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Abstract

Active learning refers to algorithmic frameworks aimed at selecting training data
points in order to reduce the number of required training data points and/or im-
prove the generalization performance of a learning method.In this paper, we
present an asymptotic analysis of active learning for generalized linear models.
Our analysis holds under the common practical situation of model misspecifica-
tion, and is based on realistic assumptions regarding the nature of the sampling
distributions, which are usually neither independent nor identical. We derive un-
biased estimators of generalization performance, as well as estimators of expected
reduction in generalization error after adding a new training data point, that allow
us to optimize its sampling distribution through a convex optimization problem.
Our analysis naturally leads to an algorithm for sequentialactive learning which is
applicable for all tasks supported by generalized linear models (e.g., binary clas-
sification, multi-class classification, regression) and can be applied in non-linear
settings through the use of Mercer kernels.

1 Introduction

The goal of active learning is to select training data pointsso that the number of required training
data points for a given performance is smaller than the number which is required when randomly
sampling those points. Active learning has emerged as a dynamic field of research in machine learn-
ing and statistics [1], from early works in optimal experimental design [2, 3], to recent theoretical
results [4] and applications, in text retrieval [5], image retrieval [6] or bioinformatics [7].

Despite the numerous successful applications of active learning to reduce the number of required
training data points, many authors have also reported caseswhere widely applied active learning
heuristic schemes such as maximum uncertainty sampling perform worse than random selection [8,
9], casting doubt into the practical applicability of active learning: why would a practitioner use an
active learning strategy that is not ensuring, unless the data satisfy possibly unrealistic and usually
non verifiable assumptions, that it performs better than random? The objectives of this paper are
(1) to provide a theoretical analysis of active learning with realistic assumptions and (2) to derive a
principled algorithm for active learning with guaranteed consistency.

In this paper, we considergeneralized linear models[10], which provide flexible and widely used
tools for many supervised learning tasks (Section 2). Our analysis is based on asymptotic arguments,
and follows previous asymptotic analysis of active learning [11, 12, 9, 13]; however, as shown in
Section 4, we do not rely on correct model specification and assume that the data are not identically
distributed and may not be independent. As shown in Section 5, our theoretical results naturally
lead to convex optimization problems for selecting training data point in a sequential design. In
Section 6, we present simulations on synthetic data, illustrating our algorithms and comparing them
favorably to usual active learning schemes.



2 Generalized linear models

Given datax ∈ R
d, and targetsy in a setY, we consider the problem of modeling the conditional

probabilityp(y|x) through a generalized linear model (GLIM) [10]. We assume that we are given
an exponential family adapted to our prediction task, of theform p(y|η) = exp(η>T (y) − ψ(η)),
whereT (y) is ak-dimensional vector of sufficient statistics,η ∈ R

k is vector of natural parameters
andψ(η) is the convex log-partition function. We then consider the generalized linear model defined
asp(y|x, θ) = exp(tr(θ>xT (y)>)−ψ(θ>x)), whereθ ∈ Θ ⊂ R

d×k. The framework of GLIMs is
general enough to accomodate many supervised learning tasks [10], in particular:

• Binary classification: the Bernoulli distribution leads tologistic regression, with Y =
{0, 1}, T (y) = y andψ(η) = log(1 + eη).

• k-class classification: the multinomial distribution leads tosoftmax regression, with Y =

{y ∈ {0, 1}k,
∑k

i=1 yi = 1}, T (y) = y andψ(η) = log(
∑k

i=1 e
ηi).

• Regression: the normal distribution leads toY = R, T (y) = (y,− 1
2y

2)> ∈ R
2, and

ψ(η1, η2) = − 1
2 log η2 + 1

2 log 2π +
η2
1

2η2
. When bothη1 andη2 depends linearly onx, we

have an heteroscedastic model, while ifη2 is constant for allx, we obtain homoscedastic
regression (constant noise variance).

