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Abstract

We present a generative model for performing sparse probabilistic projections,
which includes sparse principal component analysis and sparse canonical corre-
lation analysis as special cases. Sparsity is enforced by means of automatic rele-
vance determination or by imposing appropriate prior distributions, such as gener-
alised hyperbolic distributions. We derive a variational Expectation-Maximisation
algorithm for the estimation of the hyperparameters and show that our novel prob-
abilistic approach compares favourably to existing techniques. We illustrate how
the proposed method can be applied in the context of cryptoanalysis as a pre-
processing tool for the construction of template attacks.

1 Introduction

Principal component analysis (PCA) is widely used for data pre-processing, data compression and
dimensionality reduction. However, PCA suffers from the fact that each principal component is a
linear combination of all the original variables. It is thus often difficult to interpret the results. In
recent years, several methods for sparse PCA have been designed to find projections which retain
maximal variance, while enforcing many entries of the projection matrix to be zero [20, 6]. While
most of these methods are based on convex or partially convex relaxations of the sparse PCA prob-
lem, [16] has looked at using the probabilistic PCA framework of [18] along with `1-regularisation.
Canonical correlation analysis (CCA) is also commonly used in the context for dimensionality re-
duction.The goal is here to capture features that are common to several views of the same data.
Recent attempts for constructing sparse CCA include [10, 19].

In this paper, we build on the probabilistic interpretation of CCA outlined by [2] and further extended
by [13]. We introduce a general probabilistic model, which allows us to infer from an arbitrary
number of views of the data, both a shared latent representation and individual low-dimensional
representations of each one of them. Hence, the probabilistic reformulations of PCA and CCA fit
this probabilistic framework. Moreover, we are interested in sparse solutions, as these are important
for interpretation purposes, denoising or feature extraction. We consider a Bayesian approach to
the problem. A proper probabilistic approach allows us to treat the trade-off between the modelling
accuracy (of the high-dimensional observations by low-dimensional latent variables) and the degree
of sparsity of the projection directions in principled way. For example, we do not need to estimate
the sparse components successively, using, e.g., deflation, but we can estimate all sparse directions
jointly as we are taking the uncertainty of the latent variable into account.

In order to ensure sparse solutions we propose two strategies. The first one, discussed in Ap-
pendix A, is based on automatic relevance determination (ARD) [14]. No parameter needs to be
set in advance. The entries in the projection matrix which are not well determined by the data are
automatically driven to zero. The second approach uses priors from the generalised hyperbolic fam-
ily [3], and more specifically the inverse Gamma. In this case, the degree of sparsity can be adjusted,
eventually leading to very sparse solutions if desired. For both approaches we derive a variational
EM algorithm [15].
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Figure 1: (a) Graphical model (see text for details). Arrows denote conditional dependencies.
Shaded and unshaded nodes are respectively observed and unobserved random variables. Plates
indicate repetitions. (b) Marginal prior on the individual matrix entries (b = 1).

2 Generative model

We consider the graphical model shown in Figure 1(a). For each observation, we haveP independent
measurements x1, . . . ,xP in different measurement spaces or views. The measurement xp ∈ RDp

is modelled as a mix of a common (or view independent) continuous latent vector y0 ∈ RQ0 and a
view dependent continuous latent vector yp ∈ RQp , such that

xp = Wpy0 + Vpyp + µp + εp, Wp ∈ RDp×Q0 , Vp ∈ RDp×Qp , (1)

where {µp}Pp=1 are the view dependent offsets and εp ∼ N (0, τ−1
p IDp

) is the residual error in view
p.

We are interested in the case where y0 and yp are low-dimensional vectors, i.e., Q0, Qp � Dp for
all p. We impose Gaussian priors on the latent vectors:

y0 ∼ N (0,Φ−1
0 ), yp ∼ N (0,Φ−1

p ), p ∈ {1, . . . , P}. (2)
The resulting generative model comprises a number of popular probabilistic projection techniques as
special cases. If there is a single view (and a single latent cause) and the prior covariance is diagonal,
we recover probabilistic factor analysis [9]. If the prior is also isotropic, then we get probabilistic
PCA [18]. If there are two views, we recover probabilistic CCA [2].

