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Abstract

Spectral clustering refers to a class of techniques whigtorethe eigen-
structure of a similarity matrix to partition points intosghint clusters
with points in the same cluster having high similarity andhp®in dif-

ferent clusters having low similarity. In this paper, weider new cost
function for spectral clustering based on a measure of &ebreen a
given partition and a solution of the spectral relaxatioraghinimum
normalized cut problem. Minimizing this cost function withspect to
the partition leads to a new spectral clustering algorithiviinimizing

with respect to the similarity matrix leads to an algorithon fearning
the similarity matrix. We develop a tractable approximatad our cost
function that is based on the power method of computing egeors.

1 Introduction

Spectral clustering has many applications in machine iegrrexploratory data analysis,
computer vision and speech processing. Most techniqudiidypor implicitly assume

a metric or a similarity structure over the space of confijons, which is then used by

clustering algorithms. The success of such algorithms riégpbeavily on the choice of

the metric, but this choice is generally not treated as pfattielearning problem. Thus,

time-consuming manual feature selection and weightindtenca necessary precursor to
the use of spectral methods.

Several recent papers have considered ways to alleviatbuhilen by incorporating prior
knowledge into the metric, either in the setting/§fmeans clustering [1, 2] or spectral
clustering [3, 4]. In this paper, we consider a complemegrdaproach, providing a general
framework for learning the similarity matrix for spectréistering from examples. We as-
sume that we are given sample data with known partitions emdsked to build similarity
matrices that will lead to these partitions when spectiatelring is performed. This prob-
lem is motivated by the availability of such datasets foeast two domains of application:
in vision and image segmentation, a hand-segmented dagasetv available [5], while
for the blind separation of speech signals via partitiorohthe time-frequency plane [6],
training examples can be created by mixing previously aapitsignals.

Another important motivation for our work is the need to depespectral clustering meth-
ods that are robust to irrelevant features. Indeed, as we 8h&ection 4.2, the perfor-

mance of current spectral methods can degrade dramaticalg presence of such irrele-
vant features. By using our learning algorithm to learn gdlielly-scaled Gaussian kernel



for generating the affinity matrix, we obtain an algorithrattfs significantly more robust.

Our work is based on a new cost functidil, e) that characterizes how close the eigen-
structure of a similarity matri¥V' is to a partitione. We derive this cost function in Sec-
tion 2. As we show in Section 2.3, minimizinbwith respect t@ leads to a new clustering
algorithm that takes the form of a weighté@-means algorithm. Minimizing/ with re-
spect tolW yields an algorithm for learning the similarity matrix, ag whow in Section 4.
Section 3 provides foundational material on the approxionadf the eigensubspace of a
symmetric matrix that is needed for Section 4.

2 Spectral clustering and normalized cuts

Given a datasef of P points in a spac&’ and aP x P “similarity matrix” (or “affinity
matrix”) W that measures the similarity between thgoints (V) is large when points
indexed byp andp’ are likely to be in the same cluster), the goal of clusterinp iorganize
the dataset into disjoint subsets with high intra-clusimilarity and low inter-cluster sim-
ilarity. Throughout this paper we always assume that thmefds ofi¥ are non-negative
(W > 0) and thati¥ is symmetric (" =W ).

Let D denote the diagonal matrix whos¢h diagonal element is the sum of the elements in
thei-th row of W, i.e., D =diag(W1), wherel is defined as the vector Ik composed of
ones. There are different variants of spectral clustetimthis paper we focus on the task of
minimizing “normalized cuts.” The classical relaxationtbfs NP-hard problem [7, 8, 9]
leads to an eigenvalue problem. In this section we show teptoblem of finding a
solution to the original problem that is closest to the rethsolution can be solved by a
weighted/K -means algorithm.

2.1 Normalized cut and graph partitioning

The clustering problem is usually defined in terms of a cotepfgraph with vertices
V={1, ..., P} and an affinity matrix with weight¥/,,, for p,p’ € V. We wish to findR
disjoint clustersA = (A;),c(1,....ry, Where(J, A, =V, that optimize a certain cost func-
tion. An example of such a function is ti&way normalized cut defined as follows [7, 10]:

C(A7 W):Ele (ZieAr,jeV\Ar Wij) / (ZieA,-,jev Wij) :

Let e, be the indicator vector iiR” for ther-th cluster, i.e.e, € {0,1} is such thak,
has a nonzero component exactly at points instik cluster. Knowledge of = (e,.) is
equivalent to knowledge ol = (A,.) and, when referring to partitions, we will use the two
formulations interchangeably. A short calculation resgaht the normalized cut is then

equal toC(e, W) =" eT (D — W)e,/ (¢ De,).

