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Abstract

Spectral clustering refers to a class of techniques which rely on the eigen-
structure of a similarity matrix to partition points into disjoint clusters
with points in the same cluster having high similarity and points in dif-
ferent clusters having low similarity. In this paper, we derive a new cost
function for spectral clustering based on a measure of errorbetween a
given partition and a solution of the spectral relaxation ofa minimum
normalized cut problem. Minimizing this cost function withrespect to
the partition leads to a new spectral clustering algorithm.Minimizing
with respect to the similarity matrix leads to an algorithm for learning
the similarity matrix. We develop a tractable approximation of our cost
function that is based on the power method of computing eigenvectors.

1 Introduction

Spectral clustering has many applications in machine learning, exploratory data analysis,
computer vision and speech processing. Most techniques explicitly or implicitly assume
a metric or a similarity structure over the space of configurations, which is then used by
clustering algorithms. The success of such algorithms depends heavily on the choice of
the metric, but this choice is generally not treated as part of the learning problem. Thus,
time-consuming manual feature selection and weighting is often a necessary precursor to
the use of spectral methods.

Several recent papers have considered ways to alleviate this burden by incorporating prior
knowledge into the metric, either in the setting ofK-means clustering [1, 2] or spectral
clustering [3, 4]. In this paper, we consider a complementary approach, providing a general
framework for learning the similarity matrix for spectral clustering from examples. We as-
sume that we are given sample data with known partitions and are asked to build similarity
matrices that will lead to these partitions when spectral clustering is performed. This prob-
lem is motivated by the availability of such datasets for at least two domains of application:
in vision and image segmentation, a hand-segmented datasetis now available [5], while
for the blind separation of speech signals via partitioningof the time-frequency plane [6],
training examples can be created by mixing previously captured signals.

Another important motivation for our work is the need to develop spectral clustering meth-
ods that are robust to irrelevant features. Indeed, as we show in Section 4.2, the perfor-
mance of current spectral methods can degrade dramaticallyin the presence of such irrele-
vant features. By using our learning algorithm to learn a diagonally-scaled Gaussian kernel



for generating the affinity matrix, we obtain an algorithm that is significantly more robust.

Our work is based on a new cost functionJ(W, e) that characterizes how close the eigen-
structure of a similarity matrixW is to a partitione. We derive this cost function in Sec-
tion 2. As we show in Section 2.3, minimizingJ with respect toe leads to a new clustering
algorithm that takes the form of a weightedK-means algorithm. MinimizingJ with re-
spect toW yields an algorithm for learning the similarity matrix, as we show in Section 4.
Section 3 provides foundational material on the approximation of the eigensubspace of a
symmetric matrix that is needed for Section 4.

2 Spectral clustering and normalized cuts

Given a datasetI of P points in a spaceX and aP × P “similarity matrix” (or “affinity
matrix”) W that measures the similarity between theP points (Wpp′ is large when points
indexed byp andp′ are likely to be in the same cluster), the goal of clustering is to organize
the dataset into disjoint subsets with high intra-cluster similarity and low inter-cluster sim-
ilarity. Throughout this paper we always assume that the elements ofW are non-negative
(W > 0) and thatW is symmetric (W =W>).

Let D denote the diagonal matrix whosei-th diagonal element is the sum of the elements in
thei-th row ofW , i.e.,D=diag(W1), where1 is defined as the vector inRP composed of
ones. There are different variants of spectral clustering.In this paper we focus on the task of
minimizing “normalized cuts.” The classical relaxation ofthis NP-hard problem [7, 8, 9]
leads to an eigenvalue problem. In this section we show that the problem of finding a
solution to the original problem that is closest to the relaxed solution can be solved by a
weightedK-means algorithm.

