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3.1 Motivation

In this lecture we introduce stochastic approximation methods that attempt to find zeros
of functions which can be hardly computed directly. See [2] for more references.

Suppose we wish to find the root of a function h, which does not have a closed-form
solution. What we can do is to do experiments or simulations to sample h at some particular
values of θ. Generally, these samples are noisy, but we can make an easier assumption that
experiment results are the sum of true values and noise: y = h(θ) + ε, where ε denotes the
noise, which is assumed to be random in each simulation.

If we try to solve such a problem with traditional algorithms for the deterministic situa-
tion, for example, Newton’s procedure, then at each iterate θn, we need to make an estimate
for h. Even if we assume that noises are zero-mean and identically distributed and indepen-
dent, a reasonable estimator seems to be the empirical mean:

h(θ) ≈
1

N

N∑

n=1

yn

since the law of large numbers ensures the convergence as we take samples for large enough
times. However, such a solution is unstable and can easily become time-consuming and
low-efficient because no one can ensure we won’t spend time taking samples at some points
which are far from the root.

So the key point of this problem is that we only have access to the sample value y, and
we have no way of removing the noise from it, i.e., of isolating the exact value of h(θ). We
will try instead to use every new observation in the algorithm.

Link with fixed point iterations. Note that when there is no noise, and h is observed,
we may consider the fixed point iteration θn = θn−1 − γh(θn−1), which is not convergent in
general.

3.2 Robbins-Monro algorithm

A classical methodology, studied by Robbins and Monro [1], is

θn = θn−1 − γn[h(θn−1) + εn]
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where h : Rd → R
d, (εn)n≥1 are i.i.d random variables taking values in R

d denote the noise
term usually having zero mean. A typical example is Gaussian noise (but we will consider
more general situations, in particular in the context of machine learning).

The main challenge of Robbins-Monro algorithm is to:

• Find general sufficient conditions for iterates to converge to the root;

• Compare different types of convergence of θn and try to make the analysis;

• Compute the rate of convergence and decide the choice of step-sizes;

• Study asymptotical behavior.

3.2.1 Example of mean estimation

We start from a simple but inspiring example in which h is a linear function.
Let h(θ) = θ − x, obviously θ∗ = x is the unique root of h; we have

θn = θn−1 − γn(θn−1 − xn).

For the choice of γn, if we start from θ0 = 0, a direct computation shows that

• θn = 1
n

∑n
k=1 xk when γn = 1/n

• θn = 2
n(n+1)

∑n
k=1 kxk when γn = 2/(n+ 1),

that is, empirical means are instances of the Robbins-Monro algorithm, and for all cases by
recursion we see

θn − x = (1− γn)(θn−1 − x) + γn(xn − x),

=
n∏

k=1

(1− γk)(θ0 − x)

︸ ︷︷ ︸

+
n∑

i=1

n∏

k=i+1

(1− γk)γi(xi − x)

︸ ︷︷ ︸

.

deterministic error random error

Since we have E[xn] = x and E[‖xn−x‖2] = σ2 > 0, which follows the general assumption
noises (εn)n≥1 are zero-mean and i.i.d, so we have

E[‖θn − x‖2] =
n∏

k=1

(1− γk)
2‖θ0 − x‖2 +

n∑

i=1

γ2
i

n∏

k=i+1

(1− γk)
2σ2.

If we hope θn converges to x in quadratic mean, it’s sufficient to have

lim
n→+∞

n∏

k=1

(1− γk)
2 = 0 lim

n→+∞

n∑

i=1

γ2
i

n∏

k=i+1

(1− γk)
2 = 0.

For the deterministic error, if γn = o(1),

log

n∏

k=1

(1− γk)
2 = 2

n∑

k=1

log(1− γk) ∼ −2

n∑

k=1

γk
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which is supposed to tend to −∞ since we need lim
n→+∞

∏n
k=1(1− γk)

2 = 0.

For the noise term, we firstly also have
∑n

i=1 γ
2
i

∏n
k=i+1(1 − γk)

2 ∼
∑n

i=1 γ
2
i

∏n
k=i+1(1 −

2γk). We thus need a general decomposition of the noise term.