2.2 Spectral relaxation and rounding

The following proposition, which extends a result of Shi avdlik [7] for two clusters
to an arbitrary number of clusters, gives an alternativedeson of the clustering task,
which will lead to a spectral relaxation:

Proposition 1 The R-way normalized cut is equal 8 — tr Y T D~1/2WW D~1/2Y for any
matrix Y € RP*E such that (a) the columns db—'/2Y are piecewise constant with
respect to the clusters and (B) has orthonormal columng{(" Y =1).

Proof The constraint(a) is equivalent to the existence of a matrix € R**% such
that D=1/2Y = (ey,...,eg)A = EA. The constraintb) is thus written ad =Y 'Y =
ATETDEA. The matrixE" DE is diagonal, with elements’ De, and is thus positive



and invertible. This immediately implies that\ " = (E T DE)~!. This in turn implies that
trY ' D-V2WD Y2y =tr ATETWEA = tr ETWEAAT = tr ETWE(ETDE)~*
which is exactly the normalized cut (up to an additive comgta

By removing the constrair{t:), we obtain a relaxed optimization problem, whose solutions
involve the eigenstructure @—'/21W D~/2 and which leads to the classical lower bound
on the optimal normalized cut [8, 9]. The following propasit gives the solution obtained
from the relaxation (for the proof, see [11]):

Proposition 2 The maximum ofr YT D~/2W D~1/2y over matricesy’ € R”*% such
that Y'Y = I is the sum of theR largest eigenvalues db~'/2WD~1/2, It is attained
at all Y of the formY = UB; whereU € RP*® is any orthonormal basis of th&-th
principal subspace ab~!/21W D~1/2 and B, is an arbitrary rotation matrix inR"x %,

The solutions found by this relaxation will not in general fiecewise constant. In or-
der to obtain a piecewise constant solution, we wish to findeagwise constant matrix
that is as close as possible to one of the possiblebtained from the eigendecompo-
sition. Since such matrices are defined up to a rotation rpdtrinakes sense to com-
pare thesubspacespanned by their columns. A common way to compare subspadtes i
compare the orthogonal projection operators on those sgbs{12], that is, to compute
the Frobenius norm betwednlU " andIl, = IIo(W,e) £ 5 D/2e.e] DY/2/ (e De,)
(IT, is the orthogonal projection operator on the subspace sghby the columns of
D'Y2F = D'Y?(ey, ..., e,), from Proposition 1). We thus define the following cost func-
tion:

J(W,e)=3lUUT — || @)
Using the fact that botl/ U T andIl, are orthogonal projection operators on linear sub-
spaces of dimensioR, a short calculation reveals that the cost functiiii, e) is equal
toR—trUUIlp=R - Y, el DY2UUT D'/2e,/ (e[ De,). This cost function charac-
terizes the ability of the matri¥l/ to produce the partition when using its eigenvectors.
Minimizing with respect toe leads to a new clustering algorithm that we now present.
Minimizing with respect to the matrix for a given partitienleads to the learning of the
similarity matrix, as we show in Section 4.

2.3 Minimizing with respect to the partition

In this section, we show that minimizin§(1V, e) is equivalent to a weighteR’ -means al-
gorithm. The following theorem, inspired by the spectrédxation of K-means presented
in [8], shows that the cost function can be interpreted asigived distortion measute

Theorem 1 Let W be an affinity matrix and let/ = (us,...,up), whereu, € R, be

an orthonormal basis of th&-th principal subspace ab~/2WW D~1/2. For any partition
e = A, we have

J(W,e)= » mmRRxRZ ZA dp|[upd, d>Y2 2.
T pE

Proof LetD(u, A)=3,>" ca, deupd;l/2 — | [2. Minimizing D(u, A) with respect
to i1 is a decoupled least-squares problem and we get:

ming, D(p, A) = 3, Y e gty — S, 11 e n, do “wpl?/ (Cpea, dp)

!Note that a similar equivalence holds between normalized cuts and wei ans for
positive semidefinite similarity matrices, which can be factorizedlas= GG '; this leads
to an approximation algorithm for minimizing normalized cuts; i.e., we ha@(W,e) =

wRr)ERRXE Zr ZpeAT degpd;l - HTHQ +R—trD-/?WD™/2,

,,,,,



Input: Similarity matrix W € RP* P,

Algorithm:
1. Compute first? eigenvectoré/ of D~'/21W D~1/2 whereD = diag(W1).
2. LetU=(uy,...,up) € RF*F andd,=D,,.
3. WeightedK -means: while partitiom is not stationary,

2
a. For allr, ,uT—ZPGA dl/ U’p/ZpGA
b. For allp, assigrp to A, Whererfarg ming. [[updy, ' — ||

Output: partition A, distortion measurg_ " dpl|upd ;1/2 — pr|?

