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Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f ∈ F :

n
∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two issues:

– Loss

– Function space / norm



Usual losses [SS01, STC04]

• Regression: y ∈ R, prediction ŷ = f(x),

– quadratic cost ℓ(y, f(x)) = 1
2(y − f(x))2

• Classification : y ∈ {−1, 1} prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f(x)) = ℓ(yf(x))

– “True” cost: ℓ(yf(x)) = 1yf(x)<0

– Usual convex costs:
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Regularizations

• Main goal: control the “capacity” of the learning problem

• Two main lines of work

1. Use Hilbertian (RKHS) norms

– Non parametric supervised learning and kernel methods

– Well developped theory [SS01, STC04, Wah90]

2. Use “sparsity inducing” norms

– main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|
– Perform model selection as well as regularization

– Often used heuristically

• Goal of the course: Understand how and when to use sparsity-

inducing norms



Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

– Derivative at 0+: g+ = λ− y and 0−: g− = −λ− y

– x = 0 is the solution iff g+ > 0 and g− 6 0 (i.e., |y| 6 λ)

– x > 0 is the solution iff g+ 6 0 (i.e., y > λ) ⇒ x∗ = y − λ
– x 6 0 is the solution iff g− 6 0 (i.e., y 6 −λ) ⇒ x∗ = y + λ

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding



Why ℓ1-norms lead to sparsity?

• Example 2: isotropic quadratic problem

• min
x∈Rp

1

2

p
∑

i=1

x2
i −

p
∑

i=1

xiyi + λ‖x‖1 = min
x∈Rp

1

2
x⊤x− x⊤y + λ‖x‖1

• solution: x∗i = sign(yi)(|yi| − λ)+

• decoupled soft thresholding



Why ℓ1-norms lead to sparsity?

• Example 3: general quadratic problem

– coupled soft thresolding

• Geometric interpretation

– NB : Penalizing is “equivalent” to constraining



Course Outline

1. ℓ1-norm regularization

• Review of nonsmooth optimization problems and algorithms

• Algorithms for the Lasso (generic or dedicated)

• Examples

2. Extensions

• Group Lasso and multiple kernel learning (MKL) + case study

• Sparse methods for matrices

• Sparse PCA

3. Theory - Consistency of pattern selection

• Low and high dimensional setting

• Links with compressed sensing



ℓ1-norm regularization

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n, given in

vector y ∈ R
p and matrix X ∈ R

n×p

• Minimize with respect to loadings/weights w ∈ R
p:

n
∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1

Error on data + Regularization

• Including a constant term b?

• Assumptions on loss:

– convex and differentiable in the second variable

– NB: with the square loss ⇒ basis pursuit (signal processing)

[CDS01], Lasso (statistics/machine learning) [Tib96]



A review of nonsmooth convex

analysis and optimization

• Analysis: optimality conditions

• Optimization: algorithms

– First order methods

– Second order methods

• Books: Boyd & VandenBerghe [BV03], Bonnans et al.[BGLS03],

Nocedal & Wright [NW06], Borwein & Lewis [BL00]



Optimality conditions for ℓ1-norm regularization

• Convex differentiable problems ⇒ zero gradient!

– Example: ℓ2-regularization, i.e., minw

∑n
i=1 ℓ(yi, w

⊤xi) + λ
2w

⊤w

– Gradient =
∑n

i=1 ℓ
′(yi, w

⊤xi)xi + λw where ℓ′(yi, w
⊤xi) is the

partial derivative of the loss w.r.t the second variable

– If square loss,
∑n

i=1 ℓ(yi, w
⊤xi) = 1

2‖y − Xw‖22 and gradient =

−X⊤(y −Xw) + λw

⇒ normal equations ⇒ w = (X⊤X + λI)−1X⊤Y

• ℓ1-norm is non differentiable!

– How to compute the gradient of the absolute value?

• WARNING - gradient methods on non smooth problems! - WARNING

⇒ Directional derivatives - subgradient



Directional derivatives

• Directional derivative in the direction ∆ at w:

∇J(w,∆) = lim
ε→0+

J(w + ε∆)− J(w)

ε

• Main idea: in non smooth situations, may need to look at all

directions ∆ and not simply p independent ones!

• Proposition: J is differentiable at w, if ∆ 7→ ∇J(w,∆) is then

linear, and ∇J(w,∆) = ∇J(w)⊤∆



Subgradient

• Generalization of gradients for non smooth functions

• Definition: g is a subgradient of J at w if and only if

∀t ∈ R
p, J(t) > J(w) + g⊤(t− w)

(i.e., slope of lower bounding affine function)

• Proposition: J differentiable at w if and only if exactly one

subgradient (the gradient)

• Proposition: (proper) convex functions always have subgradients



Optimality conditions

• Subdifferential ∂J(w) = (convex) set of subgradients of J at w

• From directional derivatives to subdifferential

g ∈ ∂J(w)⇔ ∀∆ ∈ R
p, g⊤∆ 6 ∇J(w,∆)

• From subdifferential to directional derivatives

∇J(w,∆) = max
g∈∂J(w)

g⊤∆

• Optimality conditions:

– Proposition: w is optimal if and only if for all ∆ ∈ R
p,

∇J(w,∆) > 0

– Proposition: w is optimal if and only if 0 ∈ ∂J(w)



Subgradient and directional derivatives for ℓ1-norm

regularization

• We have with J(w) =
∑n

i=1 ℓ(yi, w
⊤xi) + λ‖w‖1

∇J(w,∆) =
n
∑

i=1

ℓ′(yi, w
⊤xi)xi+λ

∑

j, wj 6=0

sign(wj)
⊤∆j+λ

∑

j, wj=0

|∆j|

• g is a subgradient at w if and only if for all j,

sign(wj) 6= 0⇒ gj =
n
∑

i=1

ℓ′(yi, w
⊤xi)Xij + λsign(wj)

sign(wj) = 0⇒ |gj −
n
∑

i=1

ℓ′(yi, w
⊤xi)Xij| 6 λ



Optimality conditions for ℓ1-norm regularization

• General loss: 0 is a subgradient at w if and only if for all j,

sign(wj) 6= 0⇒ 0 =
n
∑

i=1

ℓ′(yi, w
⊤xi)Xij + λsign(wj)

sign(wj) = 0⇒ |
n
∑

i=1

ℓ′(yi, w
⊤xi)Xij| 6 λ

• Square loss: 0 is a subgradient at w if and only if for all j,

sign(wj) 6= 0⇒ X(:, j)⊤(y −Xw) + λsign(wj)

sign(wj) = 0⇒ |X(:, j)⊤(y −Xw)| 6 λ



First order methods for convex optimization on R
p

• Simple case: differentiable objective

– Gradient descent: wt+1 = wt − αt∇J(wt)