Maximum likelihood estimation We assume that we are given independent and identically dis-
tributed (i.i.d.) data sampled from the distributionp0(x, y) = p0(x)p0(y|x). Themaximum likeli-
hood population estimatorθ0 is defined as the minimizer of the expectation underp0 of the negative
log-likelihood`(y, x, θ) = −tr(θ>xT (y)>) + ψ(θ>x). The function`(y, x, θ) is convex inθ and
by taking derivatives and using the classical relationshipbetween the derivative of the log-partition
and the expected sufficient statistics [10], the populationmaximum likelihood estimate is defined
by:

Ep0(x,y)∇`(y, x, θ0) = Ep0(x)

{
x(Ep(y|x,θ0)T (y) −Ep0(y|x)T (y))>

}
= 0 (1)

Given i.i.d data(xi, yi), i = 1, . . . , n, we use the penalized maximum likelihood estimator, which
minimizes

∑n
i=1 `(yi, xi, θ) + 1

2λtrθ>θ. The minimization is performed by Newton’s method [14].

Model specification A GLIM is said well-specifiedis there exists aθ ∈ R
d×k such that for

all x ∈ R
d, Ep(y|x,θ)T (y) = Ep0(y|x)T (y). A sufficient condition for correct specification is that

there existθ ∈ R
d×k such that for allx ∈ R

d, y ∈ Y, p(y|x, θ) = p0(y|x). This condition is
necessary for the Bernoulli and multinomial exponential family, but not for example for the normal
distribution. In practice, the model is often misspecified and it is thus of importance to consider
potential misspecification while deriving asymptotic expansions.

Kernels The theoretical results of this paper mainly focus on generalized linear models; however,
they can be readily generalized to non-linear settings by using Mercer kernels [15], for example
leading to kernel logistic regression or kernel ridge regression. When the data are given by a kernel
matrix, we can use the incomplete Cholesky decomposition [16] to find an approximate basis of the
feature space on which the usual linear methods can be applied. Note that our asymptotic results do
not hold when the number of parameters may grow with the data (which is the case for kernels such
as the Gaussian kernel). However, our dimensionality reduction procedure uses a non-parametric
method on the entire (usually large) training dataset and wethen consider a finite dimensional prob-
lem on a much smaller sample. If the whole training dataset islarge enough, then the dimension
reduction procedure may be considered deterministic and our criteria may apply.

3 Active learning set-up

We consider the following “pool-based” active learning scenario: we have a large set of i.i.d. data
pointsxi ∈ R

d, i = 1, . . . ,m sampled fromp0(x). The goal of active learning is to select the points
to label, i.e., the points for which the correspondingyi will be observed. We assume that given
xi, i = 1, . . . , n, the targetsyi, i = 1, . . . , n are independent and sampled from the corresponding
conditional distributionp0(yi|xi). This active learning set-up is well studied and appears naturally
in many applications where the input distributionp0(x) is only known through i.i.d. samples [5, 17].
For alternative scenarii, where the densityp0(x) is known, see e.g. [18, 19, 20].



More precisely, we assume that the pointsxi are selected sequentially, and we let denote
qi(xi|x1, . . . , xi−1) the sampling distribution ofxi given the previously observed points. In
situations where the data are not sampled from the testing distribution, it has proved advanta-
geous to consider likelihood weighting techniques [13, 19], and we thus consider weightswi =

wi(xi|x1, . . . , xi−1). We let θ̂n denote the weighted penalized ML estimator, defined as the mini-
mum with respect toθ of ∑n

i=1 wi`(yi, xi, θ) + λ
2 trθ>θ. (2)

In this paper, we work with two different assumptions regarding the sequential sampling dis-
tributions: (1) the variablesxi are independent, i.e.,qi(xi|x1, . . . , xi−1) = qi(xi), (2) the
variablexi depends onx1, . . . , xi−1 only through the current empirical ML estimator̂θi, i.e.,
qi(xi|x1, . . . , xi−1) = q(xi|θ̂i), whereq(xi|θ) is a pre-specified sampling distribution. The first
assumption is not realistic, but readily leads to asymptotic expansions. The second assumption is
more realistic, as most of the heuristic schemes for sequential active learning satisfy this assumption.
It turns out that under certain assumption, the asymptotic expansions of the expected generalization
performance for both sets of assumptions are identical.

4 Asymptotic expansions

In this section, we derive the asymptotic expansions that will lead to active learning algorithms in
Section 5. Throughout this section, we assume thatp0(x) has a compact supportK and has a twice
differentiable density with respect to the Lebesgue measure, and that all sampling distributions have
a compact support included in the one ofp0(x) and have twice differentiable densities.