-1/

PEA,

Figure 1: Spectral clustering algorithm.

1 2 41/2

:Zp -3, preA /dp,/u uy / (e} De,)

=R- Zr e, DV2UUTDY2e,/ (e De,)=J(W,e) [
This theorem has an immediate algorithmic implication—tmimize the cost function
J (W, e) with respect to the partition, we can use a weightell-means algorithm. The
resulting algorithm is presented in Figure 1. Whitemeans is often used heuristically as
a post-processor for spectral clustering [13], our apgrqgaovides a mathematical foun-
dation for the use of{-means, and yields a specifieeightedform of K-means that is
appropriate for the problem.

2.4 Minimizing with respect to the similarity matrix

When the partitiore is given, we can consider minimization with respecito As we
have suggested, intuitively this has the effect of yieldingatrix'¥ such that the result of
spectral clustering with thal is as close as possible to We now make this notion pre-
cise, by showing that the cost functidiiiV, ) is an upper bound on the distance between
the partitione and the result of spectral clustering using the similarigtnix 1.

The metric between two partitiors= (e,.) and f = (fs) with R andS clusters respectively,
is taken to be [14]:

1 _R + S e) fs)?
de, f)=15 oD e va oy 2)
D=3 Z Z % 2. Graiie
This measure is always between zero éﬁeﬁ—l, and is equal to zero if and onlydf= f.
The following theorem shows that if we can perform weight&aneans exactly, we obtain

a bound on the performance of our spectral clustering algar{for a proof, see [11]):

Theorem 2 Letn=max, Dp,/ min, D,, > 1. If e(W)=arg min. J(W, e), then for all
partitionse, we havel(e, e(W)) < 4nJ (W, e).

3 Approximation of the cost function

In order to minimize the cost functiofi(W, e) with respect tolW, which is the topic of
Section 4, we need to optimize a function of tReth principal subspace of the matrix
D~1Y/2Ww D~1/2, In this section, we show how we can compute a differentiapjeroxi-
mation of the projection operator on this subspace.

3.1 Approximation of eigensubspace

Let X € RP*P be a real symmetric matrix. We assume that its eigenvaleesrdered by
magnitude:|\1| > [A2] = -+ = |Ap|. We assume thdhg| > |Agy1| SO that theR-th
principal subspacé&y is well defined, with orthogonal projectidiiz.



Our approximations are based on the power method to comgevectors. It is well
known that for almost all vectors, the ratioX%v/||Xv|| converges to an eigenvector
corresponding to the largest eigenvalue [12]. The sameadatan be generalized to the
computation of dominant eigensubspacesy lis a matrix inR”*%, the subspace gener-
ated by theR columns of X ¢V will tend to the principal eigensubspace ®¥f Note that
since we are interested only in subspaces, and in partithdaorthogonal projection op-
erators on those subspaces, we can choose any method fagfardbrthonormal basis of
range(X?V). The QR decomposition is fast and stable and is usually ttteodeused to
compute such a basis (the algorithm is usually referred torisogonal iteration” [12]).
However this does not lead to a differentiable function. Weedop a different approach
which does yield a differentiable function, as made preiciske following proposition (for
a proof, see [11]):

Proposition 3 LetV € RP*% such thaty= max cos(u,v) < 1. Then the
_ uEER(X)L,vErange(V)

functionY +— Hg(Y)=M(MTM)"'MT, whereM =YV, is C* in a neighborhood

of X, and we havel[llz(X) — Ilg|l2 < g5z (Ar+al/[ARD"

This proposition shows that ggends to infinity, the range of 7V will tend to the princi-

pal eigensubspace. The rate of convergence is determingn iggnultiplicative)eigengap
[Ar+1]/|AR| < 1: itis usually hard to compute principal subspace of masrigith eigen-

gap close to one. Note that taking powers of matrices witkateg can lead to disastrous
results [12]. By using successi¥gR iterations, the computations can be made stable and
the same technique can be used for the computation of theatiegis.