∗ with line search: search for a decent (not necessarily best) αt

∗ diminishing step size: e.g., αt = (t+ t0)
−1

∗ Linear convergence time: O(κ log(1/ε)) iterations

– Coordinate descent: similar properties

• Hard case: non differentiable objective

– Subgradient descent: wt+1 = wt − αtgt, with gt ∈ ∂J(wt)

∗ with exact line search: not always convergent (show counter

example)

∗ diminishing step size: convergent

– Coordinate descent: not always convergent (show counterexample)



Counter-example

Coordinate descent for nonsmooth objectives
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Counter-example

Steepest descent for nonsmooth objectives

• q(x1, x2) =

{ −5(9x2
1 + 16x2

2)
1/2 if x1 > |x2|

−(9x1 + 16|x2|)1/2 if x1 6 |x2|

• Steepest descent starting from any x such that x1 > |x2| >
(9/16)2|x1|

−5 0 5
−5

0

5



Second order methods

• Differentiable case

– Newton: wt+1 = wt − αtH
−1
t gt

∗ Traditional: αt = 1, but non globally convergent

∗ globally convergent with line search for αt (see Boyd, 2003)

∗ O(log log(1/ε)) (slower) iterations

– Quasi-newton methods (see Bonnans et al., 2003)

• Non differentiable case (interior point methods)

– Smoothing of problem + second order methods

∗ See example later and (Boyd, 2003)

∗ Theoretically O(
√
p) Newton steps, usually O(1) Newton steps



First order or second order methods for machine

learning?

• objecive defined as average (i.e., up to n−1/2): no need to optimize

up to 10−16!

– Second-order: slower but worryless

– First-order: faster but care must be taken regarding convergence

• Rule of thumb

– Small scale ⇒ second order

– Large scale ⇒ first order

– Unless dedicated algorithm using structure (like for the Lasso)

• See Bottou & Bousquet (2008) [BB08] for further details



Algorithms for ℓ1-norms:

Gaussian hare vs. Laplacian tortoise



Cheap (and not dirty) algorithms for all losses

• Coordinate descent [WL08]

– Globaly convergent here under reasonable assumptions!

– very fast updates

• Subgradient descent

• Smoothing the absolute value + first/second order methods

– Replace |wi| by (w2
i + ε2i )

1/2

– Use gradient descent or Newton with diminishing ε

• More dedicated algorithms to get the best of both worlds: fast and

precise



Special case of square loss

• Quadratic programming formulation: minimize

1

2
‖y−Xw‖2+λ

p
∑

j=1

(w+
j +w−

j ) such that w = w+−w−, w+
> 0, w−

> 0

– generic toolboxes ⇒ very slow

• Main property: if the sign pattern s ∈ {−1, 0, 1}p of the solution is

known, the solution can be obtained in closed form

– Lasso equivalent to minimizing 1
2‖y−XJwJ‖2 + λs⊤JwJ w.r.t. wJ

where J = {j, sj 6= 0}.
– Closed form solution wJ = (X⊤

J XJ)−1(X⊤
J Y + λsJ)

• “Simply” need to check that sign(wJ) = sJ and optimality for Jc



Optimality conditions for the Lasso

• 0 is a subgradient at w if and only if for all j,

– Active variable condition

sign(wj) 6= 0⇒ X(:, j)⊤(y −Xw) + λsign(wj)

NB: allows to compute wJ

– Inactive variable condition

sign(wj) = 0⇒ |X(:, j)⊤(y −Xw)| 6 λ



Algorithm 2: feature search (Lee et al., 2006,

[LBRN07])

• Looking for the correct sign pattern s ∈ {−1, 0, 1}p

• Initialization: start with w = 0, s = 0, J = {j, sj = 0}

• Step 1: select i = arg maxj

∣

∣

∑n
i=1 ℓ

′(yi, w
⊤xi)Xji

∣

∣ and add j to the

active set J with proper sign

• Step 2: find optimal vector wnew of 1
2‖y −XJwJ‖2 + λs⊤JwJ

– Perform (discrete) line search between w and wnew

– Update sign of w

• Step 3: check opt. condition for active variable, if no go to step 2

• Step 4: check opt. condition for inactive variable, if no go to step 1



Algorithm 3: Lars/Lasso for the square loss [EHJT04]

• Goal: Get all solutions for all possible values of the regularization

parameter λ

• Same idea as before: if the set J of active variables is known,

w∗
J(λ) = (X⊤

J XJ)−1(X⊤
J Y + λsJ)

valid, as long as,

– sign condition: sign(w∗
J(λ)) = sJ

– subgradient condition: ‖X⊤
Jc(XJw

∗
J(λ)− y)‖∞ 6 λ

– This defines an interval on λ: the path is thus piecewise affine!

• Simply need to find break points and directions



Algorithm 3: Lars/Lasso for the square loss

• Builds a sequence of disjoint sets I0, I+, I−, solutions w and

parameters λ that record the break points of the path and

corresponding active sets/solutions

• Initialization: λ0 =∞, I0 = {1, . . . , p}, I+ = I− = ∅, w = 0

• While λk > 0, find minimum λ such that

(A) sign(wk + (λ− λk)(X
⊤
J XJ)−1sJ) = sJ

(B) ‖X⊤
Jc(XJwk + (λ− λk)XJ(X⊤

J XJ)−1sJ)‖∞ 6 λ

• If (A) is blocking, remove corresponding index from I+ or I−

• If (B) is blocking, add corresponding index into active set I+ or I−

• Update corresponding λk+1 and recompute wk+1, k ← k + 1



Lasso in action

• Piecewise linear paths

• When is it supposed to work?

