Learning with sparsity-inducing norms

Francis Bach

INRIA - Ecole Normale Supérieure

INRIA

MLSS 2008 - Ile de Ré, 2008

Supervised learning and regularization

- Data: $x_{i} \in \mathcal{X}, y_{i} \in \mathcal{Y}, i=1, \ldots, n$
- Minimize with respect to function $f \in \mathcal{F}$:

$$
\begin{array}{cc}
\qquad \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\frac{\lambda}{2}\|f\|^{2} \\
\text { Error on data } & +\quad \text { Regularization } \\
\text { Loss \& function space ? } & \text { Norm ? }
\end{array}
$$

- Two issues:
- Loss
- Function space / norm

Usual losses [SS01, STC04]

- Regression: $y \in \mathbb{R}$, prediction $\hat{y}=f(x)$,
- quadratic cost $\ell(y, f(x))=\frac{1}{2}(y-f(x))^{2}$
- Classification : $y \in\{-1,1\}$ prediction $\hat{y}=\operatorname{sign}(f(x))$
- loss of the form $\ell(y, f(x))=\ell(y f(x))$
- "True" cost: $\ell(y f(x))=1_{y f(x)<0}$
- Usual convex costs:

Regularizations

- Main goal: control the "capacity" of the learning problem
- Two main lines of work

1. Use Hilbertian (RKHS) norms

- Non parametric supervised learning and kernel methods
- Well developped theory [SS01, STC04, Wah90]

2. Use "sparsity inducing" norms

- main example: ℓ_{1}-norm $\|w\|_{1}=\sum_{i=1}^{p}\left|w_{i}\right|$
- Perform model selection as well as regularization
- Often used heuristically
- Goal of the course: Understand how and when to use sparsityinducing norms

Why ℓ_{1}-norms lead to sparsity?

- Example 1: quadratic problem in 1D, i.e. $\min _{x \in \mathbb{R}} \frac{1}{2} x^{2}-x y+\lambda|x|$
- Piecewise quadratic function with a kink at zero
- Derivative at $0+: g_{+}=\lambda-y$ and $0-: g_{-}=-\lambda-y$

$-x=0$ is the solution iff $g_{+} \geqslant 0$ and $g_{-} \leqslant 0$ (i.e., $|y| \leqslant \lambda$)
$-x \geqslant 0$ is the solution iff $g_{+} \leqslant 0$ (i.e., $y \geqslant \lambda$) $\Rightarrow x^{*}=y-\lambda$
$-x \leqslant 0$ is the solution iff $g_{-} \leqslant 0$ (i.e., $y \leqslant-\lambda$) $\Rightarrow x^{*}=y+\lambda$
- Solution $x^{*}=\operatorname{sign}(y)(|y|-\lambda)_{+}=$soft thresholding

Why ℓ_{1}-norms lead to sparsity?

- Example 2: isotropic quadratic problem
- $\min _{x \in \mathbb{R}^{p}} \frac{1}{2} \sum_{i=1}^{p} x_{i}^{2}-\sum_{i=1}^{p} x_{i} y_{i}+\lambda\|x\|_{1}=\min _{x \in \mathbb{R}^{p}} \frac{1}{2} x^{\top} x-x^{\top} y+\lambda\|x\|_{1}$
- solution: $x_{i}^{*}=\operatorname{sign}\left(y_{i}\right)\left(\left|y_{i}\right|-\lambda\right)_{+}$
- decoupled soft thresholding

Why ℓ_{1}-norms lead to sparsity?

- Example 3: general quadratic problem
- coupled soft thresolding
- Geometric interpretation
- NB : Penalizing is "equivalent" to constraining

Course Outline

1. ℓ^{1}-norm regularization

- Review of nonsmooth optimization problems and algorithms
- Algorithms for the Lasso (generic or dedicated)
- Examples

2. Extensions

- Group Lasso and multiple kernel learning (MKL) + case study
- Sparse methods for matrices
- Sparse PCA

3. Theory - Consistency of pattern selection

- Low and high dimensional setting
- Links with compressed sensing

ℓ_{1}-norm regularization

- Data: covariates $x_{i} \in \mathbb{R}^{p}$, responses $y_{i} \in \mathcal{Y}, i=1, \ldots, n$, given in vector $y \in \mathbb{R}^{p}$ and matrix $X \in \mathbb{R}^{n \times p}$
- Minimize with respect to loadings/weights $w \in \mathbb{R}^{p}$:

$$
\begin{array}{ccc}
\sum_{\substack{i=1 \\
\text { Error on data }}} \ell\left(y_{i}, w^{\top} x_{i}\right) & +\quad \lambda\|w\|_{1} \\
\text { Regularization }
\end{array}
$$

- Including a constant term b ?
- Assumptions on loss:
- convex and differentiable in the second variable
- NB: with the square loss \Rightarrow basis pursuit (signal processing) [CDS01], Lasso (statistics/machine learning) [Tib96]

A review of nonsmooth convex analysis and optimization

- Analysis: optimality conditions
- Optimization: algorithms
- First order methods
- Second order methods
- Books: Boyd \& VandenBerghe [BV03], Bonnans et al.[BGLS03], Nocedal \& Wright [NW06], Borwein \& Lewis [BL00]

