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Abstract

In multi-task learning several related tasks are consdisimultaneously, with
the hope that by an appropriate sharing of information aasks, each task may
benefit from the others. In the context of learning linearctions for supervised
classification or regression, this can be achieved by imetud priori informa-
tion about the weight vectors associated with the taskshandhey are expected
to be related to each other. In this paper, we assume that éaskclustered into
groups, which are unknown beforehand, and that tasks wathnoup have similar
weight vectors. We design a new spectral norm that encodea firiori assump-
tion, without the prior knowledge of the partition of taskéa groups, resulting
in a new convex optimization formulation for multi-task teaag. We show in
simulations on synthetic examples and on i@ MHC-I binding dataset, that
our approach outperforms well-known convex methods fottirtask learning, as
well as related non-convex methods dedicated to the saniéegpno

1 Introduction

Regularization has emerged as a dominant theme in maclangrg and statistics, providing an
intuitive and principled tool for learning from high-dimgional data. In particular, regularization
by squared Euclidean norms or squared Hilbert norms hastheesughly studied in various set-
tings, leading to efficient practical algorithms based oedir algebra, and to very good theoretical
understanding (see, e.g., [1, 2]). In recent years, regatéon by non Hilbert norms, such 48
norms withp # 2, has also generated considerable interest for the inferehiinear functions in
supervised classification or regression. Indeed, such $icam sometimes both make the problem
statistically and numerically better-behaved, and imp@s@us prior knowledge on the problem.
For example, thé'-norm (the sum of absolute values) imposes some of the coemp®to be equal
to zero and is widely used to estimate sparse functions [Blewarious combinations d? norms
can be defined to impose various sparsity patterns.

While most recent work has focused on studying the propediesimple well-known norms, we
take the opposite approach in this paper. That is, assumgigea prior knowledge, how can we
design a norm that will enforce it?

More precisely, we consider the problem of multi-task l&gnwhich has recently emerged as a
very promising research direction for various applicasi¢f]. In multi-task learning several re-
lated inference tasks are considered simultaneously, tvgthope that by an appropriate sharing



of information across tasks, each one may benefit from thersthWhen linear functions are es-
timated, each task is associated with a weight vector, araranon strategy to design multi-task
learning algorithm is to translate some prior hypothes@iabow the tasks are related to each other
into constraints on the different weight vectors. For exeEnguch constraints are typically that the
weight vectors of the different tasks belong (a) to a Eudidball centered at the origin [5], which
implies no sharing of information between tasks apart froendize of the different vectorse., the
amount of regularization, (b) to a ball of unknown center, {Bhich enforces a similarity between
the different weight vectors, or (c) to an unknown low-dirsi@mal subspace [6, 7].

In this paper, we consider a different prior hypothesiswmbelieve could be more relevantin some
applications: the hypothesis ththe different tasksare in fact clustered into different groups, and that

the weight vectors of taskswithin a group are similar to each other. A key difference with [5], where

a similar hypothesis is studied, is that we don’t assumettieagjroups are known a priori, and in a
sense our goal is both to identify the clusters and to use tbemulti-task learning. An important
situation that motivates this hypothesis is the case whest of the tasks are indeed related to each
other, but a few “outlier” tasks are very different, in whichse it may be better to impose similarity
or low-dimensional constraints only to a subset of the tgg8kss forming a cluster) rather than to
all tasks. Another situation of interest is when one can elkpenatural organization of the tasks
into clusters, such as when one wants to model the prefeseficeistomers and believes that there
are a few general types of customers with similar preferemgthin each type, although one does
not know beforehand which customers belong to which typesidgs an improved performance if
the hypothesis turns out to be correct, we also expect tipigoagh to be able to identify the cluster
structure among the tasks as a by-product of the infererpeatg., to identify outliers or groups of
customers, which can be of interest for further understandf the structure of the problem.

In order to translate this hypothesis into a working aldonit we follow the general strategy men-
tioned above which is to design a norm or a penalty over thefsekights which can be used as
regularization in classical inference algorithms. We ¢art such a penalty by first assuming that
the partition of the tasks into clusters is known, similady[5]. We then attempt to optimize the
objective function of the inference algorithm over the separtitions, a strategy that has proved
useful in other contexts such as multiple kernel learnirjg fhis optimization problem over the
set of partitions being computationally challenging, wegwse a convex relaxation of the problem
which results in an efficient algorithm.