– Show simulations with random Gaussians, regularization parameter

estimated by cross-validation

– sparsity is expected or not



Lasso in action
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Comparing Lasso and other strategies for linear

regression and subset selection

• Compared methods to reach the least-square solution [HTF01]

– Ridge regression: minw
1
2‖y −Xw‖22 + λ

2‖w‖22
– Lasso: minw

1
2‖y −Xw‖22 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to wOLS



Lasso in action
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ℓ1-norm regularization and sparsity

Summary

• Nonsmooth optimization

– subgradient, directional derivatives

– descent methods might not always work

– first/second order methods

• Algorithms

– Cheap algorithms for all losses

– Dedicated path algorithm for the square loss



Course Outline

1. ℓ1-norm regularization

• Review of nonsmooth optimization problems and algorithms

• Algorithms for the Lasso (generic or dedicated)

• Examples

2. Extensions

• Group Lasso and multiple kernel learning (MKL) + case study

• Sparse methods for matrices

• Sparse PCA

3. Theory - Consistency of pattern selection

• Low and high dimensional setting

• Links with compressed sensing



Kernel methods for machine learning

• Definition: given a set of objects X , a positive definite kernel is

a symmetric function k(x, x′) such that for all finite sequences of

points xi ∈ X and αi ∈ R,

∑

i,j αiαjk(xi, xj) > 0

(i.e., the matrix (k(xi, xj)) is symmetric positive semi-definite)

• Aronszajn theorem [Aro50]: k is a positive definite kernel if and

only if there exists a Hilbert space F and a mapping Φ : X 7→ F
such that

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉H
• X = “input space”, F = “feature space”, Φ = “feature map”

• Functional view: reproducing kernel Hilbert spaces



Regularization and representer theorem

• Data: xi ∈ R
d, yi ∈ Y, i = 1, . . . , n, kernel k (with RKHS F)

• Minimize with respect to f : min
f∈F

∑n
i=1 ℓ(yi, f

⊤Φ(xi)) + λ
2‖f‖2

• No assumptions on cost ℓ or n

• Representer theorem [KW71]: Optimum is reached for weights of

the form

f =
∑n

j=1αjΦ(xj) =
∑n

j=1αjk(·, xj)

• α ∈ R
n dual parameters, K ∈ R

n×n kernel matrix:

Kij = Φ(xi)
⊤Φ(xj) = k(xi, xj)

• Equivalent problem: minα∈Rn
∑n

i=1 ℓ(yi, (Kα)i) + λ
2α

⊤Kα



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods

• Modularity of kernel methods

1. Work on new algorithms and theoretical analysis

2. Work on new kernels for specific data types



Representer theorem and convex duality

• The parameters α ∈ R
n may also be interpreted as Lagrange

multipliers

• Assumption: cost function is convex ϕi(ui) = ℓ(yi, ui)

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖2

ϕi(ui)

LS regression 1
2(yi − ui)

2

Logistic

regression
log(1 + exp(−yiui))

SVM (1− yiui)+



Representer theorem and convex duality

Proof

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖2

• Define ψi(vi) = max
ui∈R

viui − ϕi(ui) as the Fenchel conjugate of ϕi

• Introduce constraint ui = f⊤Φ(xi) and associated Lagrange

multipliers αi

• Lagrangian L(α, f) =
n
∑

i=1

ϕi(ui) +
λ

2
‖f‖2 + λ

n
∑

i=1

αi(ui − f⊤Φ(xi))

• Maximize with respect to ui ⇒ term of the form −ψi(−λαi)

• Maximize with respect to f ⇒ f =
∑n

i=1αiΦ(xi)



Representer theorem and convex duality

• Assumption: cost function is convex ϕi(ui) = ℓ(yi, ui)

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖2

• Dual problem: max
α∈Rn

−∑n
i=1ψi(−λαi)− λ

2α
⊤Kα

where ψi(vi) = maxui∈R viui−ϕi(ui) is the Fenchel conjugate of ϕi

• Strong duality

• Relationship between primal and dual variables (at optimum):

f =
∑n

i=1αiΦ(xi)



“Classical” kernel learning (2-norm regularization)

Primal problem minf∈F

(
∑

iϕi(f
⊤Φ(xi)) + λ

2 ||f ||2
)

Dual problem maxα∈Rn

(

−∑iψi(λαi)− λ
2α

⊤Kα
)

Optimality conditions f = −∑n
i=1αiΦ(xi)

• Assumptions on loss ϕi:

– ϕi(u) convex

– ψi(v) Fenchel conjugate of ϕi(u), i.e., ψi(v) = maxu∈R(vu−ϕi(u))

ϕi(ui) ψi(v)

LS regression 1
2(yi − ui)

2 1
2v

2 + vyi

Logistic

regression
log(1 + exp(−yiui))

(1+vyi) log(1+vyi)

−vyi log(−vyi)

SVM (1− yiui)+ −vyi × 1−vyi∈[0,1]



Kernel learning with convex optimization

• Kernel methods work...

...with the good kernel!

⇒ Why not learn the kernel directly from data?



Kernel learning with convex optimization

• Kernel methods work...

...with the good kernel!

⇒ Why not learn the kernel directly from data?

• Proposition [LCG+04, BLJ04]:

G(K) = min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖2

= max
α∈Rn

−∑n
i=1ψi(λαi)− λ

2α
⊤Kα

is a convex function of the Gram matrix K

• Theoretical learning bounds [BLJ04]



MKL framework

• Minimize with respect to the kernel matrix K

G(K) = max
α∈Rn

−∑n
i=1ψi(λαi)− λ

2α
⊤Kα

• Optimization domain:

– K positive semi-definite in general

– The set of kernel matrices is a cone → conic representation

K(η) =
∑m

j=1 ηjKj, η > 0

– Trace constraints: trK =
∑m

j=1 ηj trKj = 1

• Optimization:

– In most cases, representation in terms of SDP, QCQP or SOCP

– Optimization by generic toolbox is costly [BLJ04]



MKL - “reinterpretation” [BLJ04]

• Framework limited to K =
∑m

j=1 ηjKj, η > 0

• Summing kernels is equivalent to concatenating feature spaces

– m “feature maps” Φj : X 7→ Fj, j = 1, . . . ,m.

