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Abstract

In multi-task learning several related tasks are considered simultaneously, with
the hope that by an appropriate sharing of information across tasks, each task may
benefit from the others. In the context of learning linear functions for supervised
classification or regression, this can be achieved by including a priori informa-
tion about the weight vectors associated with the tasks, andhow they are expected
to be related to each other. In this paper, we assume that tasks are clustered into
groups, which are unknown beforehand, and that tasks withina group have similar
weight vectors. We design a new spectral norm that encodes this a priori assump-
tion, without the prior knowledge of the partition of tasks into groups, resulting
in a new convex optimization formulation for multi-task learning. We show in
simulations on synthetic examples and on theIEDB MHC-I binding dataset, that
our approach outperforms well-known convex methods for multi-task learning, as
well as related non-convex methods dedicated to the same problem.

1 Introduction

Regularization has emerged as a dominant theme in machine learning and statistics, providing an
intuitive and principled tool for learning from high-dimensional data. In particular, regularization
by squared Euclidean norms or squared Hilbert norms has beenthoroughly studied in various set-
tings, leading to efficient practical algorithms based on linear algebra, and to very good theoretical
understanding (see, e.g., [1, 2]). In recent years, regularization by non Hilbert norms, such asℓp

norms withp 6= 2, has also generated considerable interest for the inference of linear functions in
supervised classification or regression. Indeed, such norms can sometimes both make the problem
statistically and numerically better-behaved, and imposevarious prior knowledge on the problem.
For example, theℓ1-norm (the sum of absolute values) imposes some of the components to be equal
to zero and is widely used to estimate sparse functions [3], while various combinations ofℓp norms
can be defined to impose various sparsity patterns.

While most recent work has focused on studying the properties of simple well-known norms, we
take the opposite approach in this paper. That is, assuming agiven prior knowledge, how can we
design a norm that will enforce it?

More precisely, we consider the problem of multi-task learning, which has recently emerged as a
very promising research direction for various applications [4]. In multi-task learning several re-
lated inference tasks are considered simultaneously, withthe hope that by an appropriate sharing
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of information across tasks, each one may benefit from the others. When linear functions are es-
timated, each task is associated with a weight vector, and a common strategy to design multi-task
learning algorithm is to translate some prior hypothesis about how the tasks are related to each other
into constraints on the different weight vectors. For example, such constraints are typically that the
weight vectors of the different tasks belong (a) to a Euclidean ball centered at the origin [5], which
implies no sharing of information between tasks apart from the size of the different vectors,i.e., the
amount of regularization, (b) to a ball of unknown center [5], which enforces a similarity between
the different weight vectors, or (c) to an unknown low-dimensional subspace [6, 7].

In this paper, we consider a different prior hypothesis thatwe believe could be more relevant in some
applications: the hypothesis thatthe different tasks are in fact clustered into different groups, and that
the weight vectors of tasks within a group are similar to each other. A key difference with [5], where
a similar hypothesis is studied, is that we don’t assume thatthe groups are known a priori, and in a
sense our goal is both to identify the clusters and to use themfor multi-task learning. An important
situation that motivates this hypothesis is the case where most of the tasks are indeed related to each
other, but a few “outlier” tasks are very different, in whichcase it may be better to impose similarity
or low-dimensional constraints only to a subset of the tasks(thus forming a cluster) rather than to
all tasks. Another situation of interest is when one can expect a natural organization of the tasks
into clusters, such as when one wants to model the preferences of customers and believes that there
are a few general types of customers with similar preferences within each type, although one does
not know beforehand which customers belong to which types. Besides an improved performance if
the hypothesis turns out to be correct, we also expect this approach to be able to identify the cluster
structure among the tasks as a by-product of the inference step, e.g., to identify outliers or groups of
customers, which can be of interest for further understanding of the structure of the problem.