3.2.2 Forgetting of initial conditions

Now we assume (γn)n≥1 is decreasing and bounded by an arbitrary 1/µ > 0. We have

n∏

k=1

(1− µγk) 6

n∏

k=1

exp(−µγk),

which is going to zero exponentially fast for γn = C/nα and α ∈ (0, 1). If γn = C/n, we get

n∏

k=1

exp(−µγk) ≈ exp(−µC log n) = 1/nµC .

3.2.3 Decomposition of the noise term

Now we assume (γn)n≥1 is decreasing and bounded by an arbitrary 1/µ > 0.
Then for any k ≤ l, it’s clear that

n∏

i=k+1

(1− µγi) ≤
n∏

j=l+1

(1− µγj) ≤ 1

With the basic inequality log(1− x) ≤ −x, for any m ∈ {1, ..., n}, we have

n∑

k=1

n∏

i=k+1

(1− µγi)γ
2
k =

m∑

k=1

n∏

i=k+1

(1− µγi)γ
2
k +

n∑

k=m+1

n∏

i=k+1

(1− µγi)γ
2
k

6

n∏

i=m+1

(1− µγi)

m∑

k=1

γ2
k + γm

n∑

k=m+1

n∏

i=k+1

(1− µγi)γk

6 exp

(

−µ

n∑

i=m+1

γi

)
m∑

k=1

γ2
k +

γm
µ

n∑

k=m+1

[
n∏

i=k+1

(1− µγi)−
n∏

i=k

(1− µγi)

]

6 exp

(

−µ

n∑

i=m+1

γi

)
m∑

k=1

γ2
k +

γm
µ

[

1−
n∏

i=m+1

(1− µγi)

]

6 exp

(

−µ

n∑

i=m+1

γi

)
n∑

k=1

γ2
k +

γm
µ
.

Since the inequality above is true for any n ∈ N and m ∈ {1, ...n}, and by the preceding
assumption γn → 0, we therefore only need

lim
n→+∞

exp

(

−µ

n∑

i=m+1

γi

)
n∑

k=1

γ2
k = 0
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for any fixed m. We will typically take m = n/2 (except for α = 1, see below).
Typically, we take γn in form of Cn−α where α ∈ R

∗ and C 6 1/µ (note that if this is
not true for n = 1, this is true for n large enough):

• α > 1:

Since
∑n

i=1 1/i
α = Cst +O(1/nα−1) and

∑n
k=1 γ

2
k < +∞, it’s clear that

lim
n→+∞

exp

(

−µ
n∑

i=m+1

γi

)
n∑

k=1

γ2
k > 0.

The bound does not go to zero (the step-sizes are too small).

• α ∈ (0, 1):

Because
∑n

i=1 1/i
α = Cst×n1−α+O(1), so whatever

∑n
k=1 γ

2
k < ∞ or = ∞, we always

have

lim
n→+∞

exp

(

−µ
n∑

i=m+1

γi

)
n∑

k=1

γ2
k = 0 exponentially fast.

This leads to a rate in O(n−α).

• α = 1:

We know
n∑

i=1

1/i = log(n) + γ +O(1/n),

where γ > 0 is Euler-Mascheroni constant, and
∑n

k=1 γ
2
k < +∞.

Thus, we have, with γ = C/n, and C 6 1/µ:

n∑

k=1

n∏

i=k+1

(1− µγi)γ
2
k 6

n∑

k=1

n∏

i=k+1

exp(−µγi)γ
2
k

=

n∑

k=1

exp(−µ

n∑

i=k+1

γi)γ
2
k

≈
n∑

k=1

exp(−µ log n+ µ log k)
C2

k2

≈
C2

nµC

n∑

k=1

1

k2−Cµ

≈ O(1/n).

Initial conditions are forgotten as 1/nµC and hence if C is too small, convergence is
slow.
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Thus a sufficient condition for convergence in quadratic mean is α ∈ (0, 1) when γn has
the form of Cn−α .

In practice, we hope that the iterates will converge to the root θ∗ = x in the strongest
sense, i.e. θn → θ∗ almost surely, since a random noise exists all the time. From the example
above we see that for some specific case, it’s quite feasible to realize convergence in quadratic
mean, which implies convergence in probability (see below).

3.3 Recall: convergence of random variables

We review several convergences in a probability space (Ω,F ,P).