2.1 Normalized cut and graph partitioning

The clustering problem is usually defined in terms of a complete graph with vertices
V ={1, ..., P} and an affinity matrix with weightsWpp′ , for p, p′ ∈ V . We wish to findR
disjoint clustersA = (Ar)r∈{1,...,R}, where

⋃
rAr = V , that optimize a certain cost func-

tion. An example of such a function is theR-way normalized cut defined as follows [7, 10]:

C(A,W )=
∑R

r=1

(∑
i∈Ar,j∈V \Ar

Wij

)
/

(∑
i∈Ar,j∈V Wij

)
.

Let er be the indicator vector inRP for ther-th cluster, i.e.,er ∈ {0, 1}R is such thater

has a nonzero component exactly at points in ther-th cluster. Knowledge ofe = (er) is
equivalent to knowledge ofA=(Ar) and, when referring to partitions, we will use the two
formulations interchangeably. A short calculation reveals that the normalized cut is then
equal toC(e,W )=

∑R
r=1 e>r (D − W )er/ (e>r Der).

2.2 Spectral relaxation and rounding

The following proposition, which extends a result of Shi andMalik [7] for two clusters
to an arbitrary number of clusters, gives an alternative description of the clustering task,
which will lead to a spectral relaxation:

Proposition 1 TheR-way normalized cut is equal toR− tr Y >D−1/2WD−1/2Y for any
matrix Y ∈ R

P×R such that (a) the columns ofD−1/2Y are piecewise constant with
respect to the clusters and (b)Y has orthonormal columns (Y >Y =I).

Proof The constraint(a) is equivalent to the existence of a matrixΛ ∈ R
R×R such

that D−1/2Y = (e1, . . . , eR)Λ = EΛ. The constraint(b) is thus written asI = Y >Y =
Λ>E>DEΛ. The matrixE>DE is diagonal, with elementse>r Der and is thus positive



and invertible. This immediately implies thatΛΛ>=(E>DE)−1. This in turn implies that
tr Y >D−1/2WD−1/2Y = tr Λ>E>WEΛ = tr E>WEΛΛ> = trE>WE(E>DE)−1,
which is exactly the normalized cut (up to an additive constant).

By removing the constraint(a), we obtain a relaxed optimization problem, whose solutions
involve the eigenstructure ofD−1/2WD−1/2 and which leads to the classical lower bound
on the optimal normalized cut [8, 9]. The following proposition gives the solution obtained
from the relaxation (for the proof, see [11]):

Proposition 2 The maximum oftrY >D−1/2WD−1/2Y over matricesY ∈ R
P×R such

that Y >Y = I is the sum of theR largest eigenvalues ofD−1/2WD−1/2. It is attained
at all Y of the formY = UB1 whereU ∈ R

P×R is any orthonormal basis of theR-th
principal subspace ofD−1/2WD−1/2 andB1 is an arbitrary rotation matrix inRR×R.

The solutions found by this relaxation will not in general bepiecewise constant. In or-
der to obtain a piecewise constant solution, we wish to find a piecewise constant matrix
that is as close as possible to one of the possibleY obtained from the eigendecompo-
sition. Since such matrices are defined up to a rotation matrix, it makes sense to com-
pare thesubspacesspanned by their columns. A common way to compare subspaces is to
compare the orthogonal projection operators on those subspaces [12], that is, to compute
the Frobenius norm betweenUU> andΠ0 = Π0(W, e) ,

∑
r D1/2ere

>
r D1/2/ (e>r Der)

(Π0 is the orthogonal projection operator on the subspace spanned by the columns of
D1/2E = D1/2(e1, . . . , er), from Proposition 1). We thus define the following cost func-
tion:

J(W, e)= 1
2 ||UU> − Π0||

2
F (1)

Using the fact that bothUU> andΠ0 are orthogonal projection operators on linear sub-
spaces of dimensionR, a short calculation reveals that the cost functionJ(W, e) is equal
to R − trUU>Π0 =R −

∑
r e>r D1/2UU>D1/2er/ (e>r Der). This cost function charac-

terizes the ability of the matrixW to produce the partitione when using its eigenvectors.
Minimizing with respect toe leads to a new clustering algorithm that we now present.
Minimizing with respect to the matrix for a given partitione leads to the learning of the
similarity matrix, as we show in Section 4.

