Kernel Change-point Analysis

Zaid Harchaoui Francis Bach
LTCI, TELECOM ParisTech and CNRS Willow Project, INRIA-ENS
46, rue Barrault, 75634 Paris cedex 13, France 45, rue d’UIm, 75230 Paris, France
zai d. har chaoui @nst. fr franci s. bach@ri nes. org

Eric Moulines
LTCI, TELECOM ParisTech and CNRS
46, rue Barrault, 75634 Paris cedex 13, France
eric.nmoulines@nst.fr

Abstract

We introduce a kernel-based method for change-point aisakythin a sequence
of temporal observations. Change-point analysis of anatied sample of obser-
vations consists in, first, testing whether a change in thgibution occurs within
the sample, and second, if a change occurs, estimating Hregekpoint instant
after which the distribution of the observations switchresrf one distribution to
another different distribution. We propose a test statlstised upon the maximum
kernel Fisher discriminant ratio as a measure of homogghetiveen segments.
We derive its limiting distribution under the null hypotliegno change occurs),
and establish the consistency under the alternative hgpistifa change occurs).
This allows to build a statistical hypothesis testing prhae for testing the pres-
ence of a change-point, with a prescribed false-alarm fitityaand detection
probability tending to one in the large-sample setting.dhange actually occurs,
the test statistic also yields an estimator of the changetparation. Promising
experimental results in temporal segmentation of mensistérom BCI data and
pop song indexation are presented.

1 Introduction

The need to partition a sequence of observations into dev@mraogeneous segments arises in many
applications, ranging from speaker segmentation to pog swtexation. So far, such tasks were
most often dealt with using probabilistic sequence modelsh as hidden Markov models [1], or
their discriminative counterparts such as conditionatican fields [2]. These probabilistic models
require a sound knowledge of the transition structure betwtbe segments and demand careful
training beforehand to yield competitive performance; whata are acquired online, inference in
such models is also not straightforward (see, e.g., [3, CBfp Such models essentially perform
multiple change-poingstimation while one is often also interested in meaningful quanttanea-
sures for theletectionof a change-point within a sample.

When a parametric model is available to model the distrimgibefore and after the change, a com-
prehensive literature for change-point analysis has beeeldped, which provides optimal criteria
from the maximum likelihood framework, as described in [Mfinparametric procedures were also
proposed, as reviewed in [5], but were limited to univari@déa and simple settings. Online coun-
terparts have also been proposed and mostly built upon thmlative sum scheme (see [6] for
extensive references). However, so far, even extensiahgtoase where the distribution before the
change is known, and the distribution after the change i&knotvn, remains an open problem [7].
This brings to light the need to develop statistically grded change-point analysis algorithms,
working on multivariate, high-dimensional, and also stuued data.



We propose here a regularized kernel-based test statidtich allows to simultaneously provide
guantitative answers to both questions: 1) is there a chpoge within the sample? 2) if there is
one, thenwhere is it? We prove that our test statistic fonghgpoint analysis has a false-alarm prob-
ability tending toa: and a detection probability tending to one as the number séfations tends
to infinity. Moreover, the test statistic directly providas accurate estimate of the change-point
instant. Our method readily extends to multiple changevs®ttings, by performing a sequence of
change-point analysis sliding windowsunning along the signal. Usually, physical consideration
allow to set the window-length to a sufficiently small lendtin being guaranteed that most one
change-poinbccurs within each window, and sufficiently large length doir decision rule to be
statistically significant (typically: > 50).

In Section 2, we set up the framework of change-point anglysid in Section 3, we describe how
to devise a regularized kernel-based approach to the chawigeproblem. Then, in Section 4
and in Section 5, we respectively derive the limiting dmition of our test statistic under the null
hypothesiH, : "no change occurs®, and establish the consistency in poweeiwthe alternative
H 4 : "achange occurs”. These theoretical results allow to katkest statistic which has provably a
false-alarm probability tending to a prescribed leveand a detection probability tending to one, as
the number of observations tends to infinity. Finally, intBec7, we display the performance of our
algorithm for respectively, segmentation into mental $sfsttm BCI data and temporal segmentation
of pop songs.