3.2 Potentially hard eigenvalue problems

In most of the literature on spectral clustering, it is takengranted that the eigenvalue
problem is easy to solve. It turns out that in many situatitims (multiplicative) eigengap
is very close to one, making the eigenvector computatidircdif (examples are given in
the next section). We acknowledge this potential problena®raging over several ini-
tializations of the original subspadé More precisely, etV )m=1,...,» be M subspaces
of dimensionR. Let B,, = M (range((D~Y/2WD~1/2)4V,,,)) be the approximations of
the projections on th&-th principal subspaéeof D—1/2W D=1/, The cost function that
we use is the average errd(W, Iy (e)) = 5+ SM B, — Iy ||%. This cost function

can be rewritten as the distance between the g\L/elrage @,thendIl, plus the variance

of the approximations, thus explicitly penalizing the mrmmvergence of the power itera-
tions. We choos#; to be equal td>!/? times a set oR indicator vectors corresponding to
subsets of each cluster. In simulations, we ugedi28, M = R?, and subsets containing

2/(log, q + 1) times the number of original points in the clusters.

3.3 Empirical comparisons

In this section, we study the ability of various cost funosao track the gold standard
error measure in Eq. (2) as we vary the parametén the similarity matrix W, =
exp(—al|lz, — z,||?). We study the cost functiod (W, e), its approximation based on
the power method presented in Section 3, and two existingoappes, one based on a
Markov chain interpretation of spectral clustering [15{lame based on the alignment [16]
of D=1/2W D~1/2 andIl,. We carry out this experiment for the simple clustering epm

2The matrix D~Y2WD~/? always has the same largest eigenvalue 1 with eigenvector
D'/?1 and we could consider instead ti& — 1)-st principal subspace ab~/2WD~1/2 —
DY211"DY2/ (17 D1).
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Figure 2: Empirical comparison of cost functions. (a) Ddbg.Eigengap of the similarity

matrix as a function ofv. (c) Gold standard clustering error (solid), spectral dosttion

J (dotted) and its approximation based on the power methoshé. (d) Gold standard
clustering error (solid), the alignment (dashed), and akdaichain-based cost, divided by
16 (dotted).

shown in Figure 2(a). This apparently simple toy examplewas much of the core dif-
ficulty of spectral clustering—nonlinear separability ahhhess/sparsity of clusters (any
point has very few near neighbors belonging to the samesr|isi that the weighted graph
is sparse). In particular, in Figure 2(b) we plot the eiggnghthe similarity matrix as
a function of«, noting that at the optimum, this gap is very close to one, thog the
eigenvalue problem is hard to solve.

In Figure 2(c) and (d), we plot the four cost functions agathe gold standard. The
gold standard curve shows that the optimdies near 2.5 on a log scale, and as seen in
Figure 2(c), the minima of the new cost function and its agpnation lie near to this
value. As seen in Figure 2(d), on the other hand, the othectsbfunctions show a poor
match to the gold standard, and yield minima far from theropin.

The problem with the alignment and Markov-chain-based ftoitions is that these func-
tions essentially measure the distance between the sityitaatrix W (or a normalized
version of W) and a matriXI" which (after permutation) is block-diagonal with constant
blocks. Unfortunately, in examples like the one in Figur¢h®, optimal similarity matrix
is very far from being block diagonal with constant blockstlfer, given that data points
that lie in the same ring are in general far apart, the blockssary sparse—not constant
and full. Methods that try to find constant blocks cannot fimel dptimal matrices in these
cases. In the language of spectral graph partitioning, eWwverhave a weighted graph with
weightsWV, each cluster is a connected but very sparse graph. The poWweorresponds
to theg-th power of the graph; i.e., the graph in which two verticeslinked by an edge
if and only if they are linked by a path of length no more thaim the original graph.
Thus taking powers can be interpreted as “thickening” tlaglto make the clusters more
apparent, while not changing the eigenstructure of their@king powers of symmetric
matrices only changes the eigenvalues, not the eigengctor

4 Learningthesimilarity matrix

We now turn to the problem of learning the similarity matnigrh data. We assume that we
are given one or more sets of data for which the desired clogtss known. The goal is to
design a “similarity map,” that is, a mapping from datasdtelements inX' to the space
of symmetric matrices with nonnegative elements. To tuimitito a parametric learning
problem, we focus on similarity matrices that are obtaine@aam matrices of a kernel
functionk(z, y) defined ont'xX. In particular, for concreteness and simplicity, we restri
ourselves in this paper to the case of Euclidean data=( R*") and a diagonally-scaled
Gaussian kerndl,, (z,y) =exp(—(x—y) " diag(a)(z—y)), wherea € RF—while noting
that our methods apply more generally.