We seek a solution for which the matrices {Wp}Pp=1 and {Vp}Pp=1 are sparse, i.e. most of their en-
tries are zero. One way to achieve sparsity is by means of ARD-type priors [14]. In this framework,
a zero-mean Gaussian prior is imposed on the entries of the weight matrices:

wipj ∼ N (0, 1/αipj), ip ∈ {1, . . . , Dp}, j ∈ {1, . . . , Q0}, (3)

vipkp ∼ N (0, 1/βipkp), ip ∈ {1, . . . , Dp}, kp ∈ {1, . . . , Qp}. (4)
Type II maximum likelihood leads then to a sparse solution when considering independent hyper-
parameters. The updates arising in the context of probabilistic projections are given in Appendix A.
Since marginalisation with respect to both the latent vectors and the weights is intractable, we apply
variational EM [15]. Unfortunately, following this route does not allow us to adjust the degree of
sparsity, which is important e.g. for interpretation purposes or for feature extraction.

Hence, we seek a more flexible approach. In the remaining of this paper, we will assume that the
marginal prior on each weight λij , which is either an entry of {Wp}Pp=1 or {Vp}Pp=1 and will be
defined shortly, has the form of an (infinite) weighted sum of scaled Gaussians:

p(λij) =
∫
N (0, γ−1

ij ) p(γij) dγij . (5)

We will chose the prior over γij in such a way that the resulting marginal prior over the correspond-
ing λij induces sparsity. A similar approach was followed in the context of sparse nonparametric
Bayesian regression in [4, 5].
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2.1 Compact reformulation of the generative model

Before discussing the approximate inference scheme, we rewrite the model in a more compact way.
Let us denote the nth observation, the corresponding latent vector and the means respectively by

xn =
(
x>n1, . . . ,x

>
nP

)>
, zn =

(
y>n0,y

>
n1, . . . ,y

>
nP

)>
, µ =

(
µ>1 , . . . ,µ

>
P

)>
.

The generative model can be reformulated as follows:

zn ∼ N (0,Φ−1), Φ ∈ RQ×Q, Q = Q0 +
∑
pQp, (6)

λij |γij ∼ N (0, γ−1
ij ), i ∈ {1, . . . , D}, j ∈ {1, . . . , Q}, D =

∑
pDp, (7)

xn|zn,Λ ∼ N (Λzn + µ,Ψ−1), Λ ∈ RD×Q, Ψ ∈ RD×D, (8)

where

Λ =

 Λ1

...
ΛP

 =

 W1 V1 . . . 0
...

...
. . .

...
WP 0 . . . VP

 , Ψ =

 τ1ID1 . . . 0
...

. . .
...

0 . . . τP IDP

 .

Note that we do not assume that the latent spaces are correlated as Φ = diag{Φ0,Φ1, . . . ,ΦP }.
This is consistent with the fact the common latent space is modelled independently through y0.
Subsequently, we will also denote the matrix of the hyperparameters by Γ ∈ RD×Q, where we set
(and fix) γij =∞ for all λij = 0.

2.2 Sparsity inducing prior over the individual scale variables

We impose an inverse Gamma prior on the scale variable γij :

γij ∼ IG(a/DQ, b), (9)

for all i and j. The shape parameter a and the scale parameter b are non-negative. The marginal prior
on the weight λij is then in the class of the generalised hyperbolic distributions [3] and is defined in
terms of the modified Bessel function of the third kind Kω(·):

p(λij) =

√
2
π

b
a

DQ

Γ( a
DQ )

(
λ2
ij

2b

) a
2DQ−

1
4

K a
DQ−

1
2

(√
2bλ2

ij

)
(10)

for λij 6= 0, and

lim
λij→0

p(λij) =

{ √
b

2π

Γ( a
DQ−

1
2 )

Γ( a
DQ )

a
DQ > 1

2 ,

∞ otherwise.
(11)

The function Γ(·) is the (complete) Gamma function.

The effective prior on the individual weights is shown in Figure 1(b). Intuitively, the joint distribu-
tion over the weights is sparsity inducing as it is sharply peaked around zero (and in fact infinite for
sufficiently small a). It favours only a small number of weights to be non-zero if the scale variable
b is sufficiently large. For a more formal discussion in the context of regression we refer to [7].

It is interesting to note that for a/DQ = 1 we recover the popular Laplace prior, which is equivalent
to the `1-regulariser or the LASSO [17], and for a/DQ → 0 and b → 0 the resulting prior is
the Normal-Jeffreys prior. In fact, the automatic thresholding method described in Appendix A
fits also into the framework defined by (5). However, it corresponds to imposing a flat prior on
the scale variables over the log-scale, which is a limiting case of the Gamma distribution. When
imposing independent Gamma priors on the scale variables, the effective joint marginal is a product
of Student-t distributions, which again is sharply peaked around zero and sparsity inducing.