2 Change-point analysis

In this section, we outline the change-point problem, aretdlee formally a strategy for building
change-point analysis test statistics.

Change-point problem  Let X;,..., X, be a time series dhdependentandom variables. The
change-point analysis of the sampl&,, ..., X,,} consists in the following two steps.
1) Decide between
Ho: Px,=--=Px,=--=Px,
H4: thereexistd < k* < n such that 1)
Px, = =Px,. #Px,.,, = =Px, .

2) Estimatek™ from the samplg X, ..., X, } if H4 is true.

While sharing many similarities with usual machine leagymoblems, the change-point problem is
different.

Statistical hypothesis testing An important aspect of the above formulation of the change-
point problem is its natural embedding in a statistical hipsis testing framework. Let us re-
call briefly the main concepts in statistical hypothesigings in order to rephrase them within
the change-point problem framework (see, e.g., [8]). Thal g®to build a decision rule to
answer question 1) in the change-point problem stated ab®et afalse-alarm probability«
with 0 < « < 1 (also called level or Type | error), whose purpose is to tageally guar-
antee thatP(decide H 4, when H is true) is close toa. Now, if there actually is a change-
point within the sample, one would like not to miss it, thattlst the detection probability

7 = P(decideH 4, when H,4 istrue—also called power and equal to one minus the Type I
error—should be close to one. The purpose of Sections 4ebgivée theoretical guarantees to those
practical requirements in the large-sample setting, thatien the number of observatiomsends

to infinity.

Running maximum partition strategy An efficient strategy for building change-point analysis
procedures is to select the partition of the sample whicldgia maximum heterogeneity between
the two segments: given a samgl&,, ..., X,,} and a candidate change pointvith 1 < k& < n,
assume we may compute a measure of heterogefi\gitybetween the segmen{s(y, ..., X} on

the one hand, anfiX;. .1, ..., X,, } on the other hand. Then, the “running maximum partitiontstra
egy” consists in usinghaxi <x<n Ap , as a building block for change-point analysis (cf. Figure 1)
Not onlymax; <x<n Ay, May be used to test for thresencef a change-point and assess/discard
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Figure 1: The running maximum strategy for change-pointyaig The test statistic for change-

point analysis runs a candidate change-pbinith 1 < k& < n along the sequence of observations,
hoping to catch the true change-pairit

the overall homogeneity of the sample; besides; argmax ., A, » provides a sensible estima-
tor of the true change-point instait [5].

3 Kernel Change-point Analysis

In this section, we describe how the kernel Fisher discrémimatio, which has proven relevant for
measuring the homogeneity of two samples in [9], may be eadxtohto theunning maximum par-
tition strategyto provide a powerful test statistic, coin&@€pA for KernelChangepoint Analysis,
for addressing the change-point problem. This is describetle operator-theoretic framework,
developed for the statistical analysis of kernel-basedhlag and testing algorithms in [10, 11].

Reproducing kernel Hilbert space  Let (X,d) be a separable measurable metric space. Let
X be anX-valued random variable, with probability measiitethe expectation with respect to
P is denoted byE[-] and the covariance b§ov(-,-). Consider a reproducing kernel Hilbert space
(RKHS) (H, (-, -)4,) of functions fromX’ to R. To each point: € X, there corresponds an element
®(x) € H such that(®(x), f),, = f(x) forall f € H, and(®(x), P(y));, = k(x,y), where
k: X x X — Ris a positive definite kernel [12]. In the following, we exsively work with the
Aronszajn-map, that is, we tak®(x) = k(x,-) forall z € X. Itis assumed from now on that
‘H is a separable Hilbert space. Note that this is always the i€a® is a separable metric space
and if the kernel is continuous [13]. We make the followingptassumptions on the kernel (which
are satisfied in particular for the Gaussian kernel; se€[XA]l) the kernelk is bounded, that is
SUP(y yyex xx k(2,y) < oo, (A2) for all probability distributions? on &, the RKHS associated

with k(-, ) is dense inL?(P).