– Minimization with respect to f1 ∈ F1, . . . , fm ∈ Fm

– Predictor: f(x) = f1
⊤Φ1(x) + · · ·+ fm

⊤Φm(x)

x

Φ1(x)
⊤ f1

ր ... ... ց
−→ Φj(x)

⊤ fj −→
ց ... ... ր

Φm(x)⊤ fm

f⊤1 Φ1(x) + · · ·+ f⊤mΦm(x)

– Which regularization?



Regularization for multiple kernels

• Summing kernels is equivalent to concatenating feature spaces

– m “feature maps” Φj : X 7→ Fj, j = 1, . . . ,m.

– Minimization with respect to f1 ∈ F1, . . . , fm ∈ Fm

– Predictor: f(x) = f1
⊤Φ1(x) + · · ·+ fm

⊤Φm(x)

• Regularization by
∑m

j=1 ‖fj‖2 is equivalent to using K =
∑m

j=1Kj



Regularization for multiple kernels

• Summing kernels is equivalent to concatenating feature spaces

– m “feature maps” Φj : X 7→ Fj, j = 1, . . . ,m.

– Minimization with respect to f1 ∈ F1, . . . , fm ∈ Fm

– Predictor: f(x) = f1
⊤Φ1(x) + · · ·+ fm

⊤Φm(x)

• Regularization by
∑m

j=1 ‖fj‖2 is equivalent to using K =
∑m

j=1Kj

• Regularization by
∑m

j=1 ‖fj‖ should impose sparsity at the group

level

• Main questions when regularizing by block ℓ1-norm:

1. Equivalence with previous formulations

2. Algorithms

3. Analysis of sparsity inducing properties



MKL - duality [BLJ04]

• Primal problem:

∑n
i=1ϕi(f

⊤
1 Φ1(xi) + · · ·+ f⊤mΦm(xi)) + λ

2 (‖f1‖+ · · ·+ ‖fm‖)2

• Proposition: Dual problem (using second order cones)

max
α∈Rn

−∑n
i=1ψi(−λαi)− λ

2 minj∈{1,...,m}α
⊤Kjα

KKT conditions: fj = ηj

∑n
i=1αiΦj(xi)

with α ∈ R
n and η > 0,

∑m
j=1 ηj = 1

– α is the dual solution for the clasical kernel learning problem with

kernel matrix K(η) =
∑m

j=1 ηjKj

– η corresponds to the minimum of G(K(η))



Algorithms for MKL

• (very) costly optimization with SDP, QCQP ou SOCP

– n > 1, 000− 10, 000, m > 100 not possible

– “loose” required precision ⇒ first order methods

• Dual coordinate ascent (SMO) with smoothing [BLJ04]

• Optimization of G(K) by cutting planes [SRSS06]

• Optimization of G(K) with steepest descent with smoothing

[RBCG08]

• Regularization path [BTJ04]



SMO for MKL [BLJ04]

• Dual function −∑n
i=1ψi(−λαi)− λ

2 minj∈{1,...,m}α
⊤Kjα is similar

to regular SVM ⇒ why not try SMO?



SMO for MKL

• Dual function −∑n
i=1ψi(−λαi)− λ

2 minj∈{1,...,m}α
⊤Kjα is similar

to regular SVM ⇒ why not try SMO?

– Non differentiability!



SMO for MKL

• Dual function −∑n
i=1ψi(−λαi)− λ

2 minj∈{1,...,m}α
⊤Kjα is similar

to regular SVM ⇒ why not try SMO?

– Non differentiability!

– Solution: smoothing of the dual function by adding a squared norm

in the primal problem (Moreau-Yosida regularization)

min
f

n
∑

i=1

ϕi(
m
∑

j=1

f⊤j Φj(xi)) +
λ

2





m
∑

j=1

‖fj‖





2

+ ε
m
∑

j=1

‖fj‖2

• SMO for MKL: simply descent on the dual function

• Matlab/C code available online (Obozinsky, 2006)



Could we use previous implementations of SVM?

• Computing one value and one subgradient of

G(η) = max
α∈Rn

−∑n
i=1ψi(λαi)− λ

2α
⊤K(η)α

requires to solve a classical problem (e.g., SVM)

• Optimization of η directly

– Cutting planes [SRSS06]

– Gradient descent [RBCG08]



Direct optimization of G(η) [RBCG08]
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MKL with regularization paths [BTJ04]

• Regularized problen

∑n
i=1 φi(w

⊤
1 Φ1(xi) + · · ·+ w⊤

mΦm(xi)) +
λ

2
(‖w1‖+ · · ·+ ‖wm‖)2

• In practice, solution required for “many” parameters λ

• Can we get all solutions at the cost of one?

– Rank one kernels (usual ℓ1 norm): path is piecewise affine for

some losses ⇒ Exact methods [EHJT04, HRTZ05, BHH06]

– Rank > 1: path is only est piecewise smooth

⇒ predictor-corrector methods [BTJ04]



Log-barrier regularization

• Dual problem:

maxα−
∑

iψi(λαi) such that ∀j, α⊤Kjα 6 d2
j

• Regularized dual problem:

maxα−
∑

iψi(λαi) + µ
∑

j log(d2
j − α⊤Kjα)

• Properties:

– Unconstrained concave maximization

– η function of α

– α is unique solution of the stationary equation F (α, λ) = 0

– α(λ) differentiable function, easy to follow



Predictor-corrector method

• Follow solution of F (α, λ) = 0

• Predictor steps

– First order approximation using dα
dλ = −

(

∂F
∂α

)−1 ∂F
∂λ

• Corrector steps

– Newton’s method to converge back to solution

path



Link with interior point methods

• Regularized dual problem:

maxα−
∑

iψi(λαi) + µ
∑

j log(d2
j − α⊤Kjα)