In order to translate this hypothesis into a working algorithm, we follow the general strategy men-
tioned above which is to design a norm or a penalty over the setof weights which can be used as
regularization in classical inference algorithms. We construct such a penalty by first assuming that
the partition of the tasks into clusters is known, similarlyto [5]. We then attempt to optimize the
objective function of the inference algorithm over the set of partitions, a strategy that has proved
useful in other contexts such as multiple kernel learning [8]. This optimization problem over the
set of partitions being computationally challenging, we propose a convex relaxation of the problem
which results in an efficient algorithm.

2 Multi-task learning with clustered tasks

We considerm related inference tasks that attempt to learn linear functions overX = R
d from a

training set of input/output pairs(xi, yi)i=1,...,n, wherexi ∈ X andyi ∈ Y. In the case of binary
classification we usually takeY = {−1, +1}, while in the case of regression we takeY = R. Each
training example(xi, yi) is associated to a particular taskt ∈ [1, m], and we denote byI(t) ⊂ [1, n]
the set of indices of training examples associated to the task t. Our goal is to inferm linear functions
ft(x) = w⊤

t x, for t = 1, . . . , m, associated to the different tasks. We denote byW = (w1 . . . wm)
thed × m matrix whose columns are the successive vectors we want to estimate.

We fix a loss functionl : R × Y 7→ R that quantifies byl(f(x), y) the cost of predictingf(x)
for the inputx when the correct output isy. Typical loss functions include the square error in
regressionl(u, y) = 1

2 (u − y)2 or the hinge loss in binary classificationl(u, y) = max(0, 1 − uy)
with y ∈ {−1, 1}. The empirical risk of a set of linear classifiers given in thematrix W is then
defined as the average loss over the training set:

ℓ(W ) = 1
n

∑m
t=1

∑
i∈I(t) l(w⊤

t xi, yi) . (1)

In the sequel, we will often use them×1 vector1 composed of ones, them×m projection matrices
U =11

⊤/m whose entries are all equal to1/m, as well as the projection matrixΠ=I − U .

In order to learn simultaneously them tasks, we follow the now well-established approach which
looks for a set of weight vectorsW that minimizes the empirical risk regularized by a penalty
functional,i.e., we consider the problem:

minW∈Rd×m ℓ(W ) + λΩ(W ) , (2)

whereΩ(W ) can be designed from prior knowledge to constrain some sharing of information be-
tween tasks. For example, [5] suggests to penalize both the norms of thewi’s and their variance,
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i.e., to consider a function of the form:

Ωvariance(W ) = ‖w̄‖2 + β
m

∑m
i=1 ‖wi − w̄‖2 , (3)

wherew̄ = (
∑n

i=1 wi) /m is the mean weight vector. This penalty enforces a clustering of thew′
is

towards their mean whenβ increases. Alternatively, [7] propose to penalize the trace norm ofW :

Ωtrace(W ) =
∑min(d,m)

i=1 σi(W ) , (4)

whereσ1(W ), . . . , σmin(d,m)(W ) are the successive singular values ofW . This enforces a low-rank
solution inW , i.e., constrains the differentwi’s to live in a low-dimensional subspace.

Here we would like to define a penalty functionΩ(W ) that encodes as prior knowledge that tasks
are clustered intor < m groups. To do so, let us first assume that we know beforehand the clusters,
i.e., we have a partition of the set of tasks intor groups. In that case we can follow an approach
proposed by [5] which for clarity we rephrase with our notations and slightly generalize now. For a
given clusterc ∈ [1, r], let us denoteJ (c) ⊂ [1, m] the set of tasks inc, mc = |J (c)| the number
of tasks in the clusterc, andE the m × r binary matrix which describes the cluster assignment
for them tasks,i.e., Eij = 1 if task i is in clusterj, 0 otherwise. Let us further denote bȳwc =
(
∑

i∈J (c) wi)/mc the average weight vector for the tasks inc, and recall that̄w = (
∑m

i=1 wi) /m

denotes the average weight vector over all tasks. Finally itwill be convenient to introduce the matrix
M = E(E⊤E)−1E⊤. M can also be writtenI − L, whereL is the normalized Laplacian of the
graphG whose nodes are the tasks connected by an edge if and only if they are in the same cluster.
Then we can define three semi-norms of interest onW that quantify different orthogonal aspects:

• A global penalty, which measures on average how large the weight vectors are:

Ωmean(W ) = n‖w̄‖2 = trWUW⊤ .