Optimality conditions for ℓ^{1}-norm regularization

- Convex differentiable problems \Rightarrow zero gradient!
- Example: ℓ^{2}-regularization, i.e., $\min _{w} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\frac{\lambda}{2} w^{\top} w$
- Gradient $=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) x_{i}+\lambda w$ where $\ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right)$ is the partial derivative of the loss w.r.t the second variable
- If square loss, $\sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)=\frac{1}{2}\|y-X w\|_{2}^{2}$ and gradient $=$ $-X^{\top}(y-X w)+\lambda w$ \Rightarrow normal equations $\Rightarrow w=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} Y$
- ℓ^{1}-norm is non differentiable!
- How to compute the gradient of the absolute value?
- WARNING - gradient methods on non smooth problems! - WARNING
\Rightarrow Directional derivatives - subgradient

Directional derivatives

- Directional derivative in the direction Δ at w :

$$
\nabla J(w, \Delta)=\lim _{\varepsilon \rightarrow 0+} \frac{J(w+\varepsilon \Delta)-J(w)}{\varepsilon}
$$

- Main idea: in non smooth situations, may need to look at all directions Δ and not simply p independent ones!

- Proposition: J is differentiable at w, if $\Delta \mapsto \nabla J(w, \Delta)$ is then linear, and $\nabla J(w, \Delta)=\nabla J(w)^{\top} \Delta$

Subgradient

- Generalization of gradients for non smooth functions
- Definition: g is a subgradient of J at w if and only if

$$
\forall t \in \mathbb{R}^{p}, \quad J(t) \geqslant J(w)+g^{\top}(t-w)
$$

(i.e., slope of lower bounding affine function)

- Proposition: J differentiable at w if and only if exactly one subgradient (the gradient)
- Proposition: (proper) convex functions always have subgradients

Optimality conditions

- Subdifferential $\partial J(w)=$ (convex) set of subgradients of J at w
- From directional derivatives to subdifferential

$$
g \in \partial J(w) \Leftrightarrow \forall \Delta \in \mathbb{R}^{p}, g^{\top} \Delta \leqslant \nabla J(w, \Delta)
$$

- From subdifferential to directional derivatives

$$
\nabla J(w, \Delta)=\max _{g \in \partial J(w)} g^{\top} \Delta
$$

- Optimality conditions:
- Proposition: w is optimal if and only if for all $\Delta \in \mathbb{R}^{p}$, $\nabla J(w, \Delta) \geqslant 0$
- Proposition: w is optimal if and only if $0 \in \partial J(w)$

Subgradient and directional derivatives for ℓ_{1}-norm regularization

- We have with $J(w)=\sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda\|w\|_{1}$

$$
\nabla J(w, \Delta)=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) x_{i}+\lambda \sum_{j, w_{j} \neq 0} \operatorname{sign}\left(w_{j}\right)^{\top} \Delta_{j}+\lambda \sum_{j, w_{j}=0}\left|\Delta_{j}\right|
$$

- g is a subgradient at w if and only if for all j,

$$
\begin{gathered}
\operatorname{sign}\left(w_{j}\right) \neq 0 \Rightarrow g_{j}=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) X_{i j}+\lambda \operatorname{sign}\left(w_{j}\right) \\
\operatorname{sign}\left(w_{j}\right)=0 \Rightarrow\left|g_{j}-\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) X_{i j}\right| \leqslant \lambda
\end{gathered}
$$

Optimality conditions for ℓ_{1}-norm regularization

- General loss: 0 is a subgradient at w if and only if for all j,

$$
\begin{gathered}
\operatorname{sign}\left(w_{j}\right) \neq 0 \Rightarrow 0=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) X_{i j}+\lambda \operatorname{sign}\left(w_{j}\right) \\
\operatorname{sign}\left(w_{j}\right)=0 \Rightarrow\left|\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) X_{i j}\right| \leqslant \lambda
\end{gathered}
$$

- Square loss: 0 is a subgradient at w if and only if for all j,

$$
\begin{gathered}
\operatorname{sign}\left(w_{j}\right) \neq 0 \Rightarrow X(:, j)^{\top}(y-X w)+\lambda \operatorname{sign}\left(w_{j}\right) \\
\operatorname{sign}\left(w_{j}\right)=0 \Rightarrow\left|X(:, j)^{\top}(y-X w)\right| \leqslant \lambda
\end{gathered}
$$

First order methods for convex optimization on \mathbb{R}^{p}

- Simple case: differentiable objective
- Gradient descent: $w_{t+1}=w_{t}-\alpha_{t} \nabla J\left(w_{t}\right)$ * with line search: search for a decent (not necessarily best) α_{t} * diminishing step size: e.g., $\alpha_{t}=\left(t+t_{0}\right)^{-1}$
* Linear convergence time: $O(\kappa \log (1 / \varepsilon))$ iterations
- Coordinate descent: similar properties
- Hard case: non differentiable objective
- Subgradient descent: $w_{t+1}=w_{t}-\alpha_{t} g_{t}$, with $g_{t} \in \partial J\left(w_{t}\right)$ * with exact line search: not always convergent (show counter example)
* diminishing step size: convergent
- Coordinate descent: not always convergent (show counterexample)

Counter-example

Coordinate descent for nonsmooth objectives

Counter-example

Steepest descent for nonsmooth objectives

- $q\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}-5\left(9 x_{1}^{2}+16 x_{2}^{2}\right)^{1 / 2} \text { if } x_{1}>\left|x_{2}\right| \\ -\left(9 x_{1}+16\left|x_{2}\right|\right)^{1 / 2} \text { if } x_{1} \leqslant\left|x_{2}\right|\end{array}\right.$
- Steepest descent starting from any x such that $x_{1}>\left|x_{2}\right|>$ $(9 / 16)^{2}\left|x_{1}\right|$