Kernel Fisher Discriminant Ratio Consider a sequence of independent observations
X1,...,X, € X. Forany[i,j] C {2,...,n — 1}, define the corresponding empirical mean el-
ements and covariance operators as follows
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These quantities have obvious population counterpamspdipulation mean element and the pop-
ulation covariance operator, defined for any probabilityaseeP as (uz, f),, = E[f(X)] for
all f € H, and(f,Xpg),, := Covp[f(X),g(X)] for f,g € H. Forallk € {2,...,n — 1} the

(maximum)kernel Fisher discriminant ratiovhich we abbreviate asFDR is defined as
2
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Note that, if we merge two labelled sample¥; , .. ., X, } and{ X7, ..., X, _} into asingle sample

as{X1,..., X, X1,..., X, }, thenwithKFDR,,, iy 1, 4154 (X1, ..., Xy, X1, .., X)) We Te-
cover the test statistic considered in [9] for testing thebgeneity of two sample§Xy, ..., X,, }
and{X{,..., X} }.



Following [9], we make the following assumptions on all theariance operatois considered in
this paper: B1) the eigenvalue$),(X)},>1 satisfyz:;":1 /\;/2(2) < 00, (B2) there are infinitely

many strictly positive eigenvalugs\,(X)},>1 of 3.

Kernel change-point analysis KCpA)  Now, we may apply the strategy described before (cf.
Figure 1) to obtain the main building block of our test statifor change-point analysis. Indeed,
we define our test statistit, 1., as
KFDR,, ks — d1m gy (5W,
Thn(k) := max il b ;k”y( nk) ,
an<k<bn V2 do,n iy (X1

wherenSV, = k1 + (n — k)Skt1in. The quantitiesly , i, (51, ) andds ki (S1Y,), defined
respectively as
dl,n,kw(im@) = T‘r{(izvk + 71)_127‘;[,/k ; d27n,k;v(2m€) = T‘r{(izvk + 71)_2(2%@)2} ,

act as normalizing constants oy, (k) to have zero-mean and unit-variancexa®nds to infinity,

a standard statistical transformation knowrsaglentization The maximum is searched within the
interval [a,, b,] with a,, > 1 andb,, < n, which is restriction of/1, n[, in order to prevent the
test statistic from uncontrolled behaviour in the neigtioad of the interval boundaries, which is
standard practice in this setting [15].

Remark  Note that, if the input space is Euclidean, for instaate: R?, and if the kernel is linear
k(x,y) = a2y, thenT,. (k) may be interpreted as a regularized version of the classiaalmum-
likelihood multivariate test statistic used to test chaimgmean with unequal covariances, under the
assumption of normal observations, described in [4, ChapYe&, as the next section shall show,
our test statistic is truly nonparametric, and its largeysie propertieslo not requireany “gaussian

in the feature space”-type of assumption. Moreover, intmradt may be computed thanks to the
kernel trick, adapted to the kernel Fisher discriminantysisiand outlined in [16, Chapter 6].

False-alarm and detection probability  In order to build a principled testing procedure, a proper
theoretical analysis from a statistical point of view is@sgary. First, as the next section shows, for a
prescribedy, we may build a procedure which hasyatends to infinity, the false-alarm probability
« under the null hypothesid,, that is when the sample is completely homogeneous andinenta
no-change-point. Besides, when the sample actually am&imost one change-point, we prove
that our test statistic is able to catch it with probabilityecasn tends to infinity.

Large-sample setting  For the sake of generality, we describe here the large-sasgtting for

the change-point problem under the alternative hypothégis Essentially, it corresponds to nor-
malizing the signal sampling interval {0, 1] and letting the resolution increase as we observe more
data points [4].