We first make the assumption that the variablesxi are independent, i.e., we have sampling distri-
butionsqi(xi) and weightswi(xi), both measurable, and such thatwi(xi) > 0 for all xi ∈ K. In
Section 4.4, we extend some of our results to the dependent case.

4.1 Bias and variance of ML estimator

The following proposition is a simple extension to non identically distributed observations, of clas-
sical results on maximum likelihood for misspecified generalized linear models [21, 13]. We letED

andvarD denote the expectation and variance with respect to the dataD = {(xi, yi), i = 1, . . . , n}.

Proposition 1 We letθn denote the minimizer of
∑n

i=1Eqi(xi)p0(yi|xi)wi(xi)`(yi, xi, θ). If (a) the
weight functionswn and the sampling densitiesqn are pointwise strictly positive and such that
wn(x)qn(x) converges in theL∞-norm, and (b)Eqn(x)w

2
n(x) is bounded , then̂θn − θn converges

to zero in probability and we have

ED θ̂n = θn +O(n−1) and varD θ̂n = 1
n
J−1

n InJ
−1
n +O(n−2) (3)

whereJn = 1
n

∑n
i=1Eqi(x)wi(x)∇

2`(x, θn) can be consistently estimated byĴn = 1
n

∑n
i=1 wihi

andIn = 1
n

∑n
i=1Eqi(x)p0(y|x)wi(x)

2∇`(y, x, θn)∇`(y, x, θn)> can be consistently estimated by

În = 1
n

∑n
i=1 w

2
i gig

>
i , wheregi = ∇`(yi, xi, θ̂n) andhi = ∇2`(xi, θ̂n).

From Proposition 1, it is worth noting that in generalθn will not converge to the population maxi-
mum likelihood estimateθ0, i.e., using a different sampling distribution thanp0(x) may introduce
a non asymptotically vanishing bias in estimatingθ0. Thus, active learning requires to ensure that
(a) our estimators have a low bias and variance in estimatingθn, and (b) thatθn does actually con-
verge toθ0. This double objective is taken care of by our estimates of generalization performance in
Propositions 2 and 3.

There are two situations, however, whereθn is equal toθ0. First, if the model is well specified,
then whatever the sampling distributions are,θn is the population ML estimate (which is a simple
consequence of the fact thatEp(y|x,θ0)T (y) = Ep0(y|x)T (y), for all x, implies that, for allq(x),
Eq(x)p0(y|x)∇`(y, x, θ) = Eq(x)

{
x(Ep(y|x,θ0)T (y) − Ep0(y|x)T (y))>

}
= 0).

Second, Whenwn(x) = p0(x)/qn(x), thenθn is also equal toθ0, and we refer to this weighting
scheme as the unbiased reweighting scheme, which was used by[19] in the context of active learn-
ing. We refer to the weightswu

n = p0(xn)/qn(xn) as theimportanceweights. Note however, that



restricting ourselves to such unbiased estimators, as donein [19] might not be optimal because they
may lead to higher variance [13], in particular due to the potential high variance of the importance
weights (see simulations in Section 6).

4.2 Expected generalization performance

We letLu(θ) = Ep0(x)p0(y|x)`(y, x, θ) denote the generalization performance1 of the parameterθ.

We now provide an unbiased estimator of the expected generalization error ofθ̂n, which generalized
the Akaike information criterion [22] (for a proof, see [23]):

Proposition 2 In addition to the assumptions of Proposition 1, we assume that
Eqn(x) (p0(x)/qn(x))

2 is bounded. Let

Ĝ = 1
n

∑n
i=1 w

u
i `(yi, xi, θ̂n) + 1

n

(
1
n

∑n
i=1 w

u
i wig

>
i (Ĵn)−1gi

)
, (4)

wherewu
i = p0(xi)/qi(xi). Ĝ is an asymptotically unbiased estimator ofEDL

u(θ̂n), i.e.,EDĜ =

EDL
u(θ̂n) +O(n−2).

The criterionĜ is a sum of two terms: the second term corresponds to a variance term and will
converge to zero in probability at rateO(n−1); the first term, however, which corresponds to a
selection bias induced by a specific choice of sampling distributions, will not always converge to
the minimum possible valueLu(θ0). Thus, in order to ensure that our active learning method are
consistent, we have to ensure that this first term is going to its minimum value. One simple way to
achieve this is to always optimize our weights so that the estimateĜ is smaller than the estimate for
the unbiased reweighting scheme (see Section 5).

