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Abstract

We consider a class of learning problems that involve a structured sparsity-
inducing norm defined as the sum of ℓ∞-norms over groups of variables. Whereas
a lot of effort has been put in developing fast optimization methods when the
groups are disjoint or embedded in a specific hierarchical structure, we address
here the case of general overlapping groups. To this end, we show that the cor-
responding optimization problem is related to network flow optimization. More
precisely, the proximal problem associated with the norm we consider is dual to a
quadratic min-cost flow problem. We propose an efficient procedure which com-
putes its solution exactly in polynomial time. Our algorithm scales up to millions
of variables, and opens up a whole new range of applications for structured sparse
models. We present several experiments on image and video data, demonstrating
the applicability and scalability of our approach for various problems.

1 Introduction

Sparse linear models have become a popular framework for dealing with various unsupervised and
supervised tasks in machine learning and signal processing. In such models, linear combinations of
small sets of variables are selected to describe the data. Regularization by the ℓ1-norm has emerged
as a powerful tool for addressing this combinatorial variable selection problem, relying on both a
well-developed theory (see [1] and references therein) and efficient algorithms [2, 3, 4].

The ℓ1-norm primarily encourages sparse solutions, regardless of the potential structural relation-
ships (e.g., spatial, temporal or hierarchical) existing between the variables. Much effort has recently
been devoted to designing sparsity-inducing regularizations capable of encoding higher-order infor-
mation about allowed patterns of non-zero coefficients [5, 6, 7, 8, 9, 10], with successful applications
in bioinformatics [6, 11], topic modeling [12] and computer vision [9, 10].

By considering sums of norms of appropriate subsets, or groups, of variables, these regulariza-
tions control the sparsity patterns of the solutions. The underlying optimization problem is usually
difficult, in part because it involves nonsmooth components. Proximal methods have proven to be
effective in this context, essentially because of their fast convergence rates and their scalability [3, 4].
While the settings where the penalized groups of variables do not overlap or are embedded in a tree-
shaped hierarchy [12] have already been studied, regularizations with general overlapping groups
have, to the best of our knowledge, never been addressed with proximal methods.

This paper makes the following contributions:
− It shows that the proximal operator associated with the structured norm we consider can be
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computed with a fast and scalable procedure by solving a quadratic min-cost flow problem.
− It shows that the dual norm of the sparsity-inducing norm we consider can also be evaluated

efficiently, which enables us to compute duality gaps for the corresponding optimization problems.
− It demonstrates that our method is relevant for various applications, from video background

subtraction to estimation of hierarchical structures for dictionary learning of natural image patches.

2 Structured Sparse Models

We consider in this paper convex optimization problems of the form

min
w∈Rp

f(w) + λΩ(w), (1)

where f : Rp → R is a convex differentiable function and Ω : Rp → R is a convex, nonsmooth,
sparsity-inducing regularization function. When one knows a priori that the solutions of this learn-
ing problem have only a few non-zero coefficients, Ω is often chosen to be the ℓ1-norm (see [1, 2]).
When these coefficients are organized in groups, a penalty encoding explicitly this prior knowl-
edge can improve the prediction performance and/or interpretability of the learned models [13, 14].
Denoting by G a set of groups of indices, such a penalty might for example take the form:

Ω(w) ,
∑

g∈G

ηg max
j∈g
|wj | =

∑

g∈G

ηg‖wg‖∞, (2)

where wj is the j-th entry of w for j in [1; p] , {1, . . . , p}, the vector wg in R
|g| records the

coefficients of w indexed by g in G, and the scalars ηg are positive weights. A sum of ℓ2-norms is
also used in the literature [7], but the ℓ∞-norm is piecewise linear, a property that we take advantage
of in this paper. Note that when G is the set of singletons of [1; p], we get back the ℓ1-norm.