3 Variational approximation

We view {zn}Nn=1 and matrix Γ as latent variables, and optimise the parameters θ = {µ,Φ,Λ,Ψ}
by EM. In other words, we view the weight matrix Λ as a matrix of parameter and estimate the
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entries by maximum a posteriori (MAP) learning. The other parameters are estimated by maximum
likelihood (ML).

The variational free energy is given by

Fq(x1, . . . ,xN ,θ) = −
N∑
n=1

〈ln p(xn, zn,Γ|θ)〉q −H[q(z1, . . . , zN ,Γ)], (12)

where 〈·〉q denotes the expectation with respect to the variational distribution q and H[·] is the differ-
ential entropy. Since the Kullback-Leibler divergence (KL) is non-negative, the negative free energy
is a lower bound to log-marginal likelihood:

N∑
n=1

ln p(xn|θ) = −Fq({xn},θ) + KL [q({zn},Γ)‖p({zn},Γ)|{xn},θ)] > −Fq({xn},θ).

(13)
Interestingly it is not required to make a factorised approximation of the the joint posterior q to find
a tractable solution. Indeed, the posterior q factorises naturally given the data and the weights, such
that the posteriors we will obtain in the E-step are exact.

The variational EM finds maximum likelihood estimates for the parameters by cycling through the
following two steps until convergence:

1. The posterior over the latent variables are computed for fixed parameters by minimising
the KL in (13). It can be shown that the variational posteriors are given by

q(z1, . . . , zN ) ∝
N∏
n=1

e〈ln p(xn,zn,Γ|θ)〉q(Γ) , (14)

q(Γ) ∝ e〈ln p(xn,zn|Γ,θ)〉q(z1,...,zN )p(Γ). (15)

2. The variational free energy (12) is minimised wrt the parameters for fixed q. This leads
in effect to type II ML estimates for the paramteres and is equivalent to maximising the
expected complete log-likelihood:

θ ← argmax
θ

N∑
n=1

〈ln p(xn, zn,Γ|θ)〉q . (16)

Depending on the initialisation, the variational EM algorithm converges to a local maximum of
the log-marginal likelihood. The convergence can be checked by monitoring the variational lower
bound, which monotonically increases during the optimisation. The explicit expression of the vari-
ational bound is here omitted due to a lack of space

3.1 Posterior of the latent vectors

The joint posterior of the latent vectors factorises into N posteriors due to the fact the observations
are independent. Hence, the posterior of each low-dimenstional latent vector is given by

q(zn) = N (z̄n, S̄n), (17)

where z̄n = S̄nΛ>Ψ(xn − µ) is the mean and S̄n =
(
Λ>ΨΛ + Φ

)−1
is the covariance.

3.2 Posterior of the scale variables

The inverse Gamma distribution is not conjugate to the exponential family. However, the posterior
over matrix Γ is tractable. It has the form of a product of generalised inverse Gaussian distributions
(see Appendix B for a formal definition):

q(Γ) =
D∏
i=1

Q∏
j=1

p(γij |λij) =
D∏
i=1

Q∏
j=1

N−(ω̄ij , ϕ̄ij , χ̄ij) (18)

where ω̄ij = − a
DQ + 1

2 is the index and ϕ̄ij = λ2
ij and χ̄ij = 2b are the shape parameters. The

factorised form arises from the scale variable being independent conditioned on the weights.
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3.3 Update for the parameters

Based on the properties of the Gaussian and the generalised inverse Gaussian, we can compute the
variational lower bound, which can then be maximised. This leads to the following updates:

µ← 1
N

N∑
n=1

(xn −Λz̄n), Φ−1 ← 1
N

N∑
n=1

diag{z̄nz̄>n + S̄n}, (19)

λi ←
(
Γ̄i + Ψ(i, i)

N∑
n=1

〈znz>n 〉
)−1

Ψ(i, i)
N∑
n=1

(xn(i)− µ(i))z̄n, (20)

τ−1
p ← 1

NDp

N∑
n=1

{
(xnp − µp)

>(xnp − µp)− 2(xnp − µp)
>Λpz̄n +

〈
(Λpzn)>Λpzn

〉}
, (21)

where the required expectations are given by

〈znz>n 〉 = S̄n + z̄nz̄>n ,
〈
(Λpzn)>Λpzn

〉
= tr{〈z̄nz̄>n 〉Λ

>
p Λp}, (22)

Γ̄i = diag
{
〈γi1〉, . . . , 〈γiQ〉

}
, 〈γij〉 =

√
χ̄ij
ϕ̄ij

Kω+1

(√
χ̄ijϕ̄ij

)
Kω

(√
χ̄ijϕ̄ij

) . (23)

Note that diag{·} denotes a block-diagonal operation in (19). More importantly, since we are seek-
ing a sparse projection matrix, we do not suffer from the rotational ambiguity problem as is for
example the case standard probabilistic PCA.