Assume there i§ < k* < n such thaPx, = --- = Px,., # Px,.,, = --- = Px,. Define

7* := k*/n such thatr* €]0, 1], and definéP(¥) the probability distribution prevailing within the
left segment of length™*, andP(") the probability distribution prevailing within the righegment

of length1 — 7*. Then, we want to study what happens if we haxe* | observations fronP()

(before change) angh(1 — 7*) | observations fron?(") (after change) where is large andr* is
kept fixed.

4 Limiting distribution under the null hypothesis

Throughout this section, we work under the null hypothegjghat isPx, = --- =Py, =--- =
Px, forall 2 < k < n. The first result gives the limiting distribution &f,. (k) as the number of
observations tends to infinity.

Before stating the theoretical results, let us describerimélly the crux of our approach. We may
prove, undeiH,, using operator-theoretic pertubation results similaj9fo that it is sufficient to
study the large-sample behaviourf.., (k) := max,, <k<p, (V2 d2.4 (X)) " Qn.00r (k) where

k(n—k _ 2
Qn,ooq'y(k) = (nT) H(Z + 71) 1/ (ﬂkJrl:n - ﬂlzk)HH - dl;'y(z) , 1<k<mn, (2)

4



andd;,,(X) andds.,(X) are respectively the population recentering and rescajiramtities with

¥ = ¥y, = 31V the within-class covariance operator. Note that the onfyaieing stochastic
term in (2) iSfix+1.n — ft1.5. Let us expand (2) onto the eigenba$ls,, e, },>1 of the covariance
operatorz, as follows:

o0

Quoorn (k) =D (A +7) 7" {@ (ths1m — Hicks €p)° — A,,} . 1<k<n. (3

p=1

Then, definingS,.; , :== n~ /23" | Ay 2 (ep(Xs) — Elep(X1)]), We may rewriteQ,, oo (k) as
an infinite-dimensional quadratic form in the tied-downtj@sumssS; .. , — %Slmyp, which yields

2

[eS) 2
1 n k
Qoo (k ;A ) Ap{m(sl:k,p—gsm,p) —1}, L<k<n. (4)

The idea is to view{Q, 00y (k) }1<k<n @S a stochastic process, that is a random fundfon-
Qn,coiy(k,w)] for anyw € Q, where(Q2, F,P) is a probability space. Then, invoking the so-
calledinvariance principle in distributiorf17], we realize that the random su$. ;| ,,(w), which
for all w linearly interpolates between the valugg;,,, ,(w) at pointsi/n fori = 1,...,n, be-
haves, asymptotically as tends to infinity, like a Brownian motion (also call®diener process)
{W,(t) }o<t<1. Hence, along each componeptwe may define a Brownian bridg®,,(¢) }o<¢<1,
that is a tied-down brownian motidB,, (¢) := W ,(¢t) — tW (1) which yields continuous approx-
imationin distribution of the correspondingS;. , — %SLW}KK”. The proof (omitted due to
space limitations) consists in deriving a functional (nemtcal) limit theorem foKFDR,, 1., and
then applying a continuous mapping argument.

Proposmon 1 Assume (A1) and (B1), and thHlf; holds, that isPx, = P for all 1 < n.
Assume in addition that the regularization parameiés held fixed as: tends to |nf|n|ty, and that
an/n — u > 0andb,/n — v < 1 asn tends to infinity. Then,

oo

Ty (k) = sup Qooir(t) !

., Ap(E) Bi(t)
w<t<o T g () SE) +y -1 ’

where {\,(X)},>1 is the sequence of eigenvalues of the overall covarianceatme, while
{B,(t)},>1 is a sequence of independent brownian bridges.

Definet;_, as the(l — a)-quantile ofsup,, ., ., Qo+ (t). We may compute; _, either by Monte-
Carlo simulations, as described in [18], or by bootstrapmgding under the null hypothesis (see).
The next result proves that, using the limiting distribatismder the null stated above, we may build
a test statistic with prescribed false-alarm probabiitipr largen.

Corollary 2 The tesinax,, <k<b, In,(k) > ti—o (X, v) has false-alarm probability, asn tends
to infinity.