• A measure of between-cluster variance, which quantifies howclose to each other the dif-
ferent clusters are:

Ωbetween(W ) =
∑r

c=1 mc‖w̄c − w̄‖2 = trW (M − U)W⊤.

• A measure of within-cluster variance, which quantifies the compactness of the clusters:

Ωwithin(W ) =
∑r

c=1

{∑
i∈J (c) ‖wi − w̄c‖2

}
= trW (I − M)W⊤ .

We note that bothΩbetween(W ) andΩwithin(W ) depend on the particular choice of clustersE, or
equivalently ofM . We now propose to consider the following general penalty function:

Ω(W ) = εMΩmean(W ) + εBΩbetween(W ) + εW Ωwithin(W ) , (5)

whereεM , εB andεW are non-negative parameters that can balance the importance of the compo-
nents of the penalty. Plugging this quadratic penalty into (2) leads to the general problem:

minW∈Rd×m ℓ(W ) + λtrWΣ(M)−1W⊤ , (6)

where
Σ(M)−1 = εMU + εB(M − U) + εW (I − M) . (7)

Here we use the notationΣ(M) to insist on the fact that this quadratic penalty depends on the cluster
structure through the matrixM . Observing that the matricesU , M − U andI − M are orthogonal
projections onto orthogonal supplementary subspaces, we easily get from (7):

Σ(M) = ε−1
M U + ε−1

B (M − U) + ε−1
W (I − M) = ε−1

W I + (ε−1
M − ε−1

B )U + (ε−1
B − ε−1

W )M . (8)

By choosing particular values forεM , εB andεW we can recover several situations, In particular:

• ForεW = εB = εM = ε, we simply recover the Frobenius norm ofW , which does not put
any constraint on the relationship between the different tasks:

Ω(W ) = εtrWW⊤ = ε
∑m

i=1 ‖wi‖2 .
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• ForεW = εB > εM , we recover the penalty of [5] without clusters:

Ω(W ) = trW (εMU + εB(I − U))W⊤ = εMn‖w̄‖2 + εB

∑m
i=1 ‖wi − w̄‖2 .

In that case, a global similarity between tasks is enforced,in addition to the general con-
straint on their mean. The structure in clusters plays no role since the sum of the between-
and within-cluster variance is independent of the particular choice of clusters.

• ForεW > εB = εM we recover the penalty of [5] with clusters:

Ω(W ) = trW (εMM + εW (I − M))W⊤ = εM

r∑

c=1

{
mc‖w̄c‖2 + εW

εM

∑
i∈J (c) ‖wi − w̄c‖2

}
.

In order to enforce a cluster hypothesis on the tasks, we therefore see that a natural choice is to
takeεW > εB > εM in (5). This would have the effect of penalizing more the within-cluster
variance than the between-cluster variance, hence promoting compact clusters. Of course, a major
limitation at this point is that we assumed the cluster structure known a priori (through the matrix
E, or equivalentlyM ). In many cases of interest, we would like instead to learn the cluster structure
itself from the data. We propose to learn the cluster structure in our framework by optimizing our
objective function (6) both inW andM , i.e., to consider the problem:

minW∈Rd×m,M∈Mr
ℓ(W ) + λtrWΣ(M)−1W⊤ , (9)

whereMr denotes the set of matricesM = E(E⊤E)−1E⊤ defined by a clustering of them tasks
into r clusters andΣ(M) is defined in (8). Denoting bySr = {Σ(M) : M ∈ Mr} the correspond-
ing set of positive semidefinite matrices, we can equivalently rewrite the problem as:

minW∈Rd×m,Σ∈Sr
ℓ(W ) + λtrWΣ−1W⊤ . (10)

The objective function in (10) is jointly convex inW ∈ R
d×m andΣ ∈ Sm

+ , the set ofm×m positive
semidefinite matrices, however the (finite) setSr is not convex, making this problem intractable. We
are now going to propose a convex relaxation of (10) by optimizing over a convex set of positive
semidefinite matrices that containsSr.