Second order methods

- Differentiable case
- Newton: $w_{t+1}=w_{t}-\alpha_{t} H_{t}^{-1} g_{t}$
* Traditional: $\alpha_{t}=1$, but non globally convergent
* globally convergent with line search for α_{t} (see Boyd, 2003)
* $O(\log \log (1 / \varepsilon))$ (slower) iterations
- Quasi-newton methods (see Bonnans et al., 2003)
- Non differentiable case (interior point methods)
- Smoothing of problem + second order methods
* See example later and (Boyd, 2003)
* Theoretically $O(\sqrt{p})$ Newton steps, usually $O(1)$ Newton steps

First order or second order methods for machine learning?

- objecive defined as average (i.e., up to $n^{-1 / 2}$): no need to optimize up to 10^{-16} !
- Second-order: slower but worryless
- First-order: faster but care must be taken regarding convergence
- Rule of thumb
- Small scale \Rightarrow second order
- Large scale \Rightarrow first order
- Unless dedicated algorithm using structure (like for the Lasso)
- See Bottou \& Bousquet (2008) [BB08] for further details

Algorithms for ℓ^{1}-norms:

Gaussian hare vs. Laplacian tortoise

Cheap (and not dirty) algorithms for all losses

- Coordinate descent [WL08]
- Globaly convergent here under reasonable assumptions!
- very fast updates
- Subgradient descent
- Smoothing the absolute value + first/second order methods
- Replace $\left|w_{i}\right|$ by $\left(w_{i}^{2}+\varepsilon_{i}^{2}\right)^{1 / 2}$
- Use gradient descent or Newton with diminishing ε
- More dedicated algorithms to get the best of both worlds: fast and precise

Special case of square loss

- Quadratic programming formulation: minimize
$\frac{1}{2}\|y-X w\|^{2}+\lambda \sum_{j=1}^{p}\left(w_{j}^{+}+w_{j}^{-}\right)$such that $w=w^{+}-w^{-}, w^{+} \geqslant 0, w^{-} \geqslant 0$
- generic toolboxes \Rightarrow very slow
- Main property: if the sign pattern $s \in\{-1,0,1\}^{p}$ of the solution is known, the solution can be obtained in closed form
- Lasso equivalent to minimizing $\frac{1}{2}\left\|y-X_{J} w_{J}\right\|^{2}+\lambda s_{J}^{\top} w_{J}$ w.r.t. w_{J} where $J=\left\{j, s_{j} \neq 0\right\}$.
- Closed form solution $w_{J}=\left(X_{J}^{\top} X_{J}\right)^{-1}\left(X_{J}^{\top} Y+\lambda s_{J}\right)$
- "Simply" need to check that $\operatorname{sign}\left(w_{J}\right)=s_{J}$ and optimality for J^{c}

Optimality conditions for the Lasso

- 0 is a subgradient at w if and only if for all j,
- Active variable condition

$$
\operatorname{sign}\left(w_{j}\right) \neq 0 \Rightarrow X(:, j)^{\top}(y-X w)+\lambda \operatorname{sign}\left(w_{j}\right)
$$

NB: allows to compute w_{J}

- Inactive variable condition

$$
\operatorname{sign}\left(w_{j}\right)=0 \Rightarrow\left|X(:, j)^{\top}(y-X w)\right| \leqslant \lambda
$$

Algorithm 2: feature search (Lee et al., 2006, [LBRN07])

- Looking for the correct sign pattern $s \in\{-1,0,1\}^{p}$
- Initialization: start with $w=0, s=0, J=\left\{j, s_{j}=0\right\}$
- Step 1: select $i=\arg \max _{j}\left|\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) X_{j i}\right|$ and add j to the active set J with proper sign
- Step 2: find optimal vector $w_{\text {new }}$ of $\frac{1}{2}\left\|y-X_{J} w_{J}\right\|^{2}+\lambda s_{J}^{\top} w_{J}$
- Perform (discrete) line search between w and $w_{\text {new }}$
- Update sign of w
- Step 3: check opt. condition for active variable, if no go to step 2
- Step 4: check opt. condition for inactive variable, if no go to step 1

Algorithm 3: Lars/Lasso for the square loss [EHJT04]

- Goal: Get all solutions for all possible values of the regularization parameter λ
- Same idea as before: if the set J of active variables is known,

$$
w_{J}^{*}(\lambda)=\left(X_{J}^{\top} X_{J}\right)^{-1}\left(X_{J}^{\top} Y+\lambda s_{J}\right)
$$

valid, as long as,

- sign condition: $\operatorname{sign}\left(w_{J}^{*}(\lambda)\right)=s_{J}$
- subgradient condition: $\left\|X_{J c}^{\top}\left(X_{J} w_{J}^{*}(\lambda)-y\right)\right\|_{\infty} \leqslant \lambda$
- This defines an interval on λ : the path is thus piecewise affine!
- Simply need to find break points and directions