If G is a more general partition of [1; p], variables are selected in groups rather than individually.
When the groups overlap, Ω is still a norm and sets groups of variables to zero together [5]. The
latter setting has first been considered for hierarchies [7, 11, 15], and then extended to general group
structures [5].1 Solving Eq. (1) in this context becomes challenging and is the topic of this paper.
Following Jenatton et al. [12] who tackled the case of hierarchical groups, we propose to approach
this problem with proximal methods, which we now introduce.

2.1 Proximal Methods

In a nutshell, proximal methods can be seen as a natural extension of gradient-based techniques,
and they are well suited to minimizing the sum f + λΩ of two convex terms, a smooth function f
—continuously differentiable with Lipschitz-continuous gradient— and a potentially non-smooth
function λΩ (see [16] and references therein). At each iteration, the function f is linearized at the
current estimate w0 and the so-called proximal problem has to be solved:

min
w∈Rp

f(w0) + (w −w0)
⊤∇f(w0) + λΩ(w) +

L

2
‖w −w0‖

2
2.

The quadratic term keeps the solution in a neighborhood where the current linear approximation
holds, andL>0 is an upper bound on the Lipschitz constant of∇f . This problem can be rewritten as

min
w∈Rp

1

2
‖u−w‖22 + λ′Ω(w), (3)

with λ′ , λ/L, and u , w0−
1
L
∇f(w0). We call proximal operator associated with the regulariza-

tion λ′Ω the function that maps a vector u in Rp onto the (unique, by strong convexity) solutionw⋆

of Eq. (3). Simple proximal methods use w⋆ as the next iterate, but accelerated variants [3, 4] are
also based on the proximal operator and require to solve problem (3) exactly and efficiently to enjoy
their fast convergence rates. Note that when Ω is the ℓ1-norm, the solution of Eq. (3) is obtained by
soft-thresholding [16]. The approach we develop in the rest of this paper extends [12] to the case of
general overlapping groups when Ω is a weighted sum of ℓ∞-norms, broadening the application of
these regularizations to a wider spectrum of problems.2

1Note that other types of structured sparse models have also been introduced, either through a different
norm [6], or through non-convex criteria [8, 9, 10].

2For hierarchies, the approach of [12] applies also to the case of where Ω is a weighted sum of ℓ2-norms.
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3 A Quadratic Min-Cost Flow Formulation

In this section, we show that a convex dual of problem (3) for general overlapping groups G can
be reformulated as a quadratic min-cost flow problem. We present an efficient algorithm to solve it
exactly, as well as a related algorithm to compute the dual norm of Ω. We start by considering the
dual formulation to problem (3) introduced in [12], for the case where Ω is a sum of ℓ∞-norms:

Lemma 1 (Dual of the proximal problem [12])
Given u in Rp, consider the problem

min
ξ∈Rp×|G|

1

2

∥

∥

∥
u−

∑

g∈G

ξg
∥

∥

∥

2

2
s.t. ∀g ∈ G, ‖ξg‖1 ≤ ληg and ξ

g
j = 0 if j /∈ g, (4)

where ξ = (ξg)g∈G is in R
p×|G|, and ξ

g
j denotes the j-th coordinate of the vector ξg . Then, every

solution ξ⋆=(ξ⋆g)g∈G of Eq. (4) satisfies w⋆=u−
∑

g∈G ξ⋆g, where w⋆ is the solution of Eq. (3).

Without loss of generality,3 we assume from now on that the scalars uj are all non-negative, and we
constrain the entries of ξ to be non-negative. We now introduce a graph modeling of problem (4).

3.1 Graph Model

Let G be a directed graph G = (V,E, s, t), where V is a set of vertices, E ⊆ V × V a set of arcs, s
a source, and t a sink. Let c and c′ be two functions on the arcs, c : E → R and c′ : E → R

+, where
c is a cost function and c′ is a non-negative capacity function. A flow is a non-negative function
on arcs that satisfies capacity constraints on all arcs (the value of the flow on an arc is less than or
equal to the arc capacity) and conservation constraints on all vertices (the sum of incoming flows at
a vertex is equal to the sum of outgoing flows) except for the source and the sink.