3 Convex relaxation

In order to formulate a convex relaxation of (10), we observethat in the penalty term (5) the cluster
structure only contributes to the second and third termsΩbetween(W ) andΩwithin(W ), and that
these penalties only depend on the centered version ofW . In terms of matrices, only the last two
terms ofΣ(M)−1 in (7) depend onM , i.e., on the clustering, and these terms can be re-written as:

εB(M − U) + εW (I − M) = Π(εBM + εW (I − M))Π. (11)

Indeed, it is easy to check thatM − U = MΠ = ΠMΠ, and thatI − M = I − U − (M − U) =
Π − ΠMΠ = Π(I − M)Π. Intuitively, multiplying byΠ on the right (resp. on the left) centers the
rows (resp. the columns) of a matrix, and bothM − U andI − M are row- and column-centered.

To simplify notations, let us introducẽM = ΠMΠ. Plugging (11) in (7) and (9), we get the penalty

trWΣ(M)−1W⊤ = εM

(
trW⊤WU

)
+ (WΠ)(εBM̃ + εW (I − M̃))(WΠ)⊤, (12)

in which, again, only the second part needs to be optimized with respect to the clusteringM . Denot-
ing Σ−1

c (M) = εBM̃ + εW (I − M̃), one can expressΣc(M), using the fact that̃M is a projection:

Σc(M) =
(
ε−1

B − ε−1
W

)
M̃ + ε−1

W I. (13)

Σc is characterized bỹM = ΠMΠ, that is discrete by construction, hence the non-convexityof Sr.
We have the natural constraintsM ≥ 0 (i.e., M̃ ≥ −U ), 0 � M � I (i.e., 0 � M̃ � Π) and
trM = r (i.e., trM̃ = r − 1). A possible convex relaxation of the discrete set of matricesM̃ is
therefore{M̃ : 0 � M̃ � I, trM̃ = r− 1}. This gives an equivalent convex setSc for Σc, namely:

Sc =
{
Σc ∈ Sm

+ : αI � Σc � βI, trΣc = γ
}

, (14)

with α = ε−1
W , β = ε−1

B andγ = (m − r + 1)ε−1
W + (r − 1)ε−1

B . Incorporating the first part of the
penalty (12) into the empirical risk term by definingℓc(W ) = λℓ(W ) + εM

(
trW⊤WU

)
, we are

now ready to state our relaxation of (10):

minW∈Rd×m,Σc∈Sc
ℓc(W ) + λtrWΠΣ−1

c (WΠ)⊤ . (15)
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3.1 Reinterpretation in terms of norms

We denote‖W‖2
c = minΣc∈Sc

trWΣ−1
c WT thecluster norm (CN). For any convex setSc, we ob-

tain a norm onW (that we apply here to its centered version). By putting somedifferent constraints
on the setSc, we obtain different norms onW , and in fact all previous multi-task formulations may
be cast in this way,i.e., by choosing a specific set of positive matricesSc (e.g., trace constraint for
the trace norm, and simply a singleton for the Frobenius norm). Thus, designing norms for multi-
task learning is equivalent to designing a set of positive matrices. In this paper, we have investigated
a specific set adapted for clustered-tasks, but other sets could be designed in other situations.