2 Multi-task learning with clustered tasks

We considern related inference tasks that attempt to learn linear fonstover¥ = R? from a
training set of input/output paifg;, yi)i=1,... », Wherez;, € X andy; € ). In the case of binary
classification we usually take = {—1, +1}, while in the case of regression we take= R. Each
training examplézx;, y;) is associated to a particular task [1, m|, and we denote b¥(t) C [1, n]
the set of indices of training examples associated to ttketta8ur goal is to infern linear functions
fi(x) = w/ =z, fort = 1,...,m, associated to the different tasks. We denotélby= (w ... w,,)
thed x m matrix whose columns are the successive vectors we wantitoats.

We fix a loss functiori : R x ) — R that quantifies by(f(z),y) the cost of predictingf(z)
for the inputz when the correct output ig. Typical loss functions include the square error in
regressiori(u, y) = 3(u — y)? or the hinge loss in binary classificatiofu, y) = max(0,1 — uy)
with y € {—1,1}. The empirical risk of a set of linear classifiers given in thatrix 1 is then

defined as the average loss over the training set:
(W) = % Z:enzl Ziel(t) l(w;rxi, Yi) - 1)

In the sequel, we will often use the x 1 vectorl composed of ones, the xm projection matrices
U=11"/m whose entries are all equal tgm, as well as the projection matrix=17 — U.

In order to learn simultaneously the tasks, we follow the now well-established approach which
looks for a set of weight vectorl/ that minimizes the empirical risk regularized by a penalty
functional,i.e., we consider the problem:

minyycraxm L(W) + AXQW) , 2

whereQ (W) can be designed from prior knowledge to constrain some rghafi information be-
tween tasks. For example, [5] suggests to penalize bothdhasof thew;’s and their variance,



i.e., to consider a function of the form:
Qvariance(W) = HwHQ + % 2111 [|w; — 117”2, 3

wherew = (3°7_, w;) /m is the mean weight vector. This penalty enforces a clugiefrihew;s
towards their mean whefiincreases. Alternatively, [7] propose to penalize thegnaarm of|W:

Qtrace(W) = S0 E™ oy (W), 4)

whereo (W), ..., omin(a,m) (W) are the successive singular value$iof This enforces a low-rank
solution inW, i.e,, constrains the different;’s to live in a low-dimensional subspace.

Here we would like to define a penalty functiéx{i¥’) that encodes as prior knowledge that tasks
are clustered inte < m groups. To do so, let us first assume that we know beforehandukters,
i.e, we have a partition of the set of tasks intgroups. In that case we can follow an approach
proposed by [5] which for clarity we rephrase with our naiat and slightly generalize now. For a
given cluster € [1,r], let us denote/ (c¢) C [1,m] the set of tasks i, m. = |7 (c)| the number

of tasks in the clustet, and E the m x r binary matrix which describes the cluster assignment
for them tasks,i.e, E;; = 1 if task: is in clusterj, 0 otherwise. Let us further denote ly. =
(Xie7(e) wi)/me the average weight vector for the tasks:jrand recall thato = > wi) /m

denotes the average weight vector over all tasks. Finaljllibe convenient to introduce the matrix
M = E(ETE)~'ET. M can also be writted — L, whereL is the normalized Laplacian of the
graphG whose nodes are the tasks connected by an edge if and ondyitle in the same cluster.
Then we can define three semi-norms of interesilothat quantify different orthogonal aspects:

e A global penalty, which measures on average how large thghveectors are:
Qmean(W) = n||1DH2 =trtWUW .