2.3 Minimizing with respect to the partition

In this section, we show that minimizingJ(W, e) is equivalent to a weightedK-means al-
gorithm. The following theorem, inspired by the spectral relaxation ofK-means presented
in [8], shows that the cost function can be interpreted as a weighted distortion measure1:

Theorem 1 Let W be an affinity matrix and letU = (u1, . . . , uP ), whereup ∈ R
R, be

an orthonormal basis of theR-th principal subspace ofD−1/2WD−1/2. For any partition
e ≡ A, we have

J(W, e)= min
(µ1,...,µR)∈RR×R

∑

r

∑

p∈Ar

dp||upd
−1/2
p − µr||

2.

Proof Let D(µ,A)=
∑

r

∑
p∈Ar

dp||upd
−1/2
p −µr||

2. Minimizing D(µ,A) with respect
to µ is a decoupled least-squares problem and we get:

minµ D(µ,A) =
∑

r

∑
p∈Ar

u>
p up −

∑
r ||

∑
p∈Ar

d
1/2
p up||

2/ (
∑

p∈Ar
dp)

1Note that a similar equivalence holds between normalized cuts and weightedK-means for
positive semidefinite similarity matrices, which can be factorized asW = GG>; this leads
to an approximation algorithm for minimizing normalized cuts; i.e., we have:C(W, e) =

min(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp||gpd−1
p − µr||

2 + R − tr D−1/2WD−1/2.



Input: Similarity matrixW ∈ R
P×P .

Algorithm:
1. Compute firstR eigenvectorsU of D−1/2WD−1/2 whereD=diag(W1).
2. LetU =(u1, . . . , uP ) ∈ R

R×P anddp =Dpp.
3. WeightedK-means: while partitionA is not stationary,

a. For allr, µr =
∑

p∈Ar
d
1/2
p up/

∑
p∈Ar

dp

b. For allp, assignp to Ar wherer=arg minr′ ||upd
−1/2
p − µr′ ||

Output: partitionA, distortion measure
∑

r

∑
p∈Ar

dp||upd
−1/2
p − µr||

2

Figure 1: Spectral clustering algorithm.

=
∑

p u>
p up −

∑
r

∑
p,p′∈Ar

d
1/2
p d

1/2
p′ u>

p up′/ (e>r Der)

= R −
∑

r e>r D1/2UU>D1/2er/ (e>r Der)=J(W, e)

This theorem has an immediate algorithmic implication—to minimize the cost function
J(W, e) with respect to the partitione, we can use a weightedK-means algorithm. The
resulting algorithm is presented in Figure 1. WhileK-means is often used heuristically as
a post-processor for spectral clustering [13], our approach provides a mathematical foun-
dation for the use ofK-means, and yields a specificweightedform of K-means that is
appropriate for the problem.

2.4 Minimizing with respect to the similarity matrix

When the partitione is given, we can consider minimization with respect toW . As we
have suggested, intuitively this has the effect of yieldinga matrixW such that the result of
spectral clustering with thatW is as close as possible toe. We now make this notion pre-
cise, by showing that the cost functionJ(W, e) is an upper bound on the distance between
the partitione and the result of spectral clustering using the similarity matrix W .

The metric between two partitionse=(er) andf =(fs) with R andS clusters respectively,
is taken to be [14]:

d(e, f)=
1

2

∥∥∥∥∥
∑

r

ere
>
r

e>r er
−

∑

s

fsf
>
s

f>
s fs

∥∥∥∥∥

2

F

=
R + S

2
−

∑

r,s

(e>r fs)
2

(e>r er)(f>
s fs)

(2)

This measure is always between zero andR+S
2 −1, and is equal to zero if and only ife ≡ f .