Note that we have selected a simplespectral convex setSc in order to make the optimization sim-
pler in Section 3.3, but we could also add some additional constraints that encode the point-wise
positivity of the matrixM . Finally, whenr = 1 (one cluster) andr = m (one cluster per task), we
get back the formulation of [5].

3.2 Reinterpretation as a convex relaxation of K-means

In this section we show that the semi-norm‖WΠ‖2
c that we have designed earlier, can be interpreted

as a convex relaxation of K-means on the tasks [9]. Indeed, given W ∈ R
d×m, K-means aims

to decompose it in the formW = µE⊤ whereµ ∈ R
d×r are cluster centers andE represents

a partition. GivenE, µ is found by minimizingminµ ‖W⊤ − Eµ⊤‖2
F . Thus, a natural strategy

outlined by [9], is to alternate between optimizingµ, the partitionE and the weight vectorsW . We
now show that our convex norm is obtained when minimizing in closed form with respect toµ and
relaxing.

By translation invariance, this is equivalent to minimizing minµ ‖ΠW⊤ − ΠEµ⊤‖2
F . If we add a

penalization onµ of the formλtrE⊤Eµµ⊤, then a short calculation shows that the minimum with
respect toµ (i.e., after optimization of the cluster centers) is equal to

trΠW⊤WΠ(ΠE(E⊤E)−1E⊤Π/λ + I)−1 = trΠW⊤WΠ(ΠMΠ/λ + I)−1.

By comparing with Eq. (13), we see that our formulation is indeed a convex relaxation of K-means.

3.3 Primal optimization

Let us now show in more details how (15) can be solved efficiently. Whereas a dual formulation
could be easily derived following [8], a direct approach is to rewrite (15) as

minW∈Rd×m

(
ℓc(W ) + minΣc∈Sc

trWΠΣ−1
c (WΠ)⊤

)
(16)

which, if ℓc is differentiable, can be directly optimized by gradient-based methods onW since
‖WΠ‖2

c = minΣc∈Sc
trWΠΣ−1

c (WΠ)⊤ is a quadratic semi-norm ofWΠ. This regularization
termtrWΠΣ−1

c (WΠ)⊤ can be computed efficiently using a semi-closed form. Indeed, sinceΣc as
defined in (14) is a spectral set (i.e., it does depend only on eigenvalues of covariance matrices), we
obtain a function of the singular values ofWΠ (or equivalently the eigenvalues ofWΠW⊤):

minΣc∈Sc
trWΠΣ−1

c (WΠ)⊤ = minλ∈Rm, α≤λi≤β, λ1=γ, V ∈Om trWΠV diag(λ)−1V ⊤(WΠ)⊤,

whereOm is the set of orthogonal matrices inRm×m. The optimalV is the matrix of the eigenvec-
tors ofWΠW⊤, and we obtain the value of the objective function at the optimum:

minΣ∈S trWΠΣ−1(WΠ)⊤ = minλ∈Rm, α≤λi≤β, λ1=γ

∑m
i=1

σ2
i

λi
,

whereσ andλ are the vectors containing the singular values ofWΠ andΣ respectively. Now, we
simply need to be able to compute this function of the singular values.

The only coupling in this formulation comes from the trace constraint. The Lagrangian correspond-
ing to this constraint is:

L(λ, ν) =
∑m

i=1
σ2

i

λi
+ ν (

∑m
i=1 λi − γ) . (17)

Forν ≤ 0, this is a decreasing function ofλi, so the minimum onλi ∈ [α, β] is reached forλi = β.
The dual function is then a linear non-decreasing function of ν (sinceα ≤ γ/m ≤ β from the
definition ofα, β, γ in (14)), which reaches it maximum value (onν ≤ 0) atν = 0. Let us therefore
now consider the dual forν ≥ 0. (17) is then a convex function ofλi. Canceling its derivative with
respect toλi gives that the minimum inλ ∈ R is reached forλi = σi/

√
ν. Now this may not be
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in the constraint set(α, β), so if σi < α
√

ν then the minimum inλi ∈ [α, β] of (17) is reached
for λi = α, and ifσi > β

√
ν it is reached forλi = β. Otherwise, it is reached forλi = σi/

√
ν.