Definition 3.1 A sequence of random variables (Xn)n≥1 is said to converge to X almost-

surely if P( lim
n→∞

Xn = X) = 1.

Definition 3.2 A sequence of random variables (Xn)n≥1 is said to converge to X in proba-

bility if for any ε, δ > 0, there exists a N ∈ N, such that for n ≥ N , P(|Xn −X| ≥ ε) ≤ δ.

Definition 3.3 A sequence of random variables (Xn)n≥1 is said to converge in r-th (r ≥ 1)
mean to X if lim

n→∞
E[|Xn −X|r] = 0.

Relationship between convergences

• It’s obvious that convergence a.s. implies convergence in probability.

• Convergence in r-th mean implies convergence in probability by using Markov’s in-
equality

P(|Xn −X| > ε) ≤
E[|Xn −X|r]

εr

• Convergence a.s. and dominant convergence theorem implies convergence in mean.

• To get convergence a.s. from convergence in probability, recall that

Lemma 3.4 (Borel-Cantelli) Let (En)n≥1 be a sequence of sets such that
∑∞

i=1 P(En) <
∞, then P(lim sup

n→∞
En) = 0, where lim sup

n→∞
En := ∩∞

N=1 ∪n≥N En.

If for any ε > 0, we propose An(ε) := {|Xn − X| > ε}, and
∑∞

n=1 P(An(ε)) < ∞, then
by the lemma above we have

P(lim sup
n→∞

An(ε)) = 0

this is to say there exists N = N(ε) such that for n ≥ N , P(|Xn−X| ≤ ε) = 1, which means
Xn → X a.s. (note that this will apply to our convergence in high-probability in the next
lecture).
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3.4 Need for Lyapunov function

Robbins-Monro algorithm cannot converge all the time, we need to introduce the Lyapunov
function.

Definition 3.5 A Lyapunov function V associated to h verifies the following properties:

• Non-negative: V ≥ 0;

• Continuously-differentiable with L-Lipschitz-continuous gradients;

• Control of h: ∀θ, ‖h(θ)‖2 6 C(1 + V (θ));

• Gradient condition: there exists α > 0, ∀θ, h(θ)⊤V ′(θ) > α‖V ′(θ)‖2.

If h = f ′, then V (θ) = f(θ) − inf f is the default (but not only) choice for Lyapunov
function, even if f is not convex. However, this usually requires some additional condition:

• ‖V ′(θ)‖2 > 2µV (θ) (which is satisfied for V a µ-strongly-convex function, or more
generally for Polyak-Lojasiewicz conditions).

Generalized noise sequence In the rest part of this section, we no longer restrict our-
selves to the case that (εn)n≥1 are i.i.d., and we assume that for each n ∈ N, εn is Fn-
measurable where (Fn)n≥1 is a filtration on the probability space such that

E[εn|Fn−1] = 0 E[‖εn‖
2|Fn−1] ≤ σ2

almost surely.
Since θn = θn−1 − γn

[
h(θn−1) + εn

]
, we see θn is also Fn-measurable.

3.4.1 Convergence of the Lyapunov function

Applying Robbins-Monro algorithm to h and use the regularity (or other properties) of
Lyapunov function V , we have

V (θn) ≤ V (θn−1) + V ′(θn−1)
⊤(θn − θn−1) +

L

2
‖θn − θn−1‖

2

= V (θn−1)− γnV
′(θn−1)

⊤(h(θn−1) + εn) +
Lγ2

n

2
‖h(θn−1) + εn‖

2,

and by the properties above and assumptions on noise,

E[V (θn)|Fn−1] ≤ V (θn−1)− γnV
′(θn−1)

⊤h(θn−1) +
Lγ2

n

2
‖h(θn−1)‖

2 +
Lγ2

n

2
σ2

≤ V (θn−1)− αγn‖V
′(θn−1)‖

2 +
LCγ2

n

2

[
1 + V (θn−1)

]
+

Lγ2
n

2
σ2

≤ V (θn−1)[1 +
LCγ2

n

2
]− αγn‖V

′(θn−1)‖
2 +

Lγ2
n

2
(C + σ2)
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If the additional condition ‖V ′(θ)‖2 > 2µV (θ) holds, with γn ≤ 2αµ/LC for n large
enough, we have

E[V (θn)|Fn−1] ≤ V (θn−1)[1 +
LCγn
2

2αµ

LC
]− 2αγnµV (θn−1) +

Lγ2
n

2
(C + σ2)

≤ V (θn−1)[1− αµγn] +Mγ2
n

which implies EV (θn) ≤ EV (θn−1)[1− αµγn] +Mγ2
n where M := L(C + σ2)/2.