The following theorem shows that if we can perform weightedK-means exactly, we obtain
a bound on the performance of our spectral clustering algorithm (for a proof, see [11]):

Theorem 2 Let η =maxp Dpp/minp Dpp > 1. If e(W )=arg mine J(W, e), then for all
partitionse, we haved(e, e(W )) 6 4ηJ(W, e).

3 Approximation of the cost function

In order to minimize the cost functionJ(W, e) with respect toW , which is the topic of
Section 4, we need to optimize a function of theR-th principal subspace of the matrix
D−1/2WD−1/2. In this section, we show how we can compute a differentiableapproxi-
mation of the projection operator on this subspace.

3.1 Approximation of eigensubspace

Let X ∈ R
P×P be a real symmetric matrix. We assume that its eigenvalues are ordered by

magnitude:|λ1| > |λ2| > · · · > |λP |. We assume that|λR| > |λR+1| so that theR-th
principal subspaceER is well defined, with orthogonal projectionΠR.



Our approximations are based on the power method to compute eigenvectors. It is well
known that for almost all vectorsv, the ratioXqv/||Xqv|| converges to an eigenvector
corresponding to the largest eigenvalue [12]. The same method can be generalized to the
computation of dominant eigensubspaces: IfV is a matrix inR

P×R, the subspace gener-
ated by theR columns ofXqV will tend to the principal eigensubspace ofX. Note that
since we are interested only in subspaces, and in particularthe orthogonal projection op-
erators on those subspaces, we can choose any method for finding an orthonormal basis of
range(XqV ). The QR decomposition is fast and stable and is usually the method used to
compute such a basis (the algorithm is usually referred to as“orthogonal iteration” [12]).
However this does not lead to a differentiable function. We develop a different approach
which does yield a differentiable function, as made precisein the following proposition (for
a proof, see [11]):

Proposition 3 LetV ∈ R
P×R such thatη= max

u∈ER(X)⊥, v∈range(V )
cos(u, v) < 1. Then the

functionY 7→ Π̃R(Y ) = M(M>M)−1M>, whereM = Y qV , is C∞ in a neighborhood
of X, and we have:||Π̃R(X) − ΠR||2 6 η

(1−η2)1/2
(|λR+1|/|λR|)

q.

This proposition shows that asq tends to infinity, the range ofXqV will tend to the princi-
pal eigensubspace. The rate of convergence is determined bythe (multiplicative)eigengap
|λR+1|/|λR| < 1: it is usually hard to compute principal subspace of matrices with eigen-
gap close to one. Note that taking powers of matrices withoutcare can lead to disastrous
results [12]. By using successiveQR iterations, the computations can be made stable and
the same technique can be used for the computation of the derivatives.

3.2 Potentially hard eigenvalue problems

In most of the literature on spectral clustering, it is takenfor granted that the eigenvalue
problem is easy to solve. It turns out that in many situations, the (multiplicative) eigengap
is very close to one, making the eigenvector computation difficult (examples are given in
the next section). We acknowledge this potential problem byaveraging over several ini-
tializations of the original subspaceV . More precisely, let(Vm)m=1,...,M beM subspaces
of dimensionR. Let Bm = Π(range((D−1/2WD−1/2)qVm)) be the approximations of
the projections on theR-th principal subspace2 of D−1/2WD−1/2. The cost function that
we use is the average errorF (W,Π0(e)) = 1

2M

∑M
m=1 ||Bm − Π0||

2
F . This cost function

can be rewritten as the distance between the average of theBm andΠ0 plus the variance
of the approximations, thus explicitly penalizing the non-convergence of the power itera-
tions. We chooseVi to be equal toD1/2 times a set ofR indicator vectors corresponding to
subsets of each cluster. In simulations, we usedq =128, M =R2, and subsets containing
2/(log2 q + 1) times the number of original points in the clusters.