We introduce a canonical graph G associated with our optimization problem, and uniquely charac-
terized by the following construction:
(i) V is the union of two sets of vertices Vu and Vgr, where Vu contains exactly one vertex for
each index j in [1; p], and Vgr contains exactly one vertex for each group g in G. We thus have
|V | = |G|+ p. For simplicity, we identify groups and indices with the vertices of the graph.
(ii) For every group g in G, E contains an arc (s, g). These arcs have capacity ληg and zero cost.
(iii) For every group g in G, and every index j in g, E contains an arc (g, j) with zero cost and
infinite capacity. We denote by ξ

g
j the flow on this arc.

(iv) For every index j in [1; p], E contains an arc (j, t) with infinite capacity and a

cost cj,
1
2 (uj − ξ̄j)

2, where ξ̄j is the flow on (j, t). Note that by flow conservation, we neces-

sarily have ξ̄j=
∑

g∈G ξ
g
j .

Examples of canonical graphs are given in Figures 1(a)-(c). The flows ξ
g
j associated withG can now

be identified with the variables of problem (4): indeed, the sum of the costs on the edges leading
to the sink is equal to the objective function of (4), while the capacities of the arcs (s, g) match the
constraints on each group. This shows that finding a flow minimizing the sum of the costs on such a
graph is equivalent to solving problem (4).

When some groups are included in others, the canonical graph can be simplified to yield a graph
with a smaller number of edges. Specifically, if h and g are groups with h ⊂ g, the edges (g, j) for
j ∈ h carrying a flow ξ

g
j can be removed and replaced by a single edge (g, h) of infinite capacity and

zero cost, carrying the flow
∑

j∈h ξ
g
j . This simplification is illustrated in Figure 1(d), with a graph

equivalent to the one of Figure 1(c). This does not change the optimal value of ξ̄
⋆
, which is the

quantity of interest for computing the optimal primal variable w⋆ (a proof and a formal definition
of these equivalent graphs are available in a longer technical report [17]). These simplifications are
useful in practice, since they reduce the number of edges in the graph and improve the speed of the
algorithms we are now going to present.

3Let ξ⋆ denote a solution of Eq. (4). Optimality conditions of Eq. (4) derived in [12] show that for all j in
[1; p], the signs of the non-zero coefficients ξ

⋆g

j for g in G are the same as the signs of the entries uj . To solve
Eq. (4), one can therefore flip the signs of the negative variables uj , then solve the modified dual formulation
(with non-negative variables), which gives the magnitude of the entries ξ

⋆g

j (the signs of these being known).
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Figure 1: Graph representation of simple proximal problems with different group structures G. The
three indices 1, 2, 3 are represented as grey squares, and the groups g, h in G as red discs. The
source is linked to every group g, h with respective maximum capacity ληg, ληh and zero cost. Each

variable uj is linked to the sink t, with an infinite capacity, and with a cost cj ,
1
2 (uj − ξ̄j)

2. All
other arcs in the graph have zero cost and infinite capacity. They represent inclusion relationships
in-between groups, and between groups and variables. The graphs (c) and (d) correspond to a special
case of tree-structured hierarchy in the sense of [12]. Their min-cost flow problems are equivalent.

3.2 Computation of the Proximal Operator

Quadratic min-cost flow problems have been well studied in the operations research literature [18].
One of the simplest cases, where G contains a single group g (Ω is the ℓ∞-norm) as in Figure 1(a),
can be solved by an orthogonal projection on the ℓ1-ball of radius ληg. It has been shown that
such a projection can be done in O(p) operations [18, 19]. When the group structure is a tree as in
Figure 1(d), the problem can be solved inO(pd) operations, where d is the depth of the tree [12, 18].4