Besides, when the sequence of regularization paramgigls, >, decreases to zero slowly enough

(in particular slower tham~1/2), the test statistienax,,, <x<s, T ~, (k) turns out to be asymptot-
ically kernel-independerasn tends to infinity. While the proof hinges upon martingalediional
limit theorems [17], still, we may point out that if we rep&agby ~,, in the limiting null distribution,
thenQ .~ (-) is correctly normalized for alt. > 1 to have zero-mean and variance one.

Proposition 3 Assume (Al) and (B1-B2) and thidf holds, that isPx, = Pforall 1 < i < n.
Assume in addition that the regularization parameteys},,>1 is such that

n+ dlan§V7l(E) —1 —1/2

— 0,
d2-,n;'vn(2)%l
and thata,,/n — u > 0 andb, /n — v < 1 asn tends to infinity. Then,
B(t
max Ty, (k) 2, sup _Bl) .
an<k<by u<t<v 4/t(1 — 1)



Remark A closer look at Proposition 1 brings to light that the reweigg by ¢(1 — ¢) of the
squared brownian bridges on each component is crucial fotesti statistic to be immune against
imbalance between segment lengths under the alternidtivethat is whenr* is far from 1/2.
Indeed, swapping out the reweighting4y — ¢), to simply consider the corresponding unweighted
test statistic is hazardous, and yields a loss of power ferratives when* is far from1/2.

This section allowed us get artlevel test statistic for the change-point problem, by ingkat the
large-sample behaviour of the test statistic under thehygdbthesidH,. The next step is to prove
that the test statistic isonsistent in powerthat is the detection probability tends to onewaends
to infinity under the alternative hypothesis; .

5 Consistency in power

This section shows that, when the alternative hypothegitiolds, our test statistic is able to detect
presence of a change with probability one in the large-sasgiting. The next proposition is proved
within the same framework as the one considered in the puewection, except that now, along each
component,, one has to split the random sum into three péart&|, [k + 1, k*], [k* + 1,n], and
then the large-sample behaviour of each projected randamissthe one of a two-sided Brownian
motion with drifts.

Proposition 4 Assume (A1-A2) and (B1-B2), and théf holds, that is there is exists < 7 < v
withu > 0 andv < 1 such thaﬂP’Xw*J #+ Px 041 forall 1 < i < n. Assume in addition that
the regularization parametey is held fixed as tends to infinity, and thadim,, . a,/n > « and
lim,,—, o bn/n < v. Then, for any) < a < 1, we have

Py, (af?}?fbn Tin (k) > tl_a) —1, asn— oo. (5)

6 Extensions and related works

Extensions It is worthwhile to note that we may also have built similaopedures from the
maximum mean discrepancy (MMD) test statistic proposedll$y.[Note also that, instead of the
Tikhonov-type regularization of the covariance operadtiner regularization schemes may also be
applied, such as the spectral truncation regularizatiaghetovariance operator, equivalent to pre-
processing by a centered kernel principal component aisdB@®, 21], as used in [22] for instance.

Related works A related problem is the abrupt change detection problemloesd in [23],
which is naturally also encompassed by our framework. Hene, is interested in the early de-
tection of a change from a nominal distribution to an errdt&tribution. The procedur&CD of
[23] consists in running a window-limited detection algbm, using two one-class support vector
machines trained respectively on the left and the right pkithe window, and comparing the sets
of obtained weights; Their approach differs from our in twains. First, we have the limiting
null distribution of KCpA, which allows to compute decision thresholds in a prindplay. Sec-
ond, our test statistic incorporates a reweighting to kempgp against alternatives with unbalanced
segments.