e A measure of between-cluster variance, which quantifies tloge to each other the dif-
ferent clusters are:

petween (W) = Xy mel[e — wl|> = W (M — U)W,
e A measure of within-cluster variance, which quantifies tbmpactness of the clusters:
Quitnin(W) = Yy { T Iwi = el } = W (I = )W
We note that botl2yctween (W) andQy,i:nin (W) depend on the particular choice of clustérsor
equivalently ofM . We now propose to consider the following general penaltgfion:
QW) = erQmean W) + €8Qetween (W) + ew Quithin (W) , (5)

wheree),, e andey, are non-negative parameters that can balance the impertdiice compo-
nents of the penalty. Plugging this quadratic penalty id)ddads to the general problem:

minyy cgaxm (W) + MrWE(M)~TW T (6)

where
S(M) ' =enU+ep(M —U)+ew(l —M). (7)

Here we use the notatidf( M) to insist on the fact that this quadratic penalty dependbeliuster
structure through the matrix/. Observing that the matricés, M — U and/ — M are orthogonal
projections onto orthogonal supplementary subspacesasity get from (7):

S(M)=epjU+eg" (M —U) +ept (I — M) =) T+ (g3 —eg)U+ (5" —ep )M . (8)
By choosing particular values fef, ¢ g andey, we can recover several situations, In particular:

e Forey = ep = e = ¢, we simply recover the Frobenius normidf, which does not put
any constraint on the relationship between the differeskda

QW) =etrtWW T = ey, [lws|? .



e Foreyw = ep > )7, We recover the penalty of [5] without clusters:
QW) =W (emU +eg(I —U))WT =eyn|o|? +ep X, [Jwi — @2

In that case, a global similarity between tasks is enforgedddition to the general con-
straint on their mean. The structure in clusters plays n@swice the sum of the between-
and within-cluster variance is independent of the paréicahoice of clusters.

e Foreyw > ep = e We recover the penalty of [5] with clusters:
QW) = W (earM + e (I - M)W =y {mCHwCHQ w S e lwi — wcH?} .
c=1

In order to enforce a cluster hypothesis on the tasks, wefiher see that a natural choice is to
takeeyy > e > e In (5). This would have the effect of penalizing more the witbluster
variance than the between-cluster variance, hence prognotimpact clusters. Of course, a major
limitation at this point is that we assumed the cluster stmecknown a priori (through the matrix
E, or equivalentlyM). In many cases of interest, we would like instead to leaercthster structure
itself from the data. We propose to learn the cluster stredtuour framework by optimizing our
objective function (6) both it and )/, i.e., to consider the problem:

minWeRdeyMeMr E(W) + )\tI‘WZ(M)_le y (9)
where M,. denotes the set of matricdg = E(ET E)~'E" defined by a clustering of the tasks

into r clusters and& (M) is defined in (8). Denoting b§, = {X(M) : M € M,.} the correspond-
ing set of positive semidefinite matrices, we can equivéjertvrite the problem as:

minWeRdxm,ZesT E(W) + )\tI‘WEile . (10)
The objective functionin (10) is jointly convex iy € R?*™ andX € S'", the set ofn x m positive
semidefinite matrices, however the (finite) Sgis not convex, making this problem intractable. We

are now going to propose a convex relaxation of (10) by opiimgi over a convex set of positive
semidefinite matrices that contaifis.

3 Convex relaxation

In order to formulate a convex relaxation of (10), we obsénat in the penalty term (5) the cluster
structure only contributes to the second and third tefms,cen (W) and Quyitnin (W), and that
these penalties only depend on the centered versid#i .ofn terms of matrices, only the last two
terms of$(M)~! in (7) depend on/, i.e., on the clustering, and these terms can be re-written as:

eg(M —U) +ew(l — M) =TIl(egM + ew (I — M))IL (11)

Indeed, it is easy to check thadf — U = MII = IIMII,andthatt — M =1-U — (M - U) =
IT — TIMTII = TI(I — M)IL. Intuitively, multiplying byII on the right fesp. on the left) centers the
rows {esp. the columns) of a matrix, and boftf — U and/ — M are row- and column-centered.