4.1 Learningalgorithm

We assume that we are givéhdataset®,,,n € {1,..., N}, of pointsinR". Each dataset
D,, is composed of,, pointsz,,, p € {1, ..., P,}. Each dataset is segmented, that is, for
eachn we know the partitiore,,, so that the “target” matrixIy(e,,, @) can be computed
for each dataset. For eaeh we have a similarity matri¥V,, (). The cost function that
we use isH(a) = + >, F(Wy (), Ilg(e,, @) + Cllal|1. Thet; penalty serves as a
feature selection term, tending to make the solution sparle learning algorithm is the
minimization of H («) with respect ton € RY, using the method of conjugate gradient
with line search.

Since the complexity of the cost function increases wittve start the minimization with
smallg and gradually increasgup to its maximum value. We have observed that for small
q, the function to optimize is smoother and thus easier taxupé—in particular, the long
plateaus of constant values are less pronounced.

Testing. The output of the learning algorithm is a vecterc R”. In order to cluster
previously unseen datasets, we compute the similarityixnBitrand use the algorithm of
Figure 1. In order to further enhance performance, we canaalspt an idea due to [13]—
we hold the direction ot fixed but perform a line search on its norm. This yields the
real number\ such that the weighted distortion obtained after applcatf the spectral
clustering algorithm of Figure 1, with the similarity mateis defined by, is minimum?

4.2 Simulations

We performed simulations on synthetic datasets in two dgioms, where we consider
datasets similar to the one in Figure 2, with two rings whadative distance is constant
across samples (but whose relative orientation has a radteation). We add irrelevant
dimensions of the same magnitude as the two relevant vasabhe goal is thus to learn
the diagonal scale € RP*2 of a Gaussian kernel that leads to the best clustering on
unseen data. We leatnfrom N sample datasets\(=1 or 10), and compute the clustering
error of our algorithm with and without adaptive tuning oéthorm of« during testing (as
described in Section 4.1) on ten previously unseen datagégscompare to an approach
that does not use the training datais taken to be the vector of all ones and we again search
over the best possible norm during testing (we refer to thethiod as “no learning”). We
report results in Table 1. Without feature selection, thdgumance of spectral clustering
degrades very rapidly when the number of irrelevant featumereases, while our learning
approach is very robust, even with only one training dataset

5 Conclusion

We have presented two algorithms—one for spectral clugtexid one for learning the
similarity matrix. These algorithms can be derived as theimization of a single cost
function with respect to its two arguments. This cost fumctdepends directly on the
eigenstructure of the similarity matrix. We have shown thaan be approximated effi-
ciently using the power method, yielding a method for leagrsimilarity matrices that can
cluster effectively in cases in which non-adaptive appheadail. Note in particular that
our new approach yields a spectral clustering method thsigisficantly more robust to
irrelevant features than current methods.

We are currently applying our algorithm to problems in sppeseparation and image seg-
mentation, in particular with the objective of selectingtieres from among the numerous

3In [13], this procedure is used to learn one parameter of the similaritybmaith no training
data; it cannot be used directly here to learn a more complex similarity mthxmore parameters,
because it would lead to overfitting.



Table 1: Performance on synthetic datasets: clusteringrsemultiplied by 100) for
method without learning (but with tuning) and for our leagimethod with and without
tuning, with N =1 or 10 training datasets is the number of irrelevant features.

D no learning w/o tuning| learning with tuning
learning| N=1 N=10 N=1 N=10
0 0 15.5 10.5 0 0
1 60.8 37.7 9.5 0 0
2 79.8 36.9 9.5 0 0
4 99.8 37.8 9.7 0.4 0
8 99.8 37 10.7 0 0
16 99.7 38.8 10.9 14 0
32 99.9 38.9 151 14.6 6.1

features that are available in these domains [6, 7]. The eumbpoints in such datasets
can be very large and we have developed efficient implenmientaof both learning and
clustering based on sparsity and low-rank approximatittg [
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