4 Experiments

4.1 Synthetic denoising experiments

Because of identifiability issues which are subject of ongoing work, we prefer to compare various
methods for sparse PCA in a denoising experiment. That is, we assume that the data were generated
from sparse components plus some noise and we compare the various sparse PCA on the denoising
task, i.e., on the task of recovering the original data. We generated the data as follows: select
uniformly at random M = 4 unit norm sparse vectors in P = 10 dimensions with known number
S = 4 of non zero entries, then generate i.i.d. values of the random variables Z from three possible
distributions (Gaussian, Laplacian, uniform), then add isotropic noise of relative standard deviation
1/2. When the latent variables are Gaussian, our model exactly matches the data and our method
should provide a better fit; however, we consider also situations where the model is misspecified in
order to study the robustness of our probabilistic model.

We consider our two models: SCA-1 (which uses automatic relevance determination type of sparsity
priors) and SCA-2 (which uses generalised hyperbolic distribution), where we used 6 latent dimen-
sions (larger than 4) and fixed hyperparameters that lead to vague priors. Those two models thus
have no free parameters and we compare them to the following methods, which all have two regu-
larisation parameters (rank and regularisation): DSPCA [6], the method of Zou [20] and the recent
method of [16] which essentially considers a probabilistic PCA with `1-penalty on the weights.

In Table 1 we report mean-squared reconstruction error averaged over 10 replications. It can be seen
that two proposed probabilistic approaches perform similarly and significantly outperform other
sparse PCA methods, even when the model is misspecified.

4.2 Template attacks

Power consumption and electromagnetic radiation are among the most extensively used side-
channels for analysing physically observable cryptographic devices. A common belief is that the
useful information for attacking a device is hidden at times where the traces (or time series) have
large variance. Once the relevant samples have been identified they can be used to construct tem-
plates, which can then be used to assess if a device is secure. A simple, yet very powerful approach,
recently proposed by [1], is to select time samples based on PCA. Figure 2(a) shows the weight
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N SCA-1 SCA-2 Zou DSPCA L1-PCA
100 39.9 40.8 42.2 42.9 50.8
200 36.5 36.8 40.8 41.4 50.4
400 35.5 35.5 39.8 40.3 42.5
N SCA-1 SCA-2 Zou DSPCA L1-PCA

100 39.9 40.9 42.6 43.6 49.8
200 36.8 37.0 40.9 41.1 48.1
400 36.4 36.4 40.5 40.7 46.8
N SCA-1 SCA-2 Zou DSPCA L1-PCA

100 39.3 40.3 42.7 43.4 48.5
200 36.5 36.7 40.2 40.8 46.2
300 35.8 35.8 40.6 40.9 41.0

Table 1: Denoising experiment with sparse PCA (we report mean squared errors): (top) Gaussian
distributed latent vectors, (middle) latent vectors generated from the uniform distribution, (bottom)
latent vectors generated from the Laplace distribution.
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(a) Probabilistic PCA.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

Po
w
er

0 20 40 60 80 100 120 140 160 180 200
−1

0

1
! 1

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

! 2

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

! 3

t

(b) Sparse probabilistic PCA (SCA-2).

Figure 2: Power traces and first three principal directions.

associated to each time sample by the first three principal directions found by PCA. The problem
with this approach is that all time samples get a non-zero weights. As a result, the user has to define
a threshold manually in order to decide whether the information leakage at time t is relevant or not.
Figure 2(b) shows the weight associated to the time samples by SCA-2 when using a Laplace prior
(i.e. for a/DQ = 1). It can be observed that one gets a much better picture of where the relevant
information is. Clearly, sparse probabilitic PCA can be viewed as being more robust to spurious
noise and provides a more reliable and amenable solution.