Algorithm 3: Lars/Lasso for the square loss

- Builds a sequence of disjoint sets I_{0}, I_{+}, I_{-}, solutions w and parameters λ that record the break points of the path and corresponding active sets/solutions
- Initialization: $\lambda_{0}=\infty, I_{0}=\{1, \ldots, p\}, I_{+}=I_{-}=\varnothing, w=0$
- While $\lambda_{k}>0$, find minimum λ such that

$$
(A) \quad \operatorname{sign}\left(w_{k}+\left(\lambda-\lambda_{k}\right)\left(X_{J}^{\top} X_{J}\right)^{-1} s_{J}\right)=s_{J}
$$

(B) $\quad\left\|X_{J c}^{\top}\left(X_{J} w_{k}+\left(\lambda-\lambda_{k}\right) X_{J}\left(X_{J}^{\top} X_{J}\right)^{-1} s_{J}\right)\right\|_{\infty} \leqslant \lambda$

- If (A) is blocking, remove corresponding index from I_{+}or I_{-}
- If (B) is blocking, add corresponding index into active set I_{+}or I_{-}
- Update corresponding λ_{k+1} and recompute $w_{k+1}, k \leftarrow k+1$

Lasso in action

- Piecewise linear paths
- When is it supposed to work?
- Show simulations with random Gaussians, regularization parameter estimated by cross-validation
- sparsity is expected or not

Lasso in action

Comparing Lasso and other strategies for linear regression and subset selection

- Compared methods to reach the least-square solution [HTF01]
- Ridge regression: $\min _{w} \frac{1}{2}\|y-X w\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}$
- Lasso: $\min _{w} \frac{1}{2}\|y-X w\|_{2}^{2}+\lambda\|w\|_{1}$
- Forward greedy:
* Initialization with empty set
* Sequentially add the variable that best reduces the square loss
- Each method builds a path of solutions from 0 to $w_{O L S}$

Lasso in action

(left: sparsity is expected, right: sparsity is not expected)

ℓ^{1}-norm regularization and sparsity Summary

- Nonsmooth optimization
- subgradient, directional derivatives
- descent methods might not always work
- first/second order methods
- Algorithms
- Cheap algorithms for all losses
- Dedicated path algorithm for the square loss

Course Outline

1. ℓ^{1}-norm regularization

- Review of nonsmooth optimization problems and algorithms
- Algorithms for the Lasso (generic or dedicated)
- Examples

2. Extensions

- Group Lasso and multiple kernel learning (MKL) + case study
- Sparse methods for matrices
- Sparse PCA

3. Theory - Consistency of pattern selection

- Low and high dimensional setting
- Links with compressed sensing

Kernel methods for machine learning

- Definition: given a set of objects \mathcal{X}, a positive definite kernel is a symmetric function $k\left(x, x^{\prime}\right)$ such that for all finite sequences of points $x_{i} \in \mathcal{X}$ and $\alpha_{i} \in \mathbb{R}$,

$$
\sum_{i, j} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \geqslant 0
$$

(i.e., the matrix $\left(k\left(x_{i}, x_{j}\right)\right)$ is symmetric positive semi-definite)

- Aronszajn theorem [Aro50]: k is a positive definite kernel if and only if there exists a Hilbert space \mathcal{F} and a mapping $\Phi: \mathcal{X} \mapsto \mathcal{F}$ such that

$$
\forall\left(x, x^{\prime}\right) \in \mathcal{X}^{2}, k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}
$$

- $\mathcal{X}=$ "input space", $\mathcal{F}=$ "feature space" $\Phi=$ "feature map"
- Functional view: reproducing kernel Hilbert spaces

Regularization and representer theorem

- Data: $x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathcal{Y}, i=1, \ldots, n$, kernel k (with RKHS \mathcal{F})
- Minimize with respect to f :

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n} \ell\left(y_{i}, f^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2}
$$

- No assumptions on cost ℓ or n
- Representer theorem [KW71]: Optimum is reached for weights of the form

$$
f=\sum_{j=1}^{n} \alpha_{j} \Phi\left(x_{j}\right)=\sum_{j=1}^{n} \alpha_{j} k\left(\cdot, x_{j}\right)
$$

- $\alpha \in \mathbb{R}^{n}$ dual parameters, $K \in \mathbb{R}^{n \times n}$ kernel matrix:

$$
K_{i j}=\Phi\left(x_{i}\right)^{\top} \Phi\left(x_{j}\right)=k\left(x_{i}, x_{j}\right)
$$

- Equivalent problem:

$$
\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \ell\left(y_{i},(K \alpha)_{i}\right)+\frac{\lambda}{2} \alpha^{\top} K \alpha
$$

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
- Replacing dot-products by kernel functions
- Implicit use of (very) large feature spaces
- Linear to non-linear learning methods

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
- Replacing dot-products by kernel functions
- Implicit use of (very) large feature spaces
- Linear to non-linear learning methods
- Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for specific data types

Representer theorem and convex duality

- The parameters $\alpha \in \mathbb{R}^{n}$ may also be interpreted as Lagrange multipliers
- Assumption: cost function is convex $\varphi_{i}\left(u_{i}\right)=\ell\left(y_{i}, u_{i}\right)$
- Primal problem: $\min _{f \in \mathcal{F}} \sum_{i=1}^{n} \varphi_{i}\left(f^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2}$

	$\varphi_{i}\left(u_{i}\right)$
LS regression	$\frac{1}{2}\left(y_{i}-u_{i}\right)^{2}$
Logistic regression	$\log \left(1+\exp \left(-y_{i} u_{i}\right)\right)$
SVM	$\left(1-y_{i} u_{i}\right)_{+}$

Representer theorem and convex duality Proof

- Primal problem:

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n} \varphi_{i}\left(f^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2}
$$

- Define $\psi_{i}\left(v_{i}\right)=\max _{u_{i} \in \mathbb{R}} v_{i} u_{i}-\varphi_{i}\left(u_{i}\right)$ as the Fenchel conjugate of φ_{i}
- Introduce constraint $u_{i}=f^{\top} \Phi\left(x_{i}\right)$ and associated Lagrange multipliers α_{i}
- Lagrangian $\mathcal{L}(\alpha, f)=\sum_{i=1}^{n} \varphi_{i}\left(u_{i}\right)+\frac{\lambda}{2}\|f\|^{2}+\lambda \sum_{i=1}^{n} \alpha_{i}\left(u_{i}-f^{\top} \Phi\left(x_{i}\right)\right)$
- Maximize with respect to $u_{i} \Rightarrow$ term of the form $-\psi_{i}\left(-\lambda \alpha_{i}\right)$
- Maximize with respect to $f \Rightarrow f=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$

Representer theorem and convex duality

- Assumption: cost function is convex $\varphi_{i}\left(u_{i}\right)=\ell\left(y_{i}, u_{i}\right)$
- Primal problem: $\min _{f \in \mathcal{F}} \sum_{i=1}^{n} \varphi_{i}\left(f^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2}$
- Dual problem:

$$
\max _{\alpha \in \mathbb{R}^{n}}-\sum_{i=1}^{n} \psi_{i}\left(-\lambda \alpha_{i}\right)-\frac{\lambda}{2} \alpha^{\top} K \alpha
$$

where $\psi_{i}\left(v_{i}\right)=\max _{u_{i} \in \mathbb{R}} v_{i} u_{i}-\varphi_{i}\left(u_{i}\right)$ is the Fenchel conjugate of φ_{i}

- Strong duality
- Relationship between primal and dual variables (at optimum):

$$
f=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)
$$

"Classical" kernel learning (2-norm regularization)

Primal problem $\min _{f \in \mathcal{F}}\left(\sum_{i} \varphi_{i}\left(f^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2}\right)$

$$
\text { Dual problem } \max _{\alpha \in \mathbb{R}^{n}}\left(-\sum_{i} \psi_{i}\left(\lambda \alpha_{i}\right)-\frac{\lambda}{2} \alpha^{\top} K \alpha\right)
$$

Optimality conditions $f=-\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$

- Assumptions on loss φ_{i} :
- $\varphi_{i}(u)$ convex
- $\psi_{i}(v)$ Fenchel conjugate of $\varphi_{i}(u)$, i.e., $\psi_{i}(v)=\max _{u \in \mathbb{R}}\left(v u-\varphi_{i}(u)\right)$

	$\varphi_{i}\left(u_{i}\right)$	$\psi_{i}(v)$
LS regression	$\frac{1}{2}\left(y_{i}-u_{i}\right)^{2}$	$\frac{1}{2} v^{2}+v y_{i}$
Logistic regression	$\log \left(1+\exp \left(-y_{i} u_{i}\right)\right)$	$\left(1+v y_{i}\right) \log \left(1+v y_{i}\right)$ $-v y_{i} \log \left(-v y_{i}\right)$
SVM	$\left(1-y_{i} u_{i}\right)_{+}$	$-v y_{i} \times 1_{-v y_{i} \in[0,1]}$

Kernel learning with convex optimization

- Kernel methods work...
...with the good kernel!
\Rightarrow Why not learn the kernel directly from data?

Kernel learning with convex optimization

- Kernel methods work...

> ... with the good kernel!
> \Rightarrow Why not learn the kernel directly from data?

- Proposition [LCG ${ }^{+} 04$, BLJ04]:

$$
\begin{aligned}
G(K) & =\min _{f \in \mathcal{F}} \sum_{i=1}^{n} \varphi_{i}\left(f^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2} \\
& =\max _{\alpha \in \mathbb{R}^{n}}-\sum_{i=1}^{n} \psi_{i}\left(\lambda \alpha_{i}\right)-\frac{\lambda}{2} \alpha^{\top} K \alpha
\end{aligned}
$$

is a convex function of the Gram matrix K

- Theoretical learning bounds [BLJ04]

MKL framework

- Minimize with respect to the kernel matrix K

$$
G(K)=\max _{\alpha \in \mathbb{R}^{n}}-\sum_{i=1}^{n} \psi_{i}\left(\lambda \alpha_{i}\right)-\frac{\lambda}{2} \alpha^{\top} K \alpha
$$

- Optimization domain:
- K positive semi-definite in general
- The set of kernel matrices is a cone \rightarrow conic representation

$$
K(\eta)=\sum_{j=1}^{m} \eta_{j} K_{j}, \quad \eta \geqslant 0
$$

- Trace constraints: $\operatorname{tr} K=\sum_{j=1}^{m} \eta_{j} \operatorname{tr} K_{j}=1$
- Optimization:
- In most cases, representation in terms of SDP, QCQP or SOCP
- Optimization by generic toolbox is costly [BLJ04]

MKL - "reinterpretation" [BLJ04]

- Framework limited to $K=\sum_{j=1}^{m} \eta_{j} K_{j}, \eta \geqslant 0$
- Summing kernels is equivalent to concatenating feature spaces
- m "feature maps" $\Phi_{j}: \mathcal{X} \mapsto \mathcal{F}_{j}, j=1, \ldots, m$.
- Minimization with respect to $f_{1} \in \mathcal{F}_{1}, \ldots, f_{m} \in \mathcal{F}_{m}$
- Predictor: $f(x)=f_{1}{ }^{\top} \Phi_{1}(x)+\cdots+f_{m}^{\top} \Phi_{m}(x)$

- Which regularization?