Reporting this in (17), the dual problem is therefore

maxν≥0

∑
i,α

√
ν≤σi≤β

√
ν 2σi

√
ν +

∑
i,σi<α

√
ν

(
σ2

i

α
+ να

)
+

∑
i,β

√
ν<σi

(
σ2

i

β
+ νβ

)
−νγ . (18)

Since a closed form for this expression is known for each fixedvalue ofν, one can obtain‖WΠ‖2
c

(and the eigenvalues ofΣ∗) by Algorithm 1. The cancellation condition in Algorithm 1 is that the

Algorithm 1 Computing‖A‖2
c

Require: A, α, β, γ.
Ensure: ‖A‖2

c , λ∗.
Compute the singular valuesσi of A.

Order theσ2
i

α2 ,
σ2

i

β2 in a vectorI (with an additional0 at the beginning).
for all interval(a, b) of I do

if ∂L(λ∗,ν)
∂ν

is canceled onν ∈ (a, b) then
Replaceν∗ in the dual functionL(λ∗, ν) to get‖A‖2

c , computeλ∗ on (a, b).
return ‖A‖2

c, λ∗.
end if

end for

value canceling the derivative belongs to(a, b), i.e.,

ν =
(P

i,α
√

ν≤σi≤β
√

ν σi

γ−(αn−+βn+)

)2

∈ (a, b) ,

wheren− andn+ are the number ofσi < α
√

ν andσi > β
√

ν respectively. Denoting‖A‖2
c =

F (A, Σ∗(A)), ∇AF = ∂AF + ∂ΣF∂AΣ cannot be computed because of the non-differentiable
constraints onΣ for F . We followed an alternative direction, using only the∂AF part.

4 Experiments

4.1 Artificial data

We generated synthetic data consisting of two clusters of two tasks. The tasks are vectors ofR
d, d =

30. For each cluster, a centerw̄c was generated inRd−2, so that the two clusters be orthogonal. More
precisely, each̄wc had(d − 2)/2 random features randomly drawn fromN (0, σ2

r ), σ2
r = 900, and

(d− 2)/2 zero features. Then, each taskst was computed aswt + w̄c(t), wherec(t) was the cluster
of t. wt had the same zero feature as its cluster center, and the otherfeatures were drawn from
N (0, σ2

c ), σ2
c = 16. The last two features were non-zero for all the tasks and drawn fromN (0, σ2

c ).
For each task,2000 points were generated and a normal noise of varianceσ2

n = 150 was added.

In a first experiment, we compared our cluster norm‖.‖2
c with the single-task learning given by the

Frobenius norm, and with the trace norm, that corresponds tothe assumption that the tasks live in a
low-dimension space. The multi-task kernel approach beinga special case of CN, its performance
will always be between the performance of the single task andthe performance of CN.

In a second setting, we compare CN to alternative methods that differ in the way they learnΣ:

• The True metric approach, that simply plugs the actual clustering inE and optimizesW
using this fixed metric. This necessitates to know the true clusteringa priori, and can be
thought of like a golden standard.

• Thek-means approach, that alternates between optimizing the tasks inW given the metric
Σ and re-learningΣ by clustering the taskswi [9]. The clustering is done by a k-means run
3 times. This is a non convex approach, and different initialization of k-means may result
in different local minima.

We also tried one run of CN followed by a run ofTrue metric using the learnedΣ reprojected
in Sr by rounding,i.e., by performing k-means on the eigenvectors of the learnedΣ (Reprojected
approach), and a run ofk-means starting from the relaxed solution (CNinit approach).
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Only the first method requires to know the true clustering a priori, all the other methods can be run
without any knowledge of the clustering structure of the tasks.