5 Conclusion

In this paper we introduced a general probabilistic model for inferring sparse probabilistic projection
matrices. Sparsity was enforced by either imposing an ARD-type prior or by means of the a Normal-
Inverse Gamma prior. Although the inverse Gamma is not conjugate to the exponential family, the
posterior is tractable as it is a special case of the generalised inverse Gaussian [12], which in turn
is a conjugate prior to this family. Future work will include the validation of the method on a wide
range of applications and in particular as a feature extracting tool.
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A Automatic thresholding the weights by ARD

In this section, we provide the updates for achieving automatic thresholding of projection matrix
entries in a probabilistic setting. We apply Tipping’s sparse Bayesian theory [8], which is closely
related to ARD [14]. More specifically, we assume the prior over the scale variables is uniform over
a log-scale, which is a limiting case of the Gamma distribution.

Let us view {zn}Nn=1 and Λ as latent variables and optimise the parameters θ = {µ,Φ,Ψ,Γ} by
variational EM. The variational free energy is given by

Fq(x1, . . . ,xN ,θ) = −
N∑
n=1

〈ln p(xn, zn,Λ|θ)〉q −H[q(z1, . . . , zN ,Λ)]. (24)

In order to find a tractable solution, we further have to assume that the approximate posterior q has
a factorised form. We can then compute the posterior of the low-dimenstional latent vectors:

q(zn) = N (z̄n, S̄n), (25)

where z̄n = S̄nΛ̄>Ψ(xn − µ) and S̄n =
(
Λ̄>ΨΛ̄ +

∑
iΨ(i, i)Σ̄i + Φ

)−1
. And the posterior of

the weights is given by

q(Λ) =
D∏
i=1

q(λi) =
D∏
i=1

N (λ̄i, Σ̄i), (26)

where λ̄i = Σ̄iΨ(i, i)
∑
n(xn(i) − µ(i))z̄n and Σ̄i =

(
Γi + Ψ(i, i)

∑
n{S̄n + z̄nz̄>n }

)−1
. The

partially factorised form
∏
i q(λi) arises naturally. Note also that the update for the mean weights

has the same form as in (20). Finally, the updates for the parameters are found by maximising the
negative free energy, which corresponds to performing type II ML for the scaling variables. This
yields

µ← 1
N

N∑
n=1

(xn − Λ̄z̄n), Φ−1 ← 1
N

N∑
n=1

diag
{
z̄nz̄>n + S̄n

}
, γij ← 〈λ2

ij〉−1, (27)

τ−1
p ← 1

NDp

N∑
n=1

{
(xnp − µp)

>(xnp − µp)− 2(xnp − µp)
>Λ̄pz̄n +

〈
(Λpzn)>Λpzn

〉}
, (28)

where 〈λ2
ij〉 = λ̄2

ij + Σ̄i(j, j) and
〈
(Λpzn)>Λpzn

〉
= tr{(z̄nz̄>n + S̄n)

∑
ip

(λ̄ipλ̄
>
ip + Σ̄ip)}.

B Generalised inverse Gaussian distribution

The Generalised inverse Gaussian distribution is in the class of generalised hyperbolic distributions.
It is defined as follows [12, 11]:

y ∼ N−(ω, χ, φ) =
χ−ω(

√
χφ)ω

2Kω(
√
χφ)

yω−1e−
1
2 (χy−1+φy), (29)

where y > 0 and Kω(·) is the modified Bessel function of the third kind1 with index ω.

The following expectations are useful [12]:

〈y〉 =
√
χ

φ
Rω(

√
χφ), 〈y−1〉 =

√
φ

χ
R−ω(

√
χφ), 〈ln y〉 = lnω +

d lnKω(
√
χφ)

dω
, (30)

where Rω(·) ≡ Kω+1(·)/Kω(·).

1The modified Bessel function of the third kind is known under various names. In particular, it is also known
as the modified Bessel function of the second kind (cf. E. W. Weisstein: ”Modified Bessel Function of the Sec-
ond Kind.” From MathWorld: http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html).
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Inverse Gamma distribution

When φ = 0 and ω < 0, the generalised inverse Gaussian distribution reduces to the inverse Gamma
distribution:

IG(a, b) =
ba

Γ(a)
x−a−1e−

b
x , a, b > 0. (31)

It is straightforward to verify this result by posing a = −ω and b = χ/2, and noting that
lim
y→0

Kω(y) = Γ(−ω)2−ω−1yω (32)

for ω < 0.
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