4.3 Expected performance gain

We now look at the following situation: we are given the firstn data points(xi, yi) and the cur-
rent estimatêθn, the gradientsgi = ∇`(yi, xi, θ̂n), the Hessianshi = ∇2`(xi, θ̂n) and the third
derivativesTi = ∇3`(xi, θ̂n), we consider the following criterion, which depends on the sampling
distributions and weights of the(n+ 1)-th point:

Ĥ(qn+1, wn+1|α, β) = 1
n3

∑n
i=1 αiw

u
i wn+1(xi)

qn+1(xi)
p0(xi)

+
∑n

i=1 βiw
u
i wn+1(xi)

2 qn+1(xi)
p0(xi)

(5)

where αi = −(n+ 1)ng̃>i ĴnA− wiw
u
i g̃

>
i hig̃i + wu

i g̃
>
i Ĵng̃i − 2g̃>i B

−wig̃
>
i Ĵ

u
n g̃i + Ti[g̃i, C] − 2wig̃

>
i hiA+ Ti[A, g̃i, g̃i] (6)

βi =
1

2
g̃>i Ĵ

u
n g̃i +A>hig̃i (7)

with g̃i = Ĵ−1
n gi, A = Ĵ−1

n
1
n

∑n
i=1 w

u
i gi, B =

∑n
i=1 w

u
i wihig̃i, C =

∑n
i=1 wiw

u
i g̃ig̃

>
i , Ĵu

n =
1
n

∑n
i=1 w

u
i hi.

The following proposition shows that̂H(qn+1, wn+1|α, β) is an estimate of the expected perfor-
mance gain of choosing a pointxn+1 according to distributionqn+1 and weightwn+1 (and marginal-
izing overyn+1) and may be used as an objective function for learning the distributionsqn+1, wn+1

(for a proof, see [23]). In Section 5, we show that if the distributions and weights are properly
parameterized, this leads to a convex optimization problem.

Proposition 3 We assume thatEqn(x)w
2
n(x) andEqn(x) (p0(x)/qn(x))

2 are bounded. We let de-

note θ̂n denote the weighted ML estimator obtained from the firstn points, andθ̂n+1 the one-step
estimator obtained from the firstn+1 points, i.e.,̂θn+1 is obtained by one Newton step from̂θn [24];
then the criterion defined in Eq. (5) is such thatEDĤ(qn+1, wn+1) = EDL

u(θ̂n)−EDL
u(θ̂n+1)+

O(n−3), whereED denotes the expectation with respect to the firstn+1 data points and their labels.
Moreover, forn large enough, all values ofβi are positive.

1In this paper, we use the negative log-likelihood as a measure of performance, which allows simple asymp-
totic expansions, and the focus of the paper is about the differences between testing and training sampling
distributions. The study of potentially different costs for testing and trainingis beyond the scope of this paper.



Note that many of the terms in Eq. (6) and Eq. (7) are dedicatedto weighting schemes for the first
n points other than the unbiased reweighting scheme. For the unbiased reweighting scheme where
wi = wu

i , for i = 1, . . . , n, thenA = 0 and the equations may be simplified.

4.4 Dependent observations

In this section, we show that under a certain form of weak dependence between the data points
xi, i = 1, . . . , n, then the results presented in Propositions 1 and 2 still hold. For simplicity and
brevity, we restrict ourselves to the unbiased reweightingscheme, i.e.,wn(xn|x1, . . . , xn−1) =
p0(xn)/qn(xn|x1, . . . , xn−1) for all n, and we assume that those weights are uniformly bounded
away from zero and infinity. In addition, we only prove our result in the well-specified case, which
leads to a simpler argument for the consistency of the estimator.

Many sequential active learning schemes select a training data point with a distribution or criterion
that depends on the estimate so far (see Section 6 for details). We thus assume that the sampling
distributionqn is of the formq(xn|θ̂n), whereq(x|θ) is a fixed set of smooth parameterized densities.