Regularization for multiple kernels

- Summing kernels is equivalent to concatenating feature spaces
- m "feature maps" $\Phi_{j}: \mathcal{X} \mapsto \mathcal{F}_{j}, j=1, \ldots, m$.
- Minimization with respect to $f_{1} \in \mathcal{F}_{1}, \ldots, f_{m} \in \mathcal{F}_{m}$
- Predictor: $f(x)=f_{1}^{\top} \Phi_{1}(x)+\cdots+f_{m}^{\top} \Phi_{m}(x)$
- Regularization by $\sum_{j=1}^{m}\left\|f_{j}\right\|^{2}$ is equivalent to using $K=\sum_{j=1}^{m} K_{j}$

Regularization for multiple kernels

- Summing kernels is equivalent to concatenating feature spaces
- m "feature maps" $\Phi_{j}: \mathcal{X} \mapsto \mathcal{F}_{j}, j=1, \ldots, m$.
- Minimization with respect to $f_{1} \in \mathcal{F}_{1}, \ldots, f_{m} \in \mathcal{F}_{m}$
- Predictor: $f(x)=f_{1}{ }^{\top} \Phi_{1}(x)+\cdots+f_{m}^{\top} \Phi_{m}(x)$
- Regularization by $\sum_{j=1}^{m}\left\|f_{j}\right\|^{2}$ is equivalent to using $K=\sum_{j=1}^{m} K_{j}$
- Regularization by $\sum_{j=1}^{m}\left\|f_{j}\right\|$ should impose sparsity at the group level
- Main questions when regularizing by block ℓ^{1}-norm:

1. Equivalence with previous formulations
2. Algorithms
3. Analysis of sparsity inducing properties

MKL - duality [BLJ04]

- Primal problem:

$$
\sum_{i=1}^{n} \varphi_{i}\left(f_{1}^{\top} \Phi_{1}\left(x_{i}\right)+\cdots+f_{m}^{\top} \Phi_{m}\left(x_{i}\right)\right)+\frac{\lambda}{2}\left(\left\|f_{1}\right\|+\cdots+\left\|f_{m}\right\|\right)^{2}
$$

- Proposition: Dual problem (using second order cones)

$$
\max _{\alpha \in \mathbb{R}^{n}}-\sum_{i=1}^{n} \psi_{i}\left(-\lambda \alpha_{i}\right)-\frac{\lambda}{2} \min _{j \in\{1, \ldots, m\}} \alpha^{\top} K_{j} \alpha
$$

KKT conditions: $f_{j}=\eta_{j} \sum_{i=1}^{n} \alpha_{i} \Phi_{j}\left(x_{i}\right)$

$$
\text { with } \alpha \in \mathbb{R}^{n} \text { and } \eta \geqslant 0, \sum_{j=1}^{m} \eta_{j}=1
$$

$-\alpha$ is the dual solution for the clasical kernel learning problem with kernel matrix $K(\eta)=\sum_{j=1}^{m} \eta_{j} K_{j}$

- η corresponds to the minimum of $G(K(\eta))$

Algorithms for MKL

- (very) costly optimization with SDP, QCQP ou SOCP
$-n \geqslant 1,000-10,000, m \geqslant 100$ not possible
- "loose" required precision \Rightarrow first order methods
- Dual coordinate ascent (SMO) with smoothing [BLJ04]
- Optimization of $G(K)$ by cutting planes [SRSS06]
- Optimization of $G(K)$ with steepest descent with smoothing [RBCG08]
- Regularization path [BTJ04]

SMO for MKL [BLJ04]

- Dual function $-\sum_{i=1}^{n} \psi_{i}\left(-\lambda \alpha_{i}\right)-\frac{\lambda}{2} \min _{j \in\{1, \ldots, m\}} \alpha^{\top} K_{j} \alpha$ is similar to regular $\mathrm{SVM} \Rightarrow$ why not try SMO ?

SMO for MKL

- Dual function $-\sum_{i=1}^{n} \psi_{i}\left(-\lambda \alpha_{i}\right)-\frac{\lambda}{2} \min _{j \in\{1, \ldots, m\}} \alpha^{\top} K_{j} \alpha$ is similar to regular $\mathrm{SVM} \Rightarrow$ why not try SMO ?
- Non differentiability!

SMO for MKL

- Dual function $-\sum_{i=1}^{n} \psi_{i}\left(-\lambda \alpha_{i}\right)-\frac{\lambda}{2} \min _{j \in\{1, \ldots, m\}} \alpha^{\top} K_{j} \alpha$ is similar to regular $\mathrm{SVM} \Rightarrow$ why not try SMO?
- Non differentiability!
- Solution: smoothing of the dual function by adding a squared norm in the primal problem (Moreau-Yosida regularization)

$$
\min _{f} \sum_{i=1}^{n} \varphi_{i}\left(\sum_{j=1}^{m} f_{j}^{\top} \Phi_{j}\left(x_{i}\right)\right)+\frac{\lambda}{2}\left(\sum_{j=1}^{m}\left\|f_{j}\right\|\right)^{2}+\varepsilon \sum_{j=1}^{m}\left\|f_{j}\right\|^{2}
$$

- SMO for MKL: simply descent on the dual function
- Matlab/C code available online (Obozinsky, 2006)

Could we use previous implementations of SVM?