To simplify notations, let us introducel = IIM1I. Plugging (11) in (7) and (9), we get the penalty
trWS(M) "' W = epr (0WTWU) + (WD) (eg M + ey (I — M))(WIL) T, (12)
in which, again, onAly the secondeart needs to be optimizédmespect to the clg§terirM. Denot-
ingX; Y (M) = epM +ew (I — M), one can express.(M), using the fact thad/ is a projection:
So(M) = (65 — et) M + e 1. (13)

Y. is characterized bM ITMTI, that is discrete by construction, hence the non- conve}h&

We have the natural constraintg > 0 (i.e, M > ~-U),0 =M =<1I(e, 0= M < 11) and
trM =7 (i.e, trM = r — 1). A possible convex relaxation of the discrete set of masit/ is
therefore{M 0= M= 1, trM =1 — 1}. This gives an equivalent convex sgtfor ., namely:

S.={S. eS8 :al X, 2 BLtr¥. =7}, (14)
with a = ey}, B = e andy = (m — r + 1)e}; + (r — 1)e3'. Incorporating the first part of the

penalty (12) into the empirical risk term by definidg W) = M(W) + e (trWTWU), we are
now ready to state our relaxation of (10):

minWERdXM,ZCESC EC(W) + )\trWHEgl (VVI_[)T . (15)



3.1 Reinterpretation in terms of norms

We denotd|W |2 = ming, s, trtW3, W7 thecluster norm (CN). For any convex sef.., we ob-
tain a norm oV (that we apply here to its centered version). By putting sdifferent constraints
on the setS.., we obtain different norms oW/, and in fact all previous multi-task formulations may
be cast in this wayi.e., by choosing a specific set of positive matrices(e.g., trace constraint for
the trace norm, and simply a singleton for the Frobenius pofirhus, designing norms for multi-
task learning is equivalent to designing a set of positiverices. In this paper, we have investigated
a specific set adapted for clustered-tasks, but other sels be designed in other situations.

Note that we have selected a simppectral convex setS, in order to make the optimization sim-
pler in Section 3.3, but we could also add some additionasitaimts that encode the point-wise
positivity of the matrix)/. Finally, whenr = 1 (one cluster) and = m (one cluster per task), we
get back the formulation of [5].

3.2 Reinterpretation as a convex relaxation of K-means

In this section we show that the semi-nojtif I1||% that we have designed earlier, can be interpreted
as a convex relaxation of K-means on the tasks [9]. Indeagndi’ ¢ R%*™ K-means aims

to decompose it in the forml/ = pET wherey € R?*" are cluster centers ankl represents

a partition. GivenE, p is found by minimizingmin,, |[W T — ExT||%. Thus, a natural strategy
outlined by [9], is to alternate between optimizingthe partitionE and the weight vectord’. We
now show that our convex norm is obtained when minimizingl@sed form with respect tp and
relaxing.

By translation invariance, this is equivalent to minimgimin,, |[[TW " — [IEx"||%. If we add a

penalization onu of the formAtrE " Euyu ™, then a short calculation shows that the minimum with
respect tqu (i.e., after optimization of the cluster centers) is equal to

trIW T WIIE(ETE) ETII/A + I)~! = telIW TWII(IIMTI/X + 1)~ L.

By comparing with Eq. (13), we see that our formulation issed a convex relaxation of K-means.

3.3 Primal optimization

Let us now show in more details how (15) can be solved effisiehereas a dual formulation
could be easily derived following [8], a direct approachdsewrite (15) as

minyy cgaxm (Le(W) + ming s, trWIISZH(WI)T) (16)

which, if ¢. is differentiable, can be directly optimized by gradieased methods o/ since
[WIIL||? = mins, s, trtWIIE_Y(WII) " is a quadratic semi-norm d¥II. This regularization
termtrWIIX L (WTI) T can be computed efficiently using a semi-closed form. IndsiedeX... as
defined in (14) is a spectral sétg, it does depend only on eigenvalues of covariance matriees)
obtain a function of the singular valuesfII (or equivalently the eigenvalues BFITW ):

miny, cs, trWHE;H (W) T = minyerm, a<r<p, A=, veomn ttWIIV diag(\) =V T (WII) T,

whereO™ is the set of orthogonal matricesiRi”*"™. The optimalV is the matrix of the eigenvec-
tors of WIIW T, and we obtain the value of the objective function at theropti:

2
. —1 T . m o
minyeg trWIIE™H(WII) ' = minyerm, a<i; <, A=y 2 q SV

wheres and A are the vectors containing the singular value$lafl andX respectively. Now, we
simply need to be able to compute this function of the singudiues.