3.4.2 Convergence of expectation

Let δn := E[V (θn)] ≥ 0, so, δn 6 δn−1[1− αµγn] +Mγ2
n. By recursion,

δn 6

n∏

k=1

(1− αµγk)δ0 +M
n∑

i=1

γ2
i

n∏

k=i+1

(1− αµγk).

By an analogous argument to mean estimation (analysis of the noise term), the sufficient
conditions for convergence in mean of the Lyapunov function is

∑

n γn = +∞ and γn → 0.
Particularly, when γn is in the form Cn−α where C > 0, α ∈ (0, 1) works, and for α = 1,
only for C large enough.

3.4.3 Convergence almost surely

To establish almost-sure convergence from the recurrence inequality derived above, we firstly
present the Robbins-Siegmund theorem [3].

Theorem 3.6 (Robbins-Siegmund) Let (Vn)n≥1, (βn)n≥1, (χn)n≥1, (ηn)n≥1 be four non-

negative (Fn)n≥1-adapted processes such that
∑

n βn < ∞ and
∑

n χn < ∞ almost surely. If

for each n ∈ N,

E[Vn|Fn−1] 6 Vn−1(1 + βn−1) + χn−1 − ηn−1

then (Vn)n≥1 converges almost surely to a random variable V∞ and
∑∞

n=1 ηn is finite almost

surely.

Proof Define αn :=
∏n

k=1(1 + βk), then αn(≥ 1) is Fn-measurable, and converges almost
surely by the assumption on (βn)n≥1. Since (1 + βn) = αn/αn−1,

E[Vn|Fn−1] 6 Vn−1
αn−1

αn−2

+ χn−1 − ηn−1

⇒ E[
Vn

αn−1

|Fn−1] 6
Vn−1

αn−2

+
χn−1

αn−1

−
ηn−1

αn−1

Define

V ′
n :=

Vn

αn−1
, χ′

n :=
χn

αn
, η′n :=

ηn
αn

we can rewrite the inequality as

E[V ′
n|Fn−1] 6 V ′

n−1 + χ′
n−1 − η′n−1
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Define Yn := V ′
n −

∑n−1
k=1(χ

′
k − η′k), then

E[Yn|Fn−1] 6 V ′
n−1 + χ′

n−1 − η′n−1 −
n−1∑

k=1

(χ′
k − η′k) = Yn−1

which verifies (Yn)n≥1 is a supermartingale. Let τa = inf{n ≥ 1,
∑n

k=1 χ
′
k > a} be a stopping

time. Then
E[Yn∧τa |Fn−1] = E[Yτa1{τa≤n−1} + Yn1{τa>n−1}|Fn−1]

≤ Yτa1{τa≤n−1} + Yn−11{τa>n−1}

= Y(n−1)∧τa

where we use the fact Yτa1{τa≤n−1} is Fn−1− measurable and (Yn)n≥1 is a supermartingale.
So (Yn∧τa)n≥1 is also a supermartingale and

Yn∧τa ≥

(n−1)∧τa∑

k=1

χ′
k ≥ −a

for all n. It follows from the Doob convergence theorem (see [2]) that

lim
n→∞

Yn∧τa exists

and is finite a.s., i.e. lim
n→∞

Yn exists and finite on

{τa = ∞} = {
∞∑

n=1

χ′
k ≤ a}

Since
∑∞

n=1 χ
′
k ≤

∑∞
n=1 χk < ∞ a.s., let a → ∞, we see that lim

n→∞
Yn exists and is finite

almost surely.
Hence by Yn = V ′

n −
∑n−1

k=1(χ
′
k − η′k) and V ′, η′ are non-negative,

lim
n→∞

V ′
n exists and

∞∑

k=1

η′k < ∞

and it follows from

V ′
n :=

Vn

αn−1

, ηn := η′nαn ≤ η′n

∞∏

k=1

(1 + βk)

that we conclude lim
n→∞

Vn exists and is finite, and
∑∞

n=1 ηn < ∞ almost surely.