- Computing one value and one subgradient of

$$
G(\eta)=\max _{\alpha \in \mathbb{R}^{n}}-\sum_{i=1}^{n} \psi_{i}\left(\lambda \alpha_{i}\right)-\frac{\lambda}{2} \alpha^{\top} K(\eta) \alpha
$$

requires to solve a classical problem (e.g., SVM)

- Optimization of η directly
- Cutting planes [SRSS06]
- Gradient descent [RBCG08]

Direct optimization of $G(\eta)$ [RBCG08]

MKL with regularization paths [BTJ04]

- Regularized problen

$$
\sum_{i=1}^{n} \phi_{i}\left(w_{1}^{\top} \Phi_{1}\left(x_{i}\right)+\cdots+w_{m}^{\top} \Phi_{m}\left(x_{i}\right)\right)+\frac{\lambda}{2}\left(\left\|w_{1}\right\|+\cdots+\left\|w_{m}\right\|\right)^{2}
$$

- In practice, solution required for "many" parameters λ
- Can we get all solutions at the cost of one?
- Rank one kernels (usual ℓ_{1} norm): path is piecewise affine for some losses \Rightarrow Exact methods [EHJT04, HRTZ05, BHH06]
- Rank > 1: path is only est piecewise smooth \Rightarrow predictor-corrector methods [BTJ04]

Log-barrier regularization

- Dual problem:

$$
\max _{\alpha}-\sum_{i} \psi_{i}\left(\lambda \alpha_{i}\right) \text { such that } \forall j, \alpha^{\top} K_{j} \alpha \leqslant d_{j}^{2}
$$

- Regularized dual problem:

$$
\max _{\alpha}-\sum_{i} \psi_{i}\left(\lambda \alpha_{i}\right)+\mu \sum_{j} \log \left(d_{j}^{2}-\alpha^{\top} K_{j} \alpha\right)
$$

- Properties:
- Unconstrained concave maximization
- η function of α
$-\alpha$ is unique solution of the stationary equation $F(\alpha, \lambda)=0$
$-\alpha(\lambda)$ differentiable function, easy to follow

Predictor-corrector method

- Follow solution of $F(\alpha, \lambda)=0$
- Predictor steps
- First order approximation using $\frac{d \alpha}{d \lambda}=-\left(\frac{\partial F}{\partial \alpha}\right)^{-1} \frac{\partial F}{\partial \lambda}$
- Corrector steps
- Newton's method to converge back to solution

Link with interior point methods

- Regularized dual problem:

$$
\max _{\alpha}-\sum_{i} \psi_{i}\left(\lambda \alpha_{i}\right)+\mu \sum_{j} \log \left(d_{j}^{2}-\alpha^{\top} K_{j} \alpha\right)
$$

- Interior point methods:
- λ fixed, μ followed from large to small
- Regularization path:
- μ fixed small, λ followed from large to small
- Computational complexity: Total complexity $O\left(m n^{3}\right)$
- NB: sparsity in α not used

Applications

- Bioinformatics [LBC $\left.{ }^{+} 04\right]$
- Protein function prediction
- Heterogeneous data sources
* Amino acid sequences
* Protein-protein interactions
* Genetic interactions
* Gene expression measurements
- Image annotation [HB07]

A case study in kernel methods

- Goal: show how to use kernel methods (kernel design + kernel learning) on a "real problem"

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
- Replacing dot-products by kernel functions
- Implicit use of (very) large feature spaces
- Linear to non-linear learning methods

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
- Replacing dot-products by kernel functions
- Implicit use of (very) large feature spaces
- Linear to non-linear learning methods
- Modularity of kernel methods

1. Work on new algorithms and theoretical analysis
2. Work on new kernels for specific data types

Image annotation and kernel design

- Corel14: 1400 natural images with 14 classes

Segmentation

- Goal: extract objects of interest
- Many methods available,
- ... but, rarely find the object of interest entirely
- Segmentation graphs
- Allows to work on "more reliable" over-segmentation
- Going to a large square grid (millions of pixels) to a small graph (dozens or hundreds of regions)

Segmentation with the watershed transform

watershed

64 segments
10 segments

Segmentation with the watershed transform

watershed

64 segments

10 segments

Image as a segmentation graph

- Labelled undirected Graph
- Vertices: connected segmented regions
- Edges: between spatially neighboring regions
- Labels: region pixels

Image as a segmentation graph

- Labelled undirected Graph
- Vertices: connected segmented regions
- Edges: between spatially neighboring regions
- Labels: region pixels
- Difficulties
- Extremely high-dimensional labels
- Planar undirected graph
- Inexact matching
- Graph kernels [GFW03] provide an elegant and efficient solution

Kernels between structured objects Strings, graphs, etc... [STC04]

- Numerous applications (text, bio-informatics)
- From probabilistic models on objects (e.g., Saunders et al, 2003)
- Enumeration of subparts (Haussler, 1998, Watkins, 1998)
- Efficient for strings
- Possibility of gaps, partial matches, very efficient algorithms (Leslie et al, 2002, Lodhi et al, 2002, etc...)
- Most approaches fails for general graphs (even for undirected trees!)
- NP-Hardness results (Gärtner et al, 2003)
- Need alternative set of subparts

