−1)− γf ′(θt−1). We have

f(θt−1)− f(θ) 6 f ′(θt−1)
⊤(θt−1 − θ) =

1

γ
(Φ′(θt−1)− Φ′(ηt))

⊤(θt−1 − θ)

=
1

γ

[

DΦ(θ, θt−1) +DΦ(θt−1, ηt)−DΦ(θ, ηt)
]

(2) By optimality of θt: (Φ
′(θt)−Φ′(ηt))

⊤(θt− θ) 6 0 which is equivalent to: DΦ(θ, ηt) >
DΦ(θ, θt) +DΦ(θt, ηt). Thus

DΦ(θt−1, ηt)−DΦ(θt, ηt) = Φ(θt−1)− Φ(θt)− Φ′(ηt)
⊤(θt−1 − θt)

6 (Φ′(θt−1)− Φ′(ηt))
⊤(θt−1 − θt)−

α

2
‖θt−1 − θt‖2

= γf ′(θt−1)
⊤(θt−1 − θt)−

α

2
‖θt−1 − θt‖2

6 γB‖θt−1 − θt‖ −
α

2
‖θt−1 − θt‖2 6

(γB)2

2α
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(3) Thus
t
∑

u=1

[

f(θt−1)− f(θ)
]

6
DΦ(θ, θ0)

γ
+ γ

L2t

2α
.

4.13 Minimax rates (Agarwal et al., 2012)

In order to measure the hardness of an optimization problem, we consider:

(a) A model of computation (i.e., algorithms): first-order oracle

– Queries a function f by obtaining f(θk) and f ′(θk) with zero-mean bounded vari-
ance noise, for k = 0, . . . , n− 1 and outputs θn

(b) A class of functions

– convex B-Lipschitz-continuous (w.r.t. ℓ2-norm) on a compact convex set C con-
taining an ℓ∞-ball

(c) A performance measure

– for a given algorithm and function εn(algo, f) = f(θn)− infθ∈C f(θ)

– for a given algorithm: sup
functions f

εn(algo, f)

We then define the Minimax performance as: inf
algo

sup
functions f

εn(algo, f). We are going to

prove the following:

• Convex functions: domain C that contains an ℓ∞-ball of radius D

inf
algo

sup
functions f

ε(algo, f) > cst ×min
{

BD

√

d

n
,BD

}

– This implies the following bound for the ℓ2-ball of radius D: BD/
√
n

– The upper-bound is obtained through through stochastic subgradient: they match!

• µ-strongly-convex functions: domain C that contains an ℓ∞-ball of radius D

inf
algo

sup
functions f

εn(algo, f) > cst ×min
{B2

µn
,
B2

µd
,BD

√

d

n
,BD

}

– The upper-bound is obtained through through stochastic subgradient: they match!
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4.13.1 Sketch of proof

The proof follows the following argument:

1. Create a subclass of functions indexed by some vertices αj, j = 1, . . . ,M of the
hypercube {−1, 1}d, which are sufficiently far in Hamming metric ∆H (denote V this
set with |V| =M)

∀j 6= k, ∆H(α
i, αj) >

d

4
,

e.g., a “ d
4
-packing” (possible with M exponential in d - see later).

The Hamming metric is defined through ∆H(α, β) =
∑d

i=1 1αi 6=βi.

2. Design convex functions so that

– approximate optimization of the function is equivalent to function identification
among the class above

– stochastic oracle corresponds to a sequence of coin tosses with biases index by αj,
j = 1, . . . ,M

Thus the existence of an algorithm with a given convergence rate implies the existence
of an algorithm identifying which of the M coins has been used for the coin tosses (the
larger the M the harder such an algorithm is to be found).

3. Any such identification procedure (i.e., a test) has a lower bound on the probability
of error.

4.13.2 Packing number for the hyper-cube

This is simply the Varshamov-Gilbert’s lemma (Massart, 2003, p. 105): the maximal
number of points in the hypercube that are at least d/4-apart in Hamming loss is greater
than than exp(d/8).

The proof is as follows:

1. Maximality of family: if we take a maximal family, it has to satisfy V ⇒⋃

α∈V BH(α, d/4) =
{−1, 1}d otherwise we can find a new point which is at least d/4 apart from the existing
ones.

2. Cardinality: using the union bound, we get
∑

α∈V |BH(α, d/4)| > 2d.

3. We can then link the cardinality of single set with the deviation of Z distributed as
Binomial(d, 1/2) (i.e., the sum of d unbiased Bernoulli random variables):

2−d|BH(α, d/4)| = P(Z 6 d/4) = P(Z > 3d/4)

4. Since every Bernoulli is between 0 and 1, we can apply Hoeffding’s inequality:

P(Z − d

2
>
d

4
) 6 exp(−2(d/4)2

d
) = exp(−d

8
).