Proposition 4 (for a proof, see [23]) Let

Ĝ = 1
n

∑n
i=1 wi`(yi, xi, θ̂n) + 1

n

(
1
n

∑n
i=1 w

2
i g

>
i (Ĵn)−1gi

)
, (8)

wherewi = wu
i = p0(xi)/q(xi|θ̂i). Ĝ is an asymptotically unbiased estimator ofEDL

u(θ̂n), i.e.,
EDĜ = EDL

u(θ̂n) +O(log(n)n−2).

The estimator is the same as in Proposition 2. The effect of the dependence is asymptotically negli-
gible and only impacts the result with the presence of an additional log(n) term. In the algorithms
presented in Section 5, the distributionqn is obtained as the solution of a convex optimization prob-
lem, and thus the previous theorem does not readily apply. However, whenn gets large,qn depends
on the previous data points only through the first two derivatives of the objective function of the
convex problem, which are empirical averages of certain functions of all currently observed data
points; we are currently working out a generalization of Proposition 4 that allows the dependence
on certain empirical moments and potential misspecification.

5 Algorithms

In Section 4, we have derived a criterion̂H in Eq. (5) that enables to optimize the sampling density
of the (n + 1)-th point, and an estimatêG in Eq. (4) and Eq. (8) of the generalization error. Our
algorithms are composed of the following three ingredients:

1. Those criteria assume that the variance of the importanceweightswu
n = p0(xn)/qn(xn) is

controlled. In order to make sure that those results apply, our algorithms will ensure that
this condition is met.

2. The sampling densityqn+1 will be obtained by minimizingĤ(wn+1, qn+1|α, β) for a cer-
tain parameterization ofqn+1 andwn+1. It turns out that those minimization problems are
convex, and can thus be efficiently solved, without local minima.

3. Once a new sample has been selected, and its label observed, Proposition 4 is used in a way
similar to [13], in order to search for the best mixture between the current weights(wi) and
the importance weights(wu

i ), i.e., we look at weights of the formwγ
i (wu

i )1−γ and perform
a grid search onγ to findγ such thatĜ in Eq. (4) is minimum.

The main interest of the first and third points is that we obtain a final estimator ofθ0 which is at
least provably consistent: indeed, although our criteria are obtained from an assumption of indepen-
dence, the generalization performance result also holds for “weakly” dependent observations and
thus ensures the consistency of our approach. Thus, as opposed to most previous active learning
heuristics, our estimator will always converge (in probability) to the ML estimator. In Section 6, we
show empirically that usual heuristic schemes do not share this property.

Convex optimization problem We assume that we have a fixed set of candidate distributions
sk(x) of the formsk(x) = p0(x)rk(x). Note that the multiplicative form of our candidate distri-



butions allows efficient sampling from a pool of samples ofp0. We look at distributionsqn+1(x)
with mixture density of the forms(x|η) =

∑
k ηksk(x) = p0(x)r(x), where the weightsη are

non-negative and sum to one. The criterion̂H(qn+1, wn+1|α, β) in Eq. (5) is thus a function
H(η|α, β) of η. We consider two weighting schemes: (a) one with all weightsequal to one (unit
weighting scheme) which leads toH0(η|α, β), and (b) the unbiased reweighting scheme, where
wn+1(x) = p0(x)/qn+1(x), which leads toH1(η|α, β). We have

H0(η|α, β) = 1
n3

∑
k ηk (

∑n
i=1(αi + βi)w

u
i sk(xi)) , (9)

H1(η|α, β) = 1
n3

∑n
i=1 αiw

u
i +

∑n
i=1

βiw
u

i∑
k

ηksk(xi)
. (10)

The functionH0(η) is linear inη, while the functionH1(η) is the sum of a constant and positive
inverse functions, and is thus convex [14].

Unless natural candidate distributionssk(x) can be defined for the active learning problem, we use
the set of distributions obtained as follows: we perform K-means clustering with a large numberp of
clusters (e.g., 100 or 200), and then consider functionsrk(x) of the formrk(x) = 1

Zk

e−αk‖x−µk‖
2

,
whereαk is one element of a finite given set of parameters, andµk is one of thep centroids
y1, . . . , yp, obtained from K-means. We let̃wi denote the number of data points assigned to the
centroidyi. We normalize byZk =

∑p
i=1 w̃ie

−αk‖yi−µk‖
2

/
∑p

i=1 w̃i. We thus obtainedO(p) can-
didate distributionsrk(x), which, if p is large enough, provides a flexible yet tractable set of mixture
distributions.