7 Experiments

Computational considerations  In all experiments, we set= 10> and took the Gaussian ker-
nel with isotropic bandwidth set by the plug-in rule usedémsity estimation. Second, since frém
to k + 1, the test statistic changes fratkDR,, 1., to KFDR,, 1.+1.~, it corresponds to take into ac-
count the change frofi(X1,Y:1 = —1),..., (X, Y = —1), (Xkt1, Yet1 = +1),..., (Xp, Ys =
+1)} to {(X1,Y1 = —1),...,(Xp, Ve = —1),(Xpy1,Yer1r = —1),(Xpg2, Y2 =
+1)...,(X,,Y, = +1)} in the labelling inKFDR [9, 16]. This motivates an efficient strategy
for the computation of the test statistic. We compute theimatversion of the regularized kernel
gram matrix once for all, at the cost 6fn?3), and then compute all values of the test statistic for all
partitions in one matrix multiplication—i®(n?). As for computing the decision threshaid ,,,
we used bootstrap resampling calibration with 000 runs. Other Monte-Carlo based calibration
procedures are possible, but are left for future research.



Subject 1| Subject 2| Subject 3
KCpA 79% 74% 61%
SVM 76% 69% 60%

Table 1: Average classification accuracy for each subject

Brain-computer interface data  Signals acquired during Brain-Computer Interface (BABItr
experiments naturally exhibit temporal structure. We @ered a dataset proposed in BCl compe-
tition 1111 acquired during 4 non-feedback sessions on 3 normal ssbjebere each subject was
asked to perform different tasks, the time where the subjeitthes from one task to another being
random (see also [24]). Mental tasks segmentation is ystaalkled with supervised classification
algorithms, which require labelled data to be acquired te¢fand. Besides, standard supervised
classification algorithms are context-sensitive, and sonas yield poor performance on BCI data.
We performed a sequence of change-point analysis on shdindows overlapping b0% along

the signals. We provide here two ways of measuring the pedace of our method. First, in Fig-
ure 2 (left), we give in thempirical ROC-curvef our test statistic, averaged over all the signals at
hand. This shows that our test statistic yield competite@dgrmance for testing the presence of a
change-point, when compared with a standard parametritivauidte procedure (param) [4]. Sec-
ond, in Table 1, we give experimental results in termslasification accuragywhich proves that
we can reach comparable/better performancaupgrvisednulti-class (one-versus-one) classifica-
tion algorithms (SVM) with our completelynsupervisedkernel change-point analysis algorithm.
If each segment is considered as a sample of a given classth@elassification accuracy corre-
sponds here to the proportion of correctly assigned pointiseaend of the segmentation process.
This also clearly shows th#&CpA algorithm give accurate estimates of the change-poimtseshe
change-point estimation error is directly measured by thsstfication accuracy.

ROC Curve ROC Curve

Power
Power

-6~ KCpA|
KCD

-6-KCpA
param|

0.1 0.2 0.3 0.4 0.5

¢
0

[0
0
Level Level

0.1 0.2 0.3 0.4 0.5

Figure 2: Comparison of ROC curves for task segmentatiom fB&Cl data (left), and pop songs
segmentation (right).

Pop song segmentation Indexation of music signals aims to provide a temporal sedation
into several sections with different dynamic or tonal orlnal characteristics. We investigated
the performance oKCpA on a database of00 full-length “pop music” signals, whose manual
segmentation is available. In Figure 2 (right), we proviuetespective ROC-curves KD of [23]
andKCpA. Our approach is indeed competitive in this context.

8 Conclusion

We proposed a principled approach for the change-poinyaisabf a time-series of independent
observations. It provides a powerful testing proceduredsting the presence of a change in distri-
bution in a sample. Moreover, we saw in experiments thasi allows to accurately estimate the
change-point when a change occurs. We are currently erplsgveral extensions BiCpA. Since

experimental results are promising on real data, in whiehatssumption of independence is rather
unrealistic, it is worthwhile to analyze the effect of degdence on the large-sample behaviour of our

lseehttp://ida.first.fraunhofer.de/projects/bci/conpetition_iii/



test statistic, and explain why the test statistic remaowgrful even for (weakly) dependent data.
We are also investigatirgdaptiveversions of the change-point analysis, in which the regzdsion
parametety and the reproducing kernklare learned from the data.
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