The only coupling in this formulation comes from the tracestoaint. The Lagrangian correspond-
ing to this constraint is:

2
L) =300 i_ v =) 17)
Forv < 0, this is a decreasing function af, so the minimum on\; € [, 5] is reached fon; = §.
The dual function is then a linear non-decreasing functibe ¢sincea < v/m < 3 from the
definition of«, 3, v in (14)), which reaches it maximum value (or< 0) atv = 0. Let us therefore
now consider the dual for > 0. (17) is then a convex function of,. Canceling its derivative with
respect to\; gives that the minimum i € R is reached for\; = o;/+/v. Now this may not be



in the constraint sefw, 8), so if o; < ay/r then the minimum in\; € [«, 8] of (17) is reached
for \; = a, and ifo; > 3/v itis reached for\; = 3. Otherwise, it is reached foy; = o;/\/v.
Reporting this in (17), the dual problem is therefore

o2 o2
max,>o Zi,aﬁﬁo’igﬁﬁ 20‘i\/;+2i,0i<a\/§ (?‘L + l/a) +Zi7[3\/;<ai (Fl + Vﬁ) —vy. (18)

Since a closed form for this expression is known for each firedde ofv, one can obtaif{ W II||2
(and the eigenvalues af*) by Algorithm 1. The cancellation condition in Algorithm & that the

Algorithm 1 Computing|| 4|2
Require: A, a, 3,7.
Ensure: || A]|2, A*.

Compute the singular values of A.

Order theZ "—z in a vector/ (with an additional at the beginning).

a2’ B
for all interval(a,b) of I do
if %:’”) is canceled ow € (a,b) then
Replace/* in the dual functionC(A\*, ) to get|| A||?, compute\* on (a, b).
return || A[|2, \*.
end if
end for

value canceling the derivative belonggtob), i.e,

V= <_Eiwa\/35aisaﬁ”i_)2 € (a,b)
—\ y—(an=+8nT) T

wheren™ andn™ are the number of; < ay/v ando; > (3./v respectively. DenotingA||? =

F(A,X*(A)), VaAF = 04F + 0sF04% cannot be computed because of the non-differentiable

constraints orx. for F'. We followed an alternative direction, using only igF' part.

4 Experiments

4.1 Artificial data

We generated synthetic data consisting of two clustersotasks. The tasks are vector®st, d =

30. For each cluster, a center. was generated iR?~2, so that the two clusters be orthogonal. More
precisely, eaclv, had(d — 2)/2 random features randomly drawn froki(0, o2), o2 = 900, and

(d —2)/2 zero features. Then, each tagkgas computed as; + w.(t), wherec(t) was the cluster
of t. w; had the same zero feature as its cluster center, and thefetitares were drawn from
N(0,02), 02 = 16. The last two features were non-zero for all the tasks angrdfeom A/ (0, o2).
For each task000 points were generated and a normal noise of variafce 150 was added.

In a first experiment, we compared our cluster ndiif with the single-task learning given by the
Frobenius norm, and with the trace norm, that correspontietassumption that the tasks live in a
low-dimension space. The multi-task kernel approach baisgecial case of CN, its performance
will always be between the performance of the single taskthagerformance of CN.

In a second setting, we compare CN to alternative methodsliffier in the way they learix:

e The True metric approach, that simply plugs the actual clusterindzimnd optimizedV’
using this fixed metric. This necessitates to know the trustetinga priori, and can be
thought of like a golden standard.

e Thek-meansapproach, that alternates between optimizing the taskis given the metric
Y and re-learnin@ by clustering the tasks; [9]. The clustering is done by a k-means run
3 times. This is a non convex approach, and different ing&lon of k-means may result
in different local minima.

We also tried one run of CN followed by a run &fue metric using the learned reprojected
in S, by rounding,i.e, by performing k-means on the eigenvectors of the leadhéReprojected
approach), and a run &fmeans starting from the relaxed solutio@Rinit approach).