One additional element is the constraint on the variance of the importance weights. The variance of
wu

n+1 can be estimated asvarwu
n+1 =

∑m
i=1

w̃i

r(xi)
− 1 =

∑m
i=1

w̃i∑
k

ηkrk(xi)
− 1 = V (η), which

is convex inη. Thus constraining the variance of the new weights leads to aconvex optimization
problem, with convex objective and convex constraints, which can be solved efficiently by the log-
barrier method [14], with cubic complexity in the number of candidate distributions.

Algorithms We have three versions of our algorithm, one with unit weights (referred to as “no
weight”) which optimizesH0(η|α, β) at each iteration, one with the unbiased reweighting scheme,
which optimizesH1(η|α, β) (referred to as ”unbiased”) and one which does both and chooses the
best one, as measured bŷH (referred to as ”full”): in the initialization phase, K-means is run to
generate candidate distributions that will be used throughout the sampling of new points. Then, in
order to select the new training data pointxn+1, the scoresα andβ are computed from Eq. (6) and
Eq. (7), then the appropriate cost function,H0(η|α, β),H1(η|α, β) (or both) is minimized and once
η is obtained, we samplexn+1 from the corresponding distribution, and compute the weightswn+1

andwu
n+1. As described earlier, we then findγ such thatĜ((wγ

i (wu
i )1−γ)i) in Eq. (4) is minimized

and update weights accordingly.

Regularization parameter In the active learning set-up, the number of samples used forlearning
varies a lot. It is thus not possible to use a constant regularization parameter. We thus learn it by
cross-validation every 10 new samples.

6 Simulation experiments

In this section, we present simulation experiments on synthetic examples (sampled from Gaussian
mixtures in two dimensions), for the task of binary and 3-class classification. We compare our al-
gorithms to the following three active learning frameworks. In themaximum uncertaintyframework
(referred to as “maxunc”), the next training data point is selected such that the entropy ofp(y|x, θ̂n)
is maximal [17]. In themaximum variance reductionframework [25, 9] (referred to as “varred”), the
next point is selected so that the variance of the resulting estimator has the lowest determinant, which
is equivalent to findingx such thattr∇(x, θ̂n)Ĵ−1

n is minimum. Note that this criterion has theo-
retical justification under correct model specification. Intheminimum prediction errorframework
(referred to as “minpred”), the next point is selected so that it reduces the most the expected log-loss,
with the current model as an estimate of the unknown conditional probabilityp0(y|x) [5, 8].

Sampling densities In Figure 1, we look at the limit selected sampling densities, i.e., we assume
that a large number of points has been sampled, and we look at the criterionĤ in Eq. (5). We
show the density obtained from the unbiased reweighting scheme (middle of Figure 1), as well as
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Figure 1: Proposal distributions: (Left) densityp0(x) with the two different classes (red and blue),
(Middle) best density with unbiased reweighting, (Right) functionγ(x) such thatĤ(qn+1(x), 1) =∫
γ(x)qn+1(x)dx (see text for details).
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Figure 2: Error rates vs. number of samples averaged over 10 replications sampled from same dis-
tribution as in Figure 1: (Left) random sampling and active learning ”full”, with standard deviations,
(Middle) Comparison of the two schemes “unbiased” and ”no weight”, (Right) Comparison with
other methods.

the functionγ(x) (right of Figure 1) such that, for the unit weighting scheme,Ĥ(qn+1(x), 1) =∫
γ(x)qn+1(x)dx. In this framework, minimizing the cost without any constraint leads to a Dirac

at the maximum ofγ(x), while minimizing with a constraint on the variance of the corresponding
importance weights will select point with high values ofγ(x). We also show the lineθ>0 x = 0.
From Figure 1, we see that (a) the unit weighting scheme tendsto be more selective (i.e., finer grain)
than the unbiased scheme, and (b) that the mode of the optimaldensities are close to the maximum
uncertainty hyperplane but some parts of this hyperplane are in fact leading to negative cost gains
(e.g., the part of the hyperplane crossing the central blob), hinting at the bad potential behavior of
the maximum uncertainty framework.