• Interior point methods:

– λ fixed, µ followed from large to small

• Regularization path:

– µ fixed small, λ followed from large to small

• Computational complexity: Total complexity O(mn3)

– NB: sparsity in α not used



Applications

• Bioinformatics [LBC+04]

– Protein function prediction

– Heterogeneous data sources

∗ Amino acid sequences

∗ Protein-protein interactions

∗ Genetic interactions

∗ Gene expression measurements

• Image annotation [HB07]



A case study in kernel methods

• Goal: show how to use kernel methods (kernel design + kernel

learning) on a “real problem”



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods

• Modularity of kernel methods

1. Work on new algorithms and theoretical analysis

2. Work on new kernels for specific data types



Image annotation and kernel design

• Corel14: 1400 natural images with 14 classes



Segmentation

• Goal: extract objects of interest

• Many methods available, ....

– ... but, rarely find the object of interest entirely

• Segmentation graphs

– Allows to work on “more reliable” over-segmentation

– Going to a large square grid (millions of pixels) to a small graph

(dozens or hundreds of regions)



Segmentation with the watershed transform

image gradient watershed

287 segments 64 segments 10 segments



Segmentation with the watershed transform

image gradient watershed

287 segments 64 segments 10 segments



Image as a segmentation graph

• Labelled undirected Graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

⇒



Image as a segmentation graph

• Labelled undirected Graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

• Difficulties

– Extremely high-dimensional labels

– Planar undirected graph

– Inexact matching

• Graph kernels [GFW03] provide an elegant and efficient solution



Kernels between structured objects

Strings, graphs, etc... [STC04]

• Numerous applications (text, bio-informatics)

• From probabilistic models on objects (e.g., Saunders et al, 2003)

• Enumeration of subparts (Haussler, 1998, Watkins, 1998)

– Efficient for strings

– Possibility of gaps, partial matches, very efficient algorithms

(Leslie et al, 2002, Lodhi et al, 2002, etc... )

• Most approaches fails for general graphs (even for undirected trees!)

– NP-Hardness results (Gärtner et al, 2003)

– Need alternative set of subparts



Paths and walks

• Given a graph G,

– A path is a sequence of distinct neighboring vertices

– A walk is a sequence of neighboring vertices

• Apparently similar notions



Paths



Walks



Walk kernel (Kashima, 2004, Borgwardt, 2005)

• Wp
G (resp. Wp

H) denotes the set of walks of length p in G (resp. H)

• Given basis kernel on labels k(ℓ, ℓ′)

• p-th order walk kernel:

kp
W(G,H) =

∑

(r1, . . . , rp) ∈ Wp
G

(s1, . . . , sp) ∈ Wp
H

p
∏

i=1

k(ℓG(ri), ℓH(si)).

G

1

s3

2s

s 1r
2

3r
H

r



Dynamic programming for the walk kernel

• Dynamic programming in O(pdGdHnGnH)

• kp
W(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kp
W(G,H, r, s)=k(ℓG(r), ℓH(s))

∑

r′ ∈ NG(r)

s′ ∈ NH(s)

kp−1
W (G,H, r′, s′).

G
s

r

H



Dynamic programming for the walk kernel

• Dynamic programming in O(pdGdHnGnH)

• kp
W(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kp
W(G,H, r, s)=k(ℓG(r), ℓH(s))

∑

r′ ∈ NG(r)

s′ ∈ NH(s)

kp−1
W (G,H, r′, s′)

• Kernel obtained as kp,α
T (G,H) =

∑

r∈VG,s∈VH

kp,α
T (G,H, r, s)



Performance on Corel14

(Harchaoui & Bach, 2007)

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
(wTW)

• MKL (M) H W TW wTW M
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MKL

Summary

• Block ℓ1-norm extends regular ℓ1-norm

• One kernel per block

• Application:

– Data fusion

– Hyperparameter selection

– Non linear variable selection



Course Outline

1. ℓ1-norm regularization

• Review of nonsmooth optimization problems and algorithms

• Algorithms for the Lasso (generic or dedicated)

• Examples

2. Extensions

• Group Lasso and multiple kernel learning (MKL) + case study

• Sparse methods for matrices

• Sparse PCA

3. Theory - Consistency of pattern selection

• Low and high dimensional setting

• Links with compressed sensing



Learning on matrices

• Example 1: matrix completion

– Given a matrix M ∈ R
n×p and a subset of observed entries,

estimate all entries

– Many applications: graph learning, collaborative filtering [BHK98,

HCM+00, SMH07]

• Example 2: multi-task learning [OTJ07, PAE07]

– Common features for m learning problems ⇒ m different weights,

i.e., W = (w1, . . . , wm) ∈ R
p×m

– Numerous applications

• Example 3: image denoising [EA06, MSE08]

– Simultaneously denoise all patches of a given image



Three natural types of sparsity for matrices M ∈ R
n×p

1. A lot of zero elements

• does not use the matrix structure!

2. A small rank

• M = UV ⊤ where U ∈ R
n×m and V ∈ R

n×m, m small

• Trace norm

U=
V

M

T



Three natural types of sparsity for matrices M ∈ R
n×p

1. A lot of zero elements

• does not use the matrix structure!