Only the first method requires to know the true clusteringiarprall the other methods can be run
without any knowledge of the clustering structure of thésas

Each method was run with different numbers of training pointhe training points were equally
separated between the two clusters and for each cladgtéh of the points were used for the first
task andl /6th for the second, in order to simulate a natural setting wenee tasks have fewer data.
We used the000 points of each task to builgl training folds, and the remaining points were used
for testing. We used the mean RMSE across the tasks as aasrjtand a quadratic loss fé(17).

The results of the first experiment are shown on Figure 1)(l&fs expected, both multi-task ap-
proaches perform better than the approach that learns asklindependently. CN penalization on
the other hand always gives better testing error than tlee trarm penalization, with a stronger ad-
vantage when very few training points are available. Whenenmraining points become available,
all the methods give more and more similar performancesaitiqular, with large samples, it is not
useful anymore to use a multi-task approach.

35¢ 32r
- Frob
£ ---Trace 301
~ —CN
301 Ry
‘{ T 28r

25F

RMSE

20r

15r

103 14 65

35 6.5 3 35

4 X 55 4 45 5 55
Number of training points (log) Number of training points (log)

Figure 1: RMSE versus number of training points for the gstethods.
Figure 2: Recoverell with CN (upper line) and k-means (lower line) f28, 50 and100 points.

Figure 1 (right) shows the results of the second experimésing the true metric always gives the
best results. FA8 training points, no method recovers the correct clustestngcture, as displayed
on Figure 2, although CN performs slightly better than kireeans approach since the metric it
learns is more diffuse. F@o0 training points, CN performs much better than kaeeans approach,
which completely fails to recover the clustering structassllustrated by th& learned for28 and

50 training points on Figure 2. In the latter setting, CN pdistisecovers the clusters. When more
training points become available, tkeneans approach perfectly recovers the clustering structure
and outperforms the relaxed approach. The reprojectedappyon the other hand, performs al-
ways as well as the best of the two other methods. The CNipitceggzh results are not displayed
since the are the same as for the reprojected method.

4.2 MHC-I binding data

We also applied our method to theps MHC-I peptide binding benchmark proposed in [10]. This
database contains binding affinities of various peptides,short amino-acid sequences, with dif-
ferent MHC-I molecules. This binding process is centrahi@ immune system, and predicting it is
crucial, for example to design vaccines. The affinities Bresholded to give a prediction problem.
Each MHC-1 molecule is considered as a task, and the goalpseict whether a peptide binds a
molecule. We used an orthogonal coding of the amino acidspgesent the peptides and balanced



Table 1: Prediction error for the) molecules with less tha200 training peptides imeDB.

Method Pooling Frobenius norm  Multi-task kernel ~ Trace norm  Clugt@m
Testerror 26.53% +2.0 11.62% +1.4 10.10% + 1.4 9.20% +1.3 871%+15

the data by keeping only one negative example for each pegint, resulting inl5236 points
involving 35 different molecules. We chose a logistic loss£0i).

Multi-task learning approaches have already proved ugefithis problem, see for example [11,
12]. Besides, it is well known in the vaccine design commyifiait some molecules can be grouped
into empirically definedupertypes known to have similar binding behaviors.

[12] showed in particular that the multi-task approachesewery useful for molecules with few
known binders. Following this observation, we considerrtirean error on thé0 molecules with
less thar200 known ligands, and report the results in Table 1. We did nleics¢he parameters by
internal cross validation, but chose them among a smallfsatloes in order to avoid overfitting.
More accurate results could arise from such a cross vadidath particular concerning the number
of clusters (here we limited the choiceZr 10 clusters).

The pooling approach simply considers one global predigiimblem by pooling together the data
available for all molecules. The results illustrate thas ibetter to consider individual models than
one unique pooled model.On the other hand, all the multéggkoaches improve the accuracy, the
cluster norm giving the best performance. The leaiighlowever, did not recover the known super-
types, although it may contain some relevant informatiotherbinding behavior of the molecules.

5 Conclusion

We have presented a convex approach to clustered multig¢asking, based on the design of a
dedicated norm. Promising results were presented on gymt@mples and on thebs dataset.
We are currently investigating more refined convex relaxetiand the natural extension to non-
linear multi-task learning as well as the inclusion of sfiedeatures on the tasks, which has shown
to improve performance in other settings [6].
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