This implies that 1 6 |V| exp(−d/8) and hence the result.
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4.13.3 Designing a class of functions

Given α ∈ {−1, 1}d, and a precision parameter δ > 0, we consider the functions of the form:

gα(x) =
c

d

d
∑

i=1

{

(
1

2
+ αiδ)f

+
i (x) + (

1

2
− αiδ)f

−
i (x)

}

,

where the 1-Lipschitz-continuous convex functions f+
i ’s and f−

i ’s, and the constant c are
here ensure proper regularity and/or strong convexity (which we will do later). We consider
the following oracle:

(a) Pick an index i ∈ {1, . . . , d} at random

(b) Draw bi ∈ {0, 1} from a Bernoulli with parameter 1
2
+ αiδ

(c) Consider ĝα(x) = c
[

bif
+
i + (1− bi)f

−
i ] and its value and gradient. We have by design:

Eĝα = gα, i.e., a stochastic gradient.

4.13.4 Optimizing is function identification

The goal is to make sure that if gα is optimized up to error ε, then this identifies α ∈ V.
This requires the definition of a certain “metric” between functions:

ρ(f, g) = inf
θ∈C

f(θ) + g(θ)− inf
θ∈C

f(θ)− inf
θ∈C

g(θ),

for which ρ(f, g) > 0 with equality iff f and g have the same minimizers.1

Moreover, we have the following lemma.

Lemma 4.1 let ψ(δ) = minα6=β∈V ρ(gα, gβ). For any θ̃ ∈ C, there is at most one function gα
such that gα(θ̃)− infθ∈C gα(θ) 6

ψ(δ)
3

.

Proof Let θ̃ ∈ C such that gα(θ̃)− infθ∈C gα(θ) 6
ψ(δ)
3

. By definition of ψ(δ), for any β 6= α,
we have:

ψ(δ) 6 gα(θ̃) + gβ(θ̃)− inf
θ∈C

gα(θ)− inf
θ∈C

gβ(θ) 6
ψ(δ)

3
+ gβ(θ̃)− inf

θ∈C
gβ(θ),

which implies that gβ(θ̃)− infθ∈C gβ(θ) > 2ψ(δ)
3

and hence the result.

Therefore:

• (a) optimizing an unknown function from the class up to precision ψ(δ)
3

leads to iden-
tification of α ∈ V.

1Proof: (a) non-negativity is obvious, (b) if the minimizers are the same, then ρ(f, g) = 0 is obvious, (c)
if ρ(f, g) = 0, then the sum of the infima is equal to the infimum of the sum if the two infima are attained
simultaneously.
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• (b) If the expected minimax error rate is greater than ψ(δ)
9

, there exists a function from
the set of random gradient and function values such the probability of error is less
than 1/3. Indeed, given an algorithm with expected approximation error (in function

values) less than ψ(δ)
9

, applied to gα∗ , i.e., we have found after n steps a θn such that

Egα∗(θn)− infθ∈C gα∗(θ) 6 ψ(δ)
9

.

We are going to build an estimator α̂.

If there is an α such that gα(θn) − infθ∈C gα(θ) 6
ψ(δ)
3

, we take α̂ as this α (from the
lemma above, there can be only one). If no such α exits, we take α̂ uniformly at
random.

Thus if gα∗(θn)− infθ∈C gα∗(θ) 6 , then α̂ = α∗. This implies that (by Markov inequal-
ity)

P(α̂ 6= α∗) 6
3

ψ(δ)

[

Egα∗(θn)− inf
θ∈C

gα∗(θ)

]

6
1

3
.

4.13.5 Lower bounds on coin tossing

• Lemma: For δ < 1/4, given α∗ uniformly at random in V, if n outcomes of a random
single coin (out of the d) are revealed, then any test will have a probability of error
greater than

1− 16nδ2 + log 2
d
2
log(2/

√
e)

– Proof based on Fano’s inequality: If g is a function of Y , and X takes m values,
then

P(g(X) 6= Y ) >
H(X|Y )− 1

logm
=
H(X)

logm
− I(X, Y ) + 1

logm

– See Agarwal et. al for details.

4.13.6 Construction of fi for convex functions

We consider the following functions f+
i (θ) = |θ(i) + 1

2
| and f−

i (θ) = |θ(i) − 1
2
|, optimized

on [−1/2, 1/2]d. They depend on a single coordinate, and they are 1-Lipschitz-continuous
with respect to the ℓ2-norm. We thus have an i-th partial derivative bounded by c/d. With
c = B/2, this implies that gα is B/(2

√
d)-Lipschitz, and thus B-Lipschitz.

Moreover, any call to the oracle corresponds to observing one of the d coins.
We can then compute the following lower bound on the discrepancy function (see Agarwal

et. al for details):

• Fact 1: each gα is minimized at θα = −α/2 (NB: optimizing gα indeed reveals the coin)

• Fact 2: the minimal value is c/2− cδ

• Fact 3: ρ(gα, gβ) =
2cδ
d
∆H(α, β) >

cδ
2
= ψ(δ) (by definition of ψ(δ))

• Set error/precision ε = cδ
18

so that ε < ψ(δ)/9
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• Consequence: 1
3
> 1− 16nδ2+log 2

d

2
log(2/

√
e)

, that is, n > cst × L2d2

ε2

4.13.7 Construction of fi for strongly-convex functions

• f±
i (θ) =

1

2
κ|θ(i)± 1

2
|+ 1− κ

4
(θ(i)± 1

2
)2

– Strongly convex and Lipschitz-continuous

• Same proof technique (more technical details)

• See more details by Agarwal et al. (2012); Raginsky and Rakhlin (2011)
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