The general case of overlapping groups is more difficult. Hochbaum and Hong have shown in [18]
that quadratic min-cost flow problems can be reduced to a specific parametric max-flow problem,
for which an efficient algorithm exists [20].5 While this generic approach could be used to solve
Eq. (4), we propose to use Algorithm 1 that also exploits the fact that our graphs have non-zero costs
only on edges leading to the sink. As shown in the technical report [17], it has a significantly better
performance in practice. This algorithm clearly shares some similarities with existing approaches
in network flow optimization such as the simplified version of [20] presented in [21] that uses a
divide and conquer strategy. Moreover, we have discovered after that this paper was accepted for
publication that an equivalent algorithm exists for minimizing convex functions over polymatroid

4When restricted to the case where Ω is a sum of ℓ∞-norms, the approach of [12] is in fact similar to [18].
5By definition, a parametric max-flow problem consists in solving, for every value of a parameter, a max-

flow problem on a graph whose arc capacities depend on this parameter.
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sets [22]. This equivalence, however, requires a non-trivial representation of structured sparsity-
inducing norms with submodular functions, as recently pointed out by [23].

Algorithm 1 Computation of the proximal operator for overlapping groups.

1: Inputs: u ∈ R
p, a set of groups G, positive weights (ηg)g∈G , and λ (regularization parameter).

2: Build the initial graph G0 = (V0, E0, s, t) as explained in Section 3.2.
3: Compute the optimal flow: ξ̄ ← computeFlow(V0, E0).
4: Return: w = u− ξ̄ (optimal solution of the proximal problem).

Function computeFlow(V = Vu ∪ Vgr, E)

1: Projection step: γ ← argminγ
∑

j∈Vu

1
2 (uj − γj)

2 s.t.
∑

j∈Vu
γj ≤ λ

∑

g∈Vgr
ηg.

2: For all nodes j in Vu, set γj to be the capacity of the arc (j, t).

3: Max-flow step: Update (ξ̄j)j∈Vu
by computing a max-flow on the graph (V,E, s, t).

4: if ∃ j ∈ Vu s.t. ξ̄j 6= γj then

5: Denote by (s, V +) and (V −, t) the two disjoint subsets of (V, s, t) separated by the minimum
(s, t)-cut of the graph, and remove the arcs between V + and V −. Call E+ and E− the two
remaining disjoint subsets of E corresponding to V + and V −.

6: (ξ̄j)j∈V
+
u

← computeFlow(V +, E+).

7: (ξ̄j)j∈V
−
u

← computeFlow(V −, E−).
8: end if
9: Return: (ξ̄j)j∈Vu

.

The intuition behind this algorithm is the following: The first step looks for a candidate value for
ξ̄=

∑

g∈G ξg by solving a relaxed version of problem Eq. (4), where the constraints ‖ξg‖1≤ληg are

dropped and replaced by a single one ‖ξ̄‖1≤ λ
∑

g∈G ηg. The relaxed problem only depends on ξ̄

and can be solved in linear time. By calling its solution γ, it provides a lower bound ‖u − γ‖22/2
on the optimal cost. Then, the second step tries to find a feasible flow of the original problem (4)
such that the resulting vector ξ̄ matches γ, which is in fact a max-flow problem [24]. If ξ̄ = γ,
then the cost of the flow reaches the lower bound, and the flow is optimal. If ξ̄ 6= γ, the lower
bound is not achievable, and we construct a minimum (s, t)-cut of the graph [25] that defines two
disjoints sets of nodes V + and V −; V + is the part of the graph that could potentially have received
more flow from the source (the arcs between s and V + are not saturated), whereas all arcs linking s
to V − are saturated. At this point, it is possible to show that the value of the optimal min-cost
flow on all arcs between V + and V − is necessary zero. Thus, removing them yields an equivalent
optimization problem, which can be decomposed into two independent problems of smaller sizes
and solved recursively by the calls to computeFlow(V +, E+) and computeFlow(V −, E−). A
formal proof of correctness of Algorithm 1 and further details are relegated to [17].

The approach of [18, 20] is guaranteed to have the same worst-case complexity as a single max-flow
algorithm. However, we have experimentally observed a significant discrepancy between the worst
case and empirical complexities for these flow problems, essentially because the empirical cost of
each max-flow is significantly smaller than its theoretical cost. Despite the fact that the worst-case
guarantee of our algorithm is weaker than their (up to a factor |V |), it is more adapted to the structure
of our graphs and has proven to be much faster in our experiments (see technical report [17]).