3.3 Empirical comparisons

In this section, we study the ability of various cost functions to track the gold standard
error measure in Eq. (2) as we vary the parameterα in the similarity matrixWpp′ =
exp(−α||xp − xp′ ||2). We study the cost functionJ(W, e), its approximation based on
the power method presented in Section 3, and two existing approaches, one based on a
Markov chain interpretation of spectral clustering [15] and one based on the alignment [16]
of D−1/2WD−1/2 andΠ0. We carry out this experiment for the simple clustering example

2The matrix D−1/2WD−1/2 always has the same largest eigenvalue 1 with eigenvector
D1/21 and we could consider instead the(R − 1)-st principal subspace ofD−1/2WD−1/2 −

D1/211>D1/2/ (1>D1).
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Figure 2: Empirical comparison of cost functions. (a) Data.(b) Eigengap of the similarity
matrix as a function ofα. (c) Gold standard clustering error (solid), spectral costfunction
J (dotted) and its approximation based on the power method (dashed). (d) Gold standard
clustering error (solid), the alignment (dashed), and a Markov-chain-based cost, divided by
16 (dotted).

shown in Figure 2(a). This apparently simple toy example captures much of the core dif-
ficulty of spectral clustering—nonlinear separability and thinness/sparsity of clusters (any
point has very few near neighbors belonging to the same cluster, so that the weighted graph
is sparse). In particular, in Figure 2(b) we plot the eigengap of the similarity matrix as
a function ofα, noting that at the optimum, this gap is very close to one, andthus the
eigenvalue problem is hard to solve.

In Figure 2(c) and (d), we plot the four cost functions against the gold standard. The
gold standard curve shows that the optimalα lies near 2.5 on a log scale, and as seen in
Figure 2(c), the minima of the new cost function and its approximation lie near to this
value. As seen in Figure 2(d), on the other hand, the other twocost functions show a poor
match to the gold standard, and yield minima far from the optimum.

The problem with the alignment and Markov-chain-based costfunctions is that these func-
tions essentially measure the distance between the similarity matrix W (or a normalized
version ofW ) and a matrixT which (after permutation) is block-diagonal with constant
blocks. Unfortunately, in examples like the one in Figure 2,the optimal similarity matrix
is very far from being block diagonal with constant blocks. Rather, given that data points
that lie in the same ring are in general far apart, the blocks are very sparse—not constant
and full. Methods that try to find constant blocks cannot find the optimal matrices in these
cases. In the language of spectral graph partitioning, where we have a weighted graph with
weightsW , each cluster is a connected but very sparse graph. The powerW q corresponds
to theq-th power of the graph; i.e., the graph in which two vertices are linked by an edge
if and only if they are linked by a path of length no more thanq in the original graph.
Thus taking powers can be interpreted as “thickening” the graph to make the clusters more
apparent, while not changing the eigenstructure of the matrix (taking powers of symmetric
matrices only changes the eigenvalues, not the eigenvectors).

4 Learning the similarity matrix

We now turn to the problem of learning the similarity matrix from data. We assume that we
are given one or more sets of data for which the desired clustering is known. The goal is to
design a “similarity map,” that is, a mapping from datasets of elements inX to the space
of symmetric matrices with nonnegative elements. To turn this into a parametric learning
problem, we focus on similarity matrices that are obtained as Gram matrices of a kernel
functionk(x, y) defined onX×X . In particular, for concreteness and simplicity, we restrict
ourselves in this paper to the case of Euclidean data (X = R

F ) and a diagonally-scaled
Gaussian kernelkα(x, y)=exp(−(x−y)> diag(α)(x−y)), whereα ∈ R

F —while noting
that our methods apply more generally.