Comparison with other algorithms In Figure 2 and Figure 1, we compare the performance of
our active learning algorithms. In the left of Figure 2, we see that our active learning framework does
perform better on average but also leads to smaller variance. In the middle of Figure 2, we compare
the two schemes “no weight” and “unbiased”, showing the superiority of the unit weighting scheme
and the significance of our asymptotic results in Proposition 2 and 3 which extend the unbiased
framework of [13]. In the right of Figure 2 and in Figure 3, we compare with the other usual
heuristic schemes: our “full” algorithm outperforms otherschemes; moreover, in those experiments,
the other schemes do perform worse than random sampling and converge to the wrong estimator, a
bad situation that our algorithms provably avoid.

7 Conclusion

We have presented a theoretical asymptotic analysis of active learning for generalized linear models,
under realistic sampling assumptions. From this analysis,we obtain convex criteria which can be
optimized to provide algorithms for online optimization ofthe sampling distributions. This work
naturally leads to several extensions. First, our framework is not limited to generalized linear mod-
els, but can be readily extended to any convex differentiableM -estimators [24]. Second, it seems
advantageous to combine our active learning analysis with semi-supervised learning frameworks, in
particular ones based on data-dependent regularization [26]. Finally, we are currently investigating
applications to large scale image retrieval tasks, where unlabelled data are abundant but labelled data
are scarce.
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Figure 3: Error rates vs. number of samples averaged over 10 replications for 3 classes: (left) data,
(right) comparisons of methods.

References

[1] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning withstatistical models.J. Art. Intel. Res.,
4:129–145, 1996.

[2] V. V. Fedorov.Theory of optimal experiments. Academic Press, 1972.

[3] P. Chaudhuri and P. A. Mykland. On efficient designing of nonlinear experiments.Stat. Sin., 5:421–440,
1995.

[4] S. Dasgupta. Coarse sample complexity bounds for active learning. In Adv. NIPS 18, 2006.

[5] N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction.
In Proc. ICML, 2001.

[6] S. Tong and E. Chang. Support vector machine active learning for image retrieval. InProc. ACM Multi-
media, 2001.

[7] M. Warmuth, G. R̈atsch, M. Mathieson, J. Liao, and C. Lemmen. Active learning in the drugdiscovery
process. InAdv. NIPS 14, 2002.

[8] X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using
Gaussian fields and harmonic functions. InProc. ICML, 2003.

[9] A I. Schein.Active Learning for Logistic Regression. Ph.D. diss., U. Penn., 2005. CIS Dpt.

[10] P. McCullagh and J. A. Nelder.Generalized Linear Models. Chapman and Hall, 1989.

[11] T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for classification problems.
In Proc. ICML, 2000.

[12] O. Chapelle. Active learning for parzen window classifier. InProc. AISTATS, 2005.

[13] H. Shimodaira. Improving predictive inference under covariateshift by weighting the log-likelihood
function. J. Stat. Plan. Inf., 90:227–244, 2000.

[14] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge Univ. Press, 2003.

[15] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.

[16] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.J. Mach. Learn.
Res., 2:243–264, 2001.

[17] S. Tong and D. Koller. Support vector machine active learning withapplications to text classification. In
Proc. ICML, 2000.

[18] K. Fukumizu. Active learning in multilayer perceptrons. InAdv. NIPS 8, 1996.

[19] T. Kanamori and H. Shimodaira. Active learning algorithm using themaximum weighted log-likelihood
estimator.J. Stat. Plan. Inf., 116:149–162, 2003.

[20] T. Kanamori. Statistical asymptotic theory of active learning.Ann. Inst. Stat. Math., 54(3):459–475, 2002.

[21] H. White. Maximum likelihood estimation of misspecified models.Econometrica, 50(1):1–26, 1982.

[22] H. Akaike. A new look at statistical model identification.IEEE Trans. Aut. Cont., 19:716–722, 1974.

[23] F. R. Bach. Active learning for misspecified generalized linear models. Technical Report N15/06/MM,
Ecole des Mines de Paris, 2006.

[24] A. W. Van der Vaart.Asymptotic Statistics. Cambridge Univ. Press, 1998.

[25] D. MacKay. Information-based objective functions for active data selection. Neural Computation,
4(4):590–604, 1992.

[26] Y. Bengio and Y Grandvalet. Semi-supervised learning by entropyminimization. InAdv. NIPS 17, 2005.