Some implementation details are crucial to the efficiency of the algorithm:
• Exploiting connected components: When there exists no arc between two subsets of V , it is

possible to process them independently in order to solve the global min-cost flow problem.
• Efficient max-flow algorithm: We have implemented the “push-relabel” algorithm of [24]

for solving our max-flow problems, using classical heuristics that significantly speed it up in
practice (see [24, 26]). This algorithm leverages the concept of pre-flow that relaxes the defini-
tion of flow and allows vertices to have a positive excess. It can be initialized with any valid
pre-flow, enabling warm-restarts when the max-flow is called several times as in our algorithm.
• Improved projection step: The first line of the function computeFlow can be replaced by

γ ← argminγ
∑

j∈Vu

1
2 (uj − γj)

2 s.t.
∑

j∈Vu
γj ≤ λ

∑

g∈Vgr
ηg and |γj | ≤ λ

∑

g∋j ηg. The

idea is that the structure of the graph will not allow ξ̄j to be greater than λ
∑

g∋j ηg after the max-

flow step. Adding these additional constraints leads to better performance when the graph is not
well balanced. This modified projection step can still be computed in linear time [19].
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3.3 Computation of the Dual Norm

The dual norm Ω∗ of Ω, defined for any vector κ in Rp by Ω∗(κ) , maxΩ(z)≤1 z
⊤κ, is a key quan-

tity to study sparsity-inducing regularizations [5, 15, 27]. We use it here to monitor the convergence
of the proximal method through a duality gap, and define a proper optimality criterion for prob-

lem (1). We denote by f∗ the Fenchel conjugate of f [28], defined by f∗(κ) , sup
z
[z⊤κ− f(z)].

The duality gap for problem (1) can be derived from standard Fenchel duality arguments [28] and
it is equal to f(w) + λΩ(w) + f∗(−κ) for w,κ in R

p with Ω∗(κ) ≤ λ. Therefore, evaluating
the duality gap requires to compute efficiently Ω∗ in order to find a feasible dual variable κ. This is
equivalent to solving another network flow problem, based on the following variational formulation:

Ω∗(κ) = min
ξ∈Rp×|G|

τ s.t.
∑

g∈G

ξg = κ, and ∀g ∈ G, ‖ξg‖1 ≤ τηg with ξ
g
j = 0 if j /∈ g. (5)

In the network problem associated with (5), the capacities on the arcs (s, g), g ∈ G, are set to τηg ,
and the capacities on the arcs (j, t), j in [1; p], are fixed to κj . Solving problem (5) amounts to
finding the smallest value of τ , such that there exists a flow saturating the capacities κj on the arcs

leading to the sink t (i.e., ξ̄ = κ). The algorithm below is proven to be correct in [17].

Algorithm 2 Computation of the dual norm.

1: Inputs: κ ∈ R
p, a set of groups G, positive weights (ηg)g∈G .

2: Build the initial graph G0 = (V0, E0, s, t) as explained in Section 3.3.
3: τ ← dualNorm(V0, E0).
4: Return: τ (value of the dual norm).

Function dualNorm(V = Vu ∪ Vgr, E)

1: τ←(
∑

j∈Vu
κj)/(

∑

g∈Vgr
ηg) and set the capacities of arcs (s, g) to τηg for all g in Vgr.

2: Max-flow step: Update (ξ̄j)j∈Vu
by computing a max-flow on the graph (V,E, s, t).

3: if ∃ j ∈ Vu s.t. ξ̄j 6= κj then

4: Define (V +, E+) and (V −, E−) as in Algorithm 1, and set τ ← dualNorm(V −, E−).
5: end if
6: Return: τ .

4 Applications and Experiments

Our experiments use the algorithm of [4] based on our proximal operator, with weights ηg set to 1.