2. A small rank

• M = UV ⊤ where U ∈ R
n×m and V ∈ R

n×m, m small

• Trace norm

3. A decomposition into sparse (but large) matrix ⇒ redundant

dictionaries

• M = UV ⊤ where U ∈ R
n×m and V ∈ R

n×m, U sparse

• Dictionary learning



Trace norm [SRJ05, FHB01, Bac08c]

• Singular value decomposition: M ∈ R
n×p can always be decomposed

into M = U Diag(s)V ⊤, where U ∈ R
n×m and V ∈ R

n×m have

orthonormal columns and s is a positive vector (of singular values)

• ℓ0 norm of singular values = rank

• ℓ1 norm of singular values = trace norm

• Similar properties than the ℓ1-norm

– Convexity

– Solutions of penalized problem have low rank

– Algorithms



Dictionary learning [EA06, MSE08]

• Given X ∈ R
n×p, i.e., n vectors in R

p, find

– m dictionary elements in R
p: V = (v1, . . . , vm) ∈ R

p×m

– m set of decomposition coefficients: U =∈ R
n×m

– such that U is sparse and small reconstruction error, i.e.,

‖X − UV ⊤‖2F =
∑n

i=1 ‖X(i, :)− U(i, :)V ⊤‖22 is small

• NB: Opposite view: not sparse in term of ranks, sparse in terms of

decomposition coefficients

• Minimize with respect to U and V , such that ‖V (:, i)‖2 = 1,

1

2
‖X − UV ⊤‖2F + λ

N
∑

i=1

‖U(i, :)‖1

– non convex, alternate minimization



Dictionary learning - Applications [MSE08]

• Applications in image denoising



Dictionary learning - Applications - Inpainting



Sparse PCA [DGJL07, ZHT06]

• Consider Σ = 1
nX

⊤X ∈ R
p×p covariance matrix

• Goal: find a unit norm vector x with maximum variance x⊤Σx and

minimum cardinality

• Combinatorial optimization problem: max
‖x‖2=1

x⊤Σx+ ρ‖x‖0

• First relaxation: ‖x‖2 = 1⇒ ‖x‖1 6 ‖x‖1/2
0

• Rewriting using X = xx⊤: ‖x‖2 = 1⇔ trX = 1, 1⊤|X|1 = ‖x‖21

max
X<0, tr X=1, rank(X)=1

trXΣ + ρ1⊤|X|1



Sparse PCA [DGJL07, ZHT06]

• Sparse PCA problem equivalent to

max
X<0, tr X=1, rank(X)=1

trXΣ + ρ1⊤|X|1

• Convex relaxation: dropping the rank constraint rank(X) = 1

max
X<0,tr X=1

trXΣ + ρ1⊤|X|1

• Semidefinite program [BV03]

• Deflation to get multiple components

• “dual problem” to dictionary learning



Sparse PCA [DGJL07, ZHT06]

• Non-convex formulation

min
α⊤α=I

‖(I − αβ⊤)X‖2F + λ‖β‖1

• Dual to sparse dictionary learning



Sparse ???

•



Summary

• Notion of sparsity quite general

• Interesting links with convexity

– Convex relaxation

• Sparsifying the world

– All linear methods can be kernelized

– All linear methods can be sparsified

∗ Sparse PCA

∗ Sparse LDA

∗ Sparse ....



Course Outline

1. ℓ1-norm regularization

• Review of nonsmooth optimization problems and algorithms

• Algorithms for the Lasso (generic or dedicated)

• Examples

2. Extensions

• Group Lasso and multiple kernel learning (MKL) + case study

• Sparse methods for matrices

• Sparse PCA

3. Theory - Consistency of pattern selection

• Low and high dimensional setting

• Links with compressed sensing



Theory

• Sparsity-inducing norms often used heuristically

• When does it converge to the correct pattern?

– Yes if certain conditions on the problem are satisfied (low

correlation)

– what if not?

• Links with compressed sensing



Model consistency of the Lasso

• Sparsity-inducing norms often used heuristically

• If the responses y1, . . . , yn are such that yi = w⊤
0 xi + εi where εi are

i.i.d. and w0 is sparse, do we get back the correct pattern of zeros?

• Intuitive answer: yes if and ony if some consistency condition on

the generating covariance matrices is satisfied [ZY06, YL07, Zou06,

Wai06]



Asymptotic analysis - Low dimensional setting

• Asymptotic set up

– data generated from linear model Y = X⊤w + ε

– ŵ any minimizer of the Lasso problem

– number of observations n tends to infinity

• Three types of consistency

– regular consistency: ‖ŵ −w‖2 tends to zero in probability

– pattern consistency: the sparsity pattern Ĵ = {j, ŵj 6= 0} tends

to J = {j, wj 6= 0} in probability

– sign consistency: the sign vector ŝ = sign(ŵ) tends to s = sign(w)

in probability

• NB: with our assumptions, pattern and sign consistencies are

equivalent once we have regular consistency



Assumptions for analysis

• Simplest assumptions (fixed p, large n):

1. Sparse linear model: Y = X⊤w + ε , ε independent from X, and

w sparse.

2. Finite cumulant generating functions E exp(a‖X‖22) and

E exp(aε2) finite for some a > 0 (e.g., Gaussian noise)

3. Invertible matrix of second order moments Q = E(XX⊤) ∈ R
p×p.



Asymptotic analysis - simple cases

minw∈Rp
1
2n‖Y −Xw‖22 + µn‖w‖1

• If µn tends to infinity

– ŵ tends to zero with probability tending to one

– Ĵ tends to ∅ in probability



Asymptotic analysis - simple cases

minw∈Rp
1
2n‖y −Xw‖22 + µn‖w‖1

• If µn tends to infinity

– ŵ tends to zero with probability tending to one

– Ĵ tends to ∅ in probability

• If µn tends to µ0 ∈ (0,∞)

– ŵ converges to the minimum of 1
2(w −w)⊤Q(w −w) + µ0‖w‖1

– The sparsity and sign patterns may or may not be consistent

– Possible to have sign consistency without regular consistency



Asymptotic analysis - simple cases

minw∈Rp
1
2n‖Y −Xw‖22 + µn‖w‖1

• If µn tends to infinity

– ŵ tends to zero with probability tending to one

– Ĵ tends to ∅ in probability

• If µn tends to µ0 ∈ (0,∞)