Applying Robbins-Siegmund theorem to Lyapunov function V , where V (θn)n≥1 satisfies:

E[V (θn)|Fn−1] = V (θn−1)[1 +
LCγ2

n

2
]− αγn‖V

′(θn−1)‖
2 +

Lγ2
n

2
(C + σ2)

and set

Vn = V (θn), βn =
LCγ2

n+1

2
, χn =

Lγ2
n+1

2
(C + σ2), ηn = αγn+1‖V

′(θn)‖
2

It’s clear that these four sequence are non-negative and adapted, so we conclude lim
n→∞

V (θn)

exists and is finite almost surely. This requires that
∑

n γ
2
n < ∞, i.e., that the step-sizes are

squared summable.
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3.5 Robbins-Monro analysis - asymptotic normality

We consider the asymptotic normality of the output of Robbins-Monro algorithm. We
emphasize here intuitive results with simple (simplistic) assumptions. For more precise
statements and proofs, see [7].

We consider the traditional step-size γ = C/n, and provide a proof sketch for the differ-
ential A of h at unique θ∗ symmetric:

θn = θn−1 − γnh(θn−1)− γnεn

≈ θn−1 − γn
[
h′(θ∗)(θn−1 − θ∗)

]
− γnεn + γnO(‖θn − θ∗‖

2)

≈ θn−1 − γnA(θn−1 − θ∗)− γnεn

θn − θ∗ ≈ (I − γnA) · · · (I − γ1A)(θ0 − θ∗)−
n∑

k=1

(I − γnA) · · · (I − γk+1A)γkεk

θn − θ∗ ≈ exp
[
− (γn + · · ·+ γ1)A

]
(θ0 − θ∗)−

n∑

k=1

exp
[
− (γn + · · ·+ γk+1)A

]
γkεk

≈ exp
[
− CA logn

]
(θ0 − θ∗)−

n∑

k=1

exp
[
− C(logn− log k)A

]C

k
εk.

We have used above the approximation of the harmonic series by the logarithm. We obtain
asymptotic normality by averaging zero mean random variables.

Assuming A, (θ0−θ∗)(θ0−θ∗)
⊤ and E(εkε

⊤
k ) = Σ commute, we may compute the expected

covariance matrix as follows (note that we allow ourselves to take powers and logarithms
of matrices, which can be done formally by taking functions of eigenvalues while preserving
eigenvectors):

E(θn − θ∗)(θn − θ∗)
⊤ ≈ exp

[
− 2CA logn

]
(θ0 − θ∗)(θ0 − θ∗)

⊤

+

n∑

k=1

exp
[
− 2C(logn− log k)A

]C2

k2
E(εkε

⊤
k )

≈ n−2CA(θ0 − θ∗)(θ0 − θ∗)
⊤ + n−2CA

n∑

k=1

C2k2CA−2Σ

≈ n−2CA(θ0 − θ∗)(θ0 − θ∗)
⊤ + n−2CAC2 n2CA−1

2CA− 1
Σ.

With the step-size γ = C/n, we need 2Cλmin(A) > 1 for convergence, which implies that
the first term depending on initial condition θ∗ − θ0 is negligible.

Moreover, we see the difficulty in setting the constant C: if C too small, we may have
no convergence, while when C is too large, we obtain a large variance.

Finally, there is a strong dependence on the conditioning of the problem, that is, if
λmin(A) is small, then C has to be large. One way to improve the conditioning is to “choose”
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A proportional to identity for optimal behavior (by premultiplying A by a conditioning
matrix that make A close to a constant times identity).

3.6 Polyak-Ruppert averaging

3.6.1 Problems with Robbins-Monro algorithm

As we have illustrated before, we can see the convergence of the Robbins-Monro algorithm
heavily depends on the choice of step size (γn)n≥1 which not only determines the efficiency,
i.e., convergence rate, but also decides whether the iterates affiliated to (γn)n≥1 will truly
converge to result we desire or not. Besides, uncontrolled unknown conditions of the problem
also affects the algorithm behavior since we are supposed to know nothing about the noise.