4.1 Speed Comparison

We compare our method (ProxFlow) and two generic optimization techniques, namely a subgradient
descent (SG) and an interior point method,6 on a regularized linear regression problem. Both SG and
ProxFlow are implemented in C++. Experiments are run on a single-core 2.8 GHz CPU. We con-
sider a design matrix X in R

n×p built from overcomplete dictionaries of discrete cosine transforms
(DCT), which are naturally organized on one- or two-dimensional grids and display local corre-
lations. The following families of groups G using this spatial information are thus considered: (1)
every contiguous sequence of length 3 for the one-dimensional case, and (2) every 3×3-square in the
two-dimensional setting. We generate vectors y in Rn according to the linear model y = Xw0 + ε,
where ε ∼ N (0, 0.01‖Xw0‖

2
2). The vector w0 has about 20% percent nonzero components, ran-

domly selected, while respecting the structure of G, and uniformly generated between [−1, 1].

In our experiments, the regularization parameter λ is chosen to achieve the same sparsity asw0. For
SG, we take the step size to be equal to a/(k+ b), where k is the iteration number, and (a, b) are the
best parameters selected in {10−3, . . . , 10}×{102, 103, 104}. For the interior point methods, since
problem (1) can be cast either as a quadratic (QP) or as a conic program (CP), we show in Figure 2
the results for both formulations. Our approach compares favorably with the other methods, on
three problems of different sizes, (n, p) ∈ {(100, 103), (1024, 104), (1024, 105)}, see Figure 2. In
addition, note that QP, CP and SG do not obtain sparse solutions, whereas ProxFlow does. We have
also run ProxFlow and SG on a larger dataset with (n, p) = (100, 106): after 12 hours, ProxFlow
and SG have reached a relative duality gap of 0.0006 and 0.02 respectively.7

6In our simulations, we use the commercial software Mosek, http://www.mosek.com/.
7Due to the computational burden, QP and CP could not be run on every problem.
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Figure 2: Speed comparisons: distance to the optimal primal value versus CPU time (log-log scale).6

Figure 3: From left to right: original image y; estimated background Xw; foreground (the sparsity
pattern of e used as mask on y) estimated with ℓ1; foreground estimated with ℓ1 + Ω; another
foreground obtained with Ω, on a different image, with the same values of λ1, λ2 as for the previous
image. For the top row, the percentage of pixels matching the ground truth is 98.8% with Ω, 87.0%
without. As for the bottom row, the result is 93.8% with Ω, 90.4% without (best seen in color).

4.2 Background Subtraction

Following [9, 10], we consider a background subtraction task. Given a sequence of frames from a
fixed camera, we try to segment out foreground objects in a new image. If we denote by y ∈ R

n a
test image, we model y as a sparse linear combination of p other images X ∈ R

n×p, plus an error
term e in R

n, i.e., y ≈ Xw + e for some sparse vector w in R
p. This approach is reminiscent

of [29] in the context of face recognition, where e is further made sparse to deal with occlusions.
The term Xw accounts for background parts present in both y and X, while e contains specific,
or foreground, objects in y. The resulting optimization problem is minw,e

1
2‖y−Xw− e‖22 +

λ1‖w‖1 + λ2‖e‖1, with λ1, λ2 ≥ 0. In this formulation, the ℓ1-norm penalty on e does not take
into account the fact that neighboring pixels in y are likely to share the same label (background or
foreground), which may lead to scattered pieces of foreground and background regions (Figure 3).
We therefore put an additional structured regularization term Ω on e, where the groups in G are
all the overlapping 3×3-squares on the image. A dataset with hand-segmented evaluation images
is used to illustrate the effect of Ω.8 For simplicity, we use a single regularization parameter, i.e.,
λ1 = λ2, chosen to maximize the number of pixels matching the ground truth. We consider p = 200
images with n = 57600 pixels (i.e., a resolution of 120×160, times 3 for the RGB channels). As
shown in Figure 3, adding Ω improves the background subtraction results for the two tested videos,
by encoding, unlike the ℓ1-norm, both spatial and color consistency.