4.1 Learning algorithm

We assume that we are givenN datasetsDn, n ∈ {1, . . . , N}, of points inR
F . Each dataset

Dn is composed ofPn pointsxnp, p ∈ {1, . . . , Pn}. Each dataset is segmented, that is, for
eachn we know the partitionen, so that the “target” matrixΠ0(en, α) can be computed
for each dataset. For eachn, we have a similarity matrixWn(α). The cost function that
we use isH(α) = 1

N

∑
n F (Wn(α),Π0(en, α)) + C||α||1. The `1 penalty serves as a

feature selection term, tending to make the solution sparse. The learning algorithm is the
minimization ofH(α) with respect toα ∈ R

F
+, using the method of conjugate gradient

with line search.

Since the complexity of the cost function increases withq, we start the minimization with
smallq and gradually increaseq up to its maximum value. We have observed that for small
q, the function to optimize is smoother and thus easier to optimize—in particular, the long
plateaus of constant values are less pronounced.

Testing. The output of the learning algorithm is a vectorα ∈ R
F . In order to cluster

previously unseen datasets, we compute the similarity matrix W and use the algorithm of
Figure 1. In order to further enhance performance, we can also adopt an idea due to [13]—
we hold the direction ofα fixed but perform a line search on its norm. This yields the
real numberλ such that the weighted distortion obtained after application of the spectral
clustering algorithm of Figure 1, with the similarity matrices defined byλα, is minimum.3

4.2 Simulations

We performed simulations on synthetic datasets in two dimensions, where we consider
datasets similar to the one in Figure 2, with two rings whose relative distance is constant
across samples (but whose relative orientation has a randomdirection). We addD irrelevant
dimensions of the same magnitude as the two relevant variables. The goal is thus to learn
the diagonal scaleα ∈ R

D+2 of a Gaussian kernel that leads to the best clustering on
unseen data. We learnα from N sample datasets (N =1 or 10), and compute the clustering
error of our algorithm with and without adaptive tuning of the norm ofα during testing (as
described in Section 4.1) on ten previously unseen datasets. We compare to an approach
that does not use the training data:α is taken to be the vector of all ones and we again search
over the best possible norm during testing (we refer to this method as “no learning”). We
report results in Table 1. Without feature selection, the performance of spectral clustering
degrades very rapidly when the number of irrelevant features increases, while our learning
approach is very robust, even with only one training dataset.

5 Conclusion

We have presented two algorithms—one for spectral clustering and one for learning the
similarity matrix. These algorithms can be derived as the minimization of a single cost
function with respect to its two arguments. This cost function depends directly on the
eigenstructure of the similarity matrix. We have shown thatit can be approximated effi-
ciently using the power method, yielding a method for learning similarity matrices that can
cluster effectively in cases in which non-adaptive approaches fail. Note in particular that
our new approach yields a spectral clustering method that issignificantly more robust to
irrelevant features than current methods.

We are currently applying our algorithm to problems in speech separation and image seg-
mentation, in particular with the objective of selecting features from among the numerous

3In [13], this procedure is used to learn one parameter of the similarity matrix with no training
data; it cannot be used directly here to learn a more complex similarity matrixwith more parameters,
because it would lead to overfitting.



Table 1: Performance on synthetic datasets: clustering errors (multiplied by 100) for
method without learning (but with tuning) and for our learning method with and without
tuning, withN =1 or 10 training datasets;D is the number of irrelevant features.

D no learning w/o tuning learning with tuning
learning N=1 N=10 N=1 N=10

0 0 15.5 10.5 0 0
1 60.8 37.7 9.5 0 0
2 79.8 36.9 9.5 0 0
4 99.8 37.8 9.7 0.4 0
8 99.8 37 10.7 0 0
16 99.7 38.8 10.9 14 0
32 99.9 38.9 15.1 14.6 6.1

features that are available in these domains [6, 7]. The number of points in such datasets
can be very large and we have developed efficient implementations of both learning and
clustering based on sparsity and low-rank approximations [11].
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