3.6.2 Cesaro means

An alternative way, proposed by Polyak and Juditsky [4] and Ruppert [5], is to estimate θ∗
by (θ̄n)n≥1 instead of (θn)n≥1, where θ̄n is defined

θ̄n =
1

n

n∑

k=1

θk

named Cesaro mean of (θn)n≥1 and can be computed recursively as

θ̄n = (1−
1

n
)θ̄n−1 +

1

n
θn

The idea is inspired by Cesaro’s theorem.

Theorem 3.7 (Cesaro) Assume lim
n→∞

θn = θ∗ with convergence rate ‖θn − θ∗‖ ≤ αn where

αn → 0, then lim
n→∞

θ̄n = θ∗ with convergence rate ᾱn := 1
n

∑n
k=1 αk.

Proof The convergence θ̄n → θ∗ is well-known, and

‖θ̄n − θ∗‖ ≤
1

n

n∑

k=1

‖θk − θ∗‖ ≤
1

n

n∑

k=1

αk = ᾱn

By applying the result above to αn, we see ᾱn → 0. Thus θn → θ∗ with the convergence rate
ᾱn.

The convergence rate of θ̄n → θ∗ depends on the rate of original sequence. However,
in the case

∑∞
k=1 αn < ∞, the rate is equivalent to 1/n (and we lose potential exponential

convergence).
Note that there are many counterexamples in which the sequence of Cesaro means con-

verges, but the original sequence does not.

3-10



Lecture 3 — March 17th 2016

3.6.3 Asymptotic distribution of θ̄n − θ∗

In this section, we only give intuitive arguments, for more details, see [3, 4].
Now we assume in the recursion

θn = θn−1 − γn[h(θn−1) + εn]

the function h ∈ C1(Rd,R), γn = Cn−α and the noise (εn)n≥1 are i.i.d. following N (0,Σ).
So we have

h(θn−1) =
1

γn

[
θn−1 − θn

]
− εn

and by Taylor series expansion, we have

A(θn−1 − θ∗) +O(‖θn−1 − θ∗‖
2) =

1

γn
[θn−1 − θn]− εn

where A = h′(θ∗) ∈ R
d×d, and we use the fact h(θ∗) = 0.

By the previous argument, we know ‖θn − θ∗‖2 = O(n−α), thus

A(θn−1 − θ∗) =
1

γn
[θn−1 − θn]− εn+O(n−α)

⇒
1

n

n∑

k=1

A(θk−1 − θ∗) =
1

n

n∑

k=1

1

γk

[
θk−1 − θk

]
−
1

n

n∑

k=1

εk+O(n−α)

=
1

n

n∑

k=1

1

γk

[
θk−1 − θk

]
+N (0,Σ/n)+O(n−α)

because of the central limit theorem.
Using Abel’s summation formula, we have

1

n

n∑

k=1

1

γk
(θk−1 − θk) =

1

n

n−1∑

k=1

(θk − θ∗)(γ
−1
k+1 − γ−1

k )−
1

n
(θn − θ∗)γ

−1
n +

1

n
(θ0 − θ∗)γ

−1
1

which implies

∥
∥
∥
1

n

n∑

k=1

1

γk
(θk−1 − θk)

∥
∥
∥ 6

1

n

n−1∑

k=1

‖θk − θ∗‖ · |γ
−1
k+1 − γ−1

k |+
1

n
‖θn − θ∗‖γ

−1
n +

1

n
‖θ0 − θ∗‖γ

−1
1

Since ‖θn − θ∗‖ = O(n−α

2 ) and γn = Cn−α, so

1

n

n−1∑

k=1

‖θk − θ∗‖ · |γ
−1
k+1 − γ−1

k | = O(n
α

2
−1),

1

n
‖θn − θ∗‖γ

−1
n = O(n

α

2
−1)

Thus
1

n

n∑

k=1

A(θk−1 − θ∗) = N (0,Σ/n) +O(n−α) +O(nα/2−1)

and we can conclude that θ̄n − θ∗ is asymptotically Gaussian with zero-mean and covariance
1
n
A−1ΣA−1.

Moreover, the asymptotic variance is independent of the step-size (if this steps-size is
γn = O(n−α) for n ∈ (1/2, 1)).
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