4.3 Multi-Task Learning of Hierarchical Structures

In [12], Jenatton et al. have recently proposed to use a hierarchical structured norm to learn dictio-
naries of natural image patches. Following this work, we seek to represent n signals {y1, . . . ,yn}
of dimension m as sparse linear combinations of elements from a dictionary X = [x1, . . . ,xp]
in R

m×p. This can be expressed for all i in [1;n] as yi ≈ Xwi, for some sparse vector wi in R
p.

In [12], the dictionary elements are embedded in a predefined tree T , via a particular instance of the
structured norm Ω; we refer to it as Ωtree, and call G the underlying set of groups. In this case, each
signal yi admits a sparse decomposition in the form of a subtree of dictionary elements.

8
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
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Inspired by ideas from multi-task learning [14], we propose to learn the tree structure T by pruning
irrelevant parts of a larger initial tree T0. We achieve this by using an additional regularization
termΩjoint across the different decompositions, so that subtrees of T0 will simultaneously be removed

for all signals yi. In other words, the approach of [12] is extended by the following formulation:

min
X,W

1

n

n
∑

i=1

[1

2
‖yi −Xwi‖22 + λ1Ωtree(w

i)
]

+λ2Ωjoint(W), s.t. ‖xj‖2 ≤ 1, for all j in [1; p], (6)

where W , [w1, . . . ,wn] is the matrix of decomposition coefficients in R
p×n. The new regular-

ization term operates on the rows ofW and is defined as Ωjoint(W) ,
∑

g∈G maxi∈[1;n] |w
i
g|.

9 The

overall penalty on W, which results from the combination of Ωtree and Ωjoint, is itself an instance
of Ω with general overlapping groups, as defined in Eq (2).

To address problem (6), we use the same optimization scheme as [12], i.e., alternating between X
and W, fixing one variable while optimizing with respect to the other. The task we consider is the
denoising of natural image patches, with the same dataset and protocol as [12]. We study whether
learning the hierarchy of the dictionary elements improves the denoising performance, compared to
standard sparse coding (i.e., when Ωtree is the ℓ1-norm and λ2 = 0) and the hierarchical dictionary
learning of [12] based on predefined trees (i.e., λ2 = 0). The dimensions of the training set —
50 000 patches of size 8×8 for dictionaries with up to p = 400 elements — impose to handle large
graphs, with |E| ≈ |V | ≈ 4.107. Since problem (6) is too large to be solved many times to select the
regularization parameters (λ1, λ2) rigorously, we use the following heuristics: we optimize mostly
with the currently pruned tree held fixed (i.e., λ2 = 0), and only prune the tree (i.e., λ2 > 0)
every few steps on a random subset of 10 000 patches. We consider the same hierarchies as in [12],
involving between 30 and 400 dictionary elements. The regularization parameter λ1 is selected on
the validation set of 25 000 patches, for both sparse coding (Flat) and hierarchical dictionary learning
(Tree). Starting from the tree giving the best performance (in this case the largest one, see Figure 4),
we solve problem (6) following our heuristics, for increasing values of λ2. As shown in Figure 4,
there is a regime where our approach performs significantly better than the two other compared
methods. The standard deviation of the noise is 0.2 (the pixels have values in [0, 1]); no significant
improvements were observed for lower levels of noise.
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Figure 4: Left: Hierarchy obtained by pruning a larger tree of 76 elements. Right: Mean square
error versus dictionary size. The error bars represent two standard deviations, based on three runs.

5 Conclusion

We have presented a new optimization framework for solving sparse structured problems involving
sums of ℓ∞-norms of any (overlapping) groups of variables. Interestingly, this sheds new light on
connections between sparse methods and the literature of network flow optimization. In particular,
the proximal operator for the formulation we consider can be cast as a quadratic min-cost flow
problem, for which we propose an efficient and simple algorithm. This allows the use of accelerated
gradient methods. Several experiments demonstrate that our algorithm can be applied to a wide class
of learning problems, which have not been addressed before within sparse methods.
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