– ŵ converges to the minimum of 1
2(w −w)⊤Q(w −w) + µ0‖w‖1

– The sparsity and sign patterns may or may not be consistent

– Possible to have sign consistency without regular consistency

• If µn tends to zero faster than n−1/2

– ŵ converges in probability to w

– With probability tending to one, all variables are included



Asymptotic analysis - important case

minw∈Rp
1
2n‖Y −Xw‖22 + µn‖w‖1

• If µn tends to zero slower than n−1/2

– ŵ converges in probability to w

– the sign pattern converges to the one of the minimum of

1
2v

⊤Qv + v⊤J sign(wJ) + ‖vJc‖1

– The sign pattern is equal to s (i.e., sign consistency) if and only if

‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

– Consistency condition found by many authors: Yuan & Lin (2007),

Wainwright (2006), Zhao & Yu (2007), Zou (2006)



Proof (µn tends to zero slower than n−1/2) - I

• Write y = Xw + ε

1

n
‖y −Xw‖22 =

1

n
‖X(w − w) + ε‖22

= (w − w)⊤
(

1

n
X⊤X

)

(w − w) +
1

n
‖ε‖22 +

2

n
(w − w)⊤X⊤ε

• Write w = w + µn∆. Cost function (up to constants):

1

2
µ2

n∆⊤

(

1

n
X⊤X

)

∆− 1

n
µn∆⊤X⊤ε+ µn (‖w + µn∆‖1 − ‖w‖1)

=
1

2
µ2

n∆⊤

(

1

n
X⊤X

)

∆− 1

n
µn∆⊤X⊤ε+ µn

(

µn‖∆Jc‖1 + µnsign(wJ)
⊤∆J

)



Proof (µn tends to zero slower than n−1/2) - II

• Write w = w + µn∆. Cost function (up to constants):

1

2
µ2

n∆⊤

(

1

n
X⊤X

)

∆− 1

n
µn∆⊤X⊤ε+ µn (‖w + µn∆‖1 − ‖w‖1)

=
1

2
µ2

n∆⊤

(

1

n
X⊤X

)

∆− 1

n
µn∆⊤X⊤ε+ µn

(

µn‖∆Jc‖1 + µnsign(wJ)
⊤∆J

)

• Asymptotics 1: 1
nX

⊤ε = Op(n
−1/2) negligible compared to µn (TCL)

• Asymptotics 2: 1
nX

⊤X “converges” to Q (covariance matrix)

• ∆ is thus the minimum of 1
2∆

⊤Q∆ + ∆⊤
J sign(wJ) + ‖∆Jc‖1

• Check when the previous problem has solution such that ∆Jc = 0



Proof (µn tends to zero slower than n−1/2) - II

• Write w = w + µn∆.

• Asymptotics ⇒ ∆ minimum of 1
2∆

⊤Q∆ + ∆⊤
J sign(wJ) + ‖∆Jc‖1

• Check when the previous problem has solution such that ∆Jc = 0

• Solving for ∆J: ∆J = −Q−1
JJ sign(wJ)

• Subgradient:

– on variables in J: equal to zero

– on variables in Jc: QJcJ∆J + g such that ‖g‖∞ 6 1

• Optimality conditions: ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1



Asymptotic analysis

minw∈Rp
1
2n‖Y −Xw‖22 + µn‖w‖1

• If µn tends to zero slower than n−1/2

– ŵ converges in probability to w

– the sign pattern converges to the one of the minimum of

1
2v

⊤Qv + v⊤J sign(wJ) + ‖vJc‖1

– The sign pattern is equal to s (i.e., sign consistency) if and only if

‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

– Consistency condition found by many authors: Yuan & Lin (2007),

Wainwright (2006), Zhao & Yu (2007), Zou (2006)

– Disappointing?



Summary of asymptotic analysis

limµn +∞ µ0 ∈ (0,∞) 0 0 0
limn1/2µn +∞ +∞ +∞ ν0∈(0,∞) 0

regular
consistency

inconsistent inconsistent consistent consistent consistent

sign pattern no variable
selected

deterministic
pattern
(depending
on µ0)

deterministic
pattern

?? all variables
selected

• If µn tends to zero exactly at rate n−1/2 ?



Summary of asymptotic analysis

limµn +∞ µ0 ∈ (0,∞) 0 0 0
limn1/2µn +∞ +∞ +∞ ν0∈(0,∞) 0

regular
consistency

inconsistent inconsistent consistent consistent consistent

sign pattern no variable
selected

deterministic
pattern
(depending
on µ0)

deterministic
pattern

all patterns
consistent
on J, with
proba. > 0

all variables
selected

• If µn tends to zero exactly at rate n−1/2 ?



Positive or negative result?

• Rather negative: Lasso does not always work!

• Making the Lasso consistent

– Adaptive Lasso: reweight the ℓ1 using ordinary least-square

estimate, i.e., replace
∑p

i=1 |wi| by
∑p

i=1
|wi|

|ŵOLS
i |

⇒ provable consistency in all cases

– Using the bootstrap ⇒ Bolasso [Bac08a]



Asymptotic analysis

• If µn tends to zero at rate n−1/2, i.e., n1/2µn → ν0 ∈ (0,∞)

– ŵ converges in probability to w

– All (and only) patterns which are consistent with w on J are

attained with positive probability



Asymptotic analysis

• If µn tends to zero at rate n−1/2, i.e., n1/2µn → ν0 ∈ (0,∞)

– ŵ converges in probability to w

– All (and only) patterns which are consistent with w on J are

attained with positive probability

– Proposition: for any pattern s ∈ {−1, 0, 1}p such that sJ 6=
sign(wJ), there exist a constant A(µ0) > 0 such that

log P(sign(ŵ) = s) 6 −nA(µ0) +O(n−1/2).

– Proposition: for any sign pattern s ∈ {−1, 0, 1}p such that

sJ = sign(wJ), P(sign(ŵ) = s) tends to a limit ρ(s, ν0) ∈ (0, 1),

and we have:

P(sign(ŵ) = s)− ρ(s, ν0) = O(n−1/2 log n).