Each method was run with different numbers of training points. The training points were equally
separated between the two clusters and for each cluster,5/6th of the points were used for the first
task and1/6th for the second, in order to simulate a natural setting weresome tasks have fewer data.
We used the2000 points of each task to build3 training folds, and the remaining points were used
for testing. We used the mean RMSE across the tasks as a criterion, and a quadratic loss forℓ(W ).

The results of the first experiment are shown on Figure 1 (left). As expected, both multi-task ap-
proaches perform better than the approach that learns each task independently. CN penalization on
the other hand always gives better testing error than the trace norm penalization, with a stronger ad-
vantage when very few training points are available. When more training points become available,
all the methods give more and more similar performances. In particular, with large samples, it is not
useful anymore to use a multi-task approach.
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Figure 1: RMSE versus number of training points for the tested methods.

Figure 2: RecoveredΣ with CN (upper line) and k-means (lower line) for28, 50 and100 points.

Figure 1 (right) shows the results of the second experiment.Using the true metric always gives the
best results. For28 training points, no method recovers the correct clusteringstructure, as displayed
on Figure 2, although CN performs slightly better than thek-means approach since the metric it
learns is more diffuse. For50 training points, CN performs much better than thek-means approach,
which completely fails to recover the clustering structureas illustrated by theΣ learned for28 and
50 training points on Figure 2. In the latter setting, CN partially recovers the clusters. When more
training points become available, thek-means approach perfectly recovers the clustering structure
and outperforms the relaxed approach. The reprojected approach, on the other hand, performs al-
ways as well as the best of the two other methods. The CNinit approach results are not displayed
since the are the same as for the reprojected method.

4.2 MHC-I binding data

We also applied our method to theIEDB MHC-I peptide binding benchmark proposed in [10]. This
database contains binding affinities of various peptides,i.e., short amino-acid sequences, with dif-
ferent MHC-I molecules. This binding process is central in the immune system, and predicting it is
crucial, for example to design vaccines. The affinities are thresholded to give a prediction problem.
Each MHC-I molecule is considered as a task, and the goal is topredict whether a peptide binds a
molecule. We used an orthogonal coding of the amino acids to represent the peptides and balanced
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Table 1: Prediction error for the10 molecules with less than200 training peptides inIEDB.

Method Pooling Frobenius norm Multi-task kernel Trace norm Cluster norm
Test error 26.53%± 2.0 11.62%± 1.4 10.10%± 1.4 9.20% ± 1.3 8.71%± 1.5

the data by keeping only one negative example for each positive point, resulting in15236 points
involving 35 different molecules. We chose a logistic loss forℓ(W ).

Multi-task learning approaches have already proved usefulfor this problem, see for example [11,
12]. Besides, it is well known in the vaccine design community that some molecules can be grouped
into empirically definedsupertypes known to have similar binding behaviors.

[12] showed in particular that the multi-task approaches were very useful for molecules with few
known binders. Following this observation, we consider themean error on the10 molecules with
less than200 known ligands, and report the results in Table 1. We did not select the parameters by
internal cross validation, but chose them among a small set of values in order to avoid overfitting.
More accurate results could arise from such a cross validation, in particular concerning the number
of clusters (here we limited the choice to2 or 10 clusters).

The pooling approach simply considers one global prediction problem by pooling together the data
available for all molecules. The results illustrate that itis better to consider individual models than
one unique pooled model.On the other hand, all the multitaskapproaches improve the accuracy, the
cluster norm giving the best performance. The learnedΣ, however, did not recover the known super-
types, although it may contain some relevant information onthe binding behavior of the molecules.

5 Conclusion

We have presented a convex approach to clustered multi-tasklearning, based on the design of a
dedicated norm. Promising results were presented on synthetic examples and on theIEDB dataset.
We are currently investigating more refined convex relaxations and the natural extension to non-
linear multi-task learning as well as the inclusion of specific features on the tasks, which has shown
to improve performance in other settings [6].
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