µn tends to zero at rate n−1/2

• Summary of asymptotic behavior:

– All relevant variables (i.e., the ones in J) are selected with

probability tending to one exponentially fast

– All other variables are selected with strictly positive probability



µn tends to zero at rate n−1/2

• Summary of asymptotic behavior:

– All relevant variables (i.e., the ones in J) are selected with

probability tending to one exponentially fast

– All other variables are selected with strictly positive probability

• If several datasets (with same distributions) are available, intersecting

support sets would lead to the correct pattern with high probability

Dataset 1

2

1J

Intersection

5

4

3

JDataset 5

J

JDataset 3

Dataset 4

Dataset 2 J



Bootstrap

• Given n i.i.d. observations (xi, yi) ∈ R
d × R, i = 1, . . . , n

• m independent bootstrap replications: k = 1, . . . ,m,

– ghost samples (xk
i , y

k
i ) ∈ R

p × R, i = 1, . . . , n, sampled

independently and uniformly at random with replacement from

the n original pairs

• Each bootstrap sample is composed of n potentially (and usually)

duplicated copies of the original data pairs

• Standard way of mimicking availability of several datasets [ET98]



Bolasso algorithm

• m applications of the Lasso/Lars algorithm [EHJT04]

– Intersecting supports of variables

– Final estimation of w on the entire dataset

J

2

1J

Bootstrap 4

Bootstrap 5

Bootstrap 2

Bootstrap 3

Bootstrap 1

Intersection

5

4

3

J

J

J



Bolasso - Consistency result

• Proposition [Bac08a]: Assume µn=ν0n
−1/2, with ν0>0. Then, for

all m > 1, the probability that the Bolasso does not exactly select

the correct model has the following upper bound:

P(J 6= J) 6 A1me
−A2n +A3

log(n)

n1/2
+A4

log(m)

m
,

where A1, A2, A3, A4 are strictly positive constants.

• Valid even if the Lasso consistency is not satisfied

• Influence of n, m

• Could be improved?



Consistency of the Lasso/Bolasso - Toy example

• Log-odd ratios of the probabilities of selection of each variable vs. µ

LASSO

−log(µ)

va
ria

bl
e 

in
de

x

0 5 10 15

5

10

15

−log(µ)

va
ria

bl
e 

in
de

x

0 5 10 15

5

10

15

BOLASSO

−log(µ)

va
ria

bl
e 

in
de

x

0 5 10 15

5

10

15

−log(µ)

va
ria

bl
e 

in
de

x

0 5 10 15

5

10

15

Consistency condition satisfied not satisfied



High-dimensional setting

• p > n: important case with harder analysis (no invertible covariance

matrices)

• If consistency condition is satisfied, the Lasso is indeed consistent as

long as log(p) << n

• A lot of on-going work [MY08, Wai06]



High-dimensional setting (Lounici, 2008) [Lou08]

• Assumptions

– yi = w⊤xi + εi, ε i.i.d. normal with mean zero and variance σ2

– Q = X⊤X/n with unit diagonal and cross-terms less than 1
14s

– Theorem: if ‖w‖0 6 s, and A > 81/2, then

P

(

‖ŵ −w‖∞ 6 5Aσ

(

log p

n

)1/2
)

6 1− p1−A2/8

• Get the correct sparsity pattern if minj,wj 6=0 |wj| > Cσ
(

log p
n

)1/2

• Can have a lot of irrelevant variables!



Links with compressed sensing [Bar07, CW08]

• Goal of compressed sensing: recover a signal w ∈ R
p from only n

measurements y = Xw ∈ R
n

• Assumptions: the signal is k-sparse, n << p

• Algorithm: minw∈Rp ‖w‖1 such that y = Xw

• Sufficient condition on X and (k, n, p) for perfect recovery:

– Restricted isometry property (all submatrices of X⊤X must be

well-conditioned)

– that is, if ‖w‖0 = k, then ‖w‖2(1− δk) 6 ‖Xw‖2 6 ‖w‖2(1 + δk)

• Such matrices are hard to come up with deterministically, but random

ones are OK with k = αp, and n/p = f(α) < 1





Course Outline

1. ℓ1-norm regularization

• Review of nonsmooth optimization problems and algorithms

• Algorithms for the Lasso (generic or dedicated)

• Examples

2. Extensions

• Group Lasso and multiple kernel learning (MKL) + case study

• Sparse methods for matrices

• Sparse PCA

3. Theory - Consistency of pattern selection

• Low and high dimensional setting

• Links with compressed sensing



Summary - interesting problems

• Sparsity through non Euclidean norms

• Alternative approaches to sparsity

– greedy approaches - Bayesian approaches

• Important (often non treated) question: when does sparsity actually

help?

• Current research directions

– Algorithms, algorithms, algorithms!

– Design of good projections/measurement matrices for denoising or

compressed sensing [See08]

– Structured norm for structured situations (variables are usually not

created equal) ⇒ hierarchical Lasso or MKL[ZRY08, Bac08b]



Lasso in action
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(left: sparsity is expected, right: sparsity is not expected)



Hierarchical multiple kernel learning (HKL) [Bac08b]

• Lasso or group Lasso, with exponentially many variables/kernels

• Main application:

– nonlinear variables selection with x ∈ R
p

kv1,...,vp(x, y) =

p
∏

j=1

exp(−viα(xi−yi)
2) =

∏

j, vj=1

exp(−α(xi−yi)
2)

where v ∈ {0, 1}p
– 2p kernels! (as many as subsets of {1, . . . , p})

• Learning sparse combination ⇔ nonlinear variable selection

• Two questions:

– Optimization in polynomial time?

– Consistency?



Hierarchical multiple kernel learning (HKL) [Bac08b]

• The 2p kernels are not created equal!

• Natural hierarchical structure (directed acyclic graph)

– Goal: select a subset only after all of its subsets have been selected

– Design a norm to achieve this behavior

∑

v∈V

‖βdescendants(v)‖ =
∑

v∈V





∑

w∈descendants(v)

‖βw‖2




1/2

• Feature search algorithm in polynomial time in p and the number of

selected kernels



Hierarchical multiple kernel learning (HKL) [Bac08b]
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Code

• ℓ1-penalization: Matlab and R code available from

www.dsp.ece.rice.edu/cs

• Multiple kernel learning:

asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html

www.stat.berkeley.edu/~gobo/SKMsmo.tar

• Other interesting code

www.shogun-toolbox.org