Paths and walks

- Given a graph G,
- A path is a sequence of distinct neighboring vertices
- A walk is a sequence of neighboring vertices
- Apparently similar notions

Paths

Walks

Walk kernel (Kashima, 2004, Borgwardt, 2005)

- $\mathcal{W}_{\mathbf{G}}^{p}\left(\right.$ resp. $\left.\mathcal{W}_{\mathbf{H}}^{p}\right)$ denotes the set of walks of length p in \mathbf{G} (resp. \mathbf{H})
- Given basis kernel on labels $k\left(\ell, \ell^{\prime}\right)$
- p-th order walk kernel:

$$
\begin{aligned}
k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H})= & \sum_{\substack{\left(r_{1}, \ldots, r_{p}\right) \in \mathcal{W}_{\mathbf{G}}^{p} \\
\\
\\
\left(s_{1}, \ldots, s_{p}\right) \in \mathcal{W}_{\mathbf{H}}^{p}}} \prod_{i=1}^{p} k\left(\ell_{\mathbf{G}}\left(r_{i}\right), \ell_{\mathbf{H}}\left(s_{i}\right)\right) .
\end{aligned}
$$

Dynamic programming for the walk kernel

- Dynamic programming in $O\left(p d_{\mathbf{G}} d_{\mathbf{H}} n_{\mathbf{G}} n_{\mathbf{H}}\right)$
- $k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s)=$ sum restricted to walks starting at r and s
- recursion between $p-1$-th walk and p-th walk kernel

$$
k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s)=k\left(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)\right) \sum_{r^{\prime} \in \mathcal{N}_{\mathbf{G}}(r)} k_{\mathcal{W}}^{p-1}\left(\mathbf{G}, \mathbf{H}, r^{\prime}, s^{\prime}\right) \text {. }
$$

Dynamic programming for the walk kernel

- Dynamic programming in $O\left(p d_{\mathbf{G}} d_{\mathbf{H}} n_{\mathbf{G}} n_{\mathbf{H}}\right)$
- $k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s)=$ sum restricted to walks starting at r and s
- recursion between $p-1$-th walk and p-th walk kernel

$$
\begin{gathered}
k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s)=k\left(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)\right) \sum_{r^{\prime} \in \mathcal{N}_{\mathbf{G}}(r)} k_{\mathcal{W}}^{p-1}\left(\mathbf{G}, \mathbf{H}, r^{\prime}, s^{\prime}\right) \\
s^{\prime} \in \mathcal{N}_{\mathbf{H}}(s)
\end{gathered}
$$

- Kernel obtained as $k_{\mathcal{T}}^{p, \alpha}(\mathbf{G}, \mathbf{H})=\sum_{r \in \mathcal{V}_{\mathbf{G}}, s \in \mathcal{V}_{\mathbf{H}}} k_{\mathcal{T}}^{p, \alpha}(\mathbf{G}, \mathbf{H}, r, s)$

Performance on Corel14
 (Harchaoui \& Bach, 2007)

- Histogram kernels (H)
- Walk kernels (W)
- Tree-walk kernels (TW)
- Weighted tree-walks (wTW)
- MKL (M)

MKL

Summary

- Block ℓ^{1}-norm extends regular ℓ^{1}-norm
- One kernel per block
- Application:
- Data fusion
- Hyperparameter selection
- Non linear variable selection

Course Outline

1. ℓ^{1}-norm regularization

- Review of nonsmooth optimization problems and algorithms
- Algorithms for the Lasso (generic or dedicated)
- Examples

2. Extensions

- Group Lasso and multiple kernel learning (MKL) + case study
- Sparse methods for matrices
- Sparse PCA

3. Theory - Consistency of pattern selection

- Low and high dimensional setting
- Links with compressed sensing

Learning on matrices

- Example 1: matrix completion
- Given a matrix $M \in \mathbb{R}^{n \times p}$ and a subset of observed entries, estimate all entries
- Many applications: graph learning, collaborative filtering [BHK98, $\left.\mathrm{HCM}^{+} 00, \mathrm{SMH} 07\right]$
- Example 2: multi-task learning [OTJ07, PAE07]
- Common features for m learning problems $\Rightarrow m$ different weights, i.e., $W=\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{R}^{p \times m}$
- Numerous applications
- Example 3: image denoising [EA06, MSE08]
- Simultaneously denoise all patches of a given image

Three natural types of sparsity for matrices $M \in \mathbb{R}^{n \times p}$

1. A lot of zero elements

- does not use the matrix structure!

2. A small rank

- $M=U V^{\top}$ where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}, m$ small
- Trace norm

Three natural types of sparsity for matrices $M \in \mathbb{R}^{n \times p}$

1. A lot of zero elements

- does not use the matrix structure!

2. A small rank

- $M=U V^{\top}$ where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}$, m small
- Trace norm

3. A decomposition into sparse (but large) matrix \Rightarrow redundant dictionaries

- $M=U V^{\top}$ where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}, U$ sparse
- Dictionary learning

Trace norm [SRJ05, FHB01, Bac08c]

- Singular value decomposition: $M \in \mathbb{R}^{n \times p}$ can always be decomposed into $M=U \operatorname{Diag}(s) V^{\top}$, where $U \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times m}$ have orthonormal columns and s is a positive vector (of singular values)
- ℓ^{0} norm of singular values $=$ rank
- ℓ^{1} norm of singular values $=$ trace norm
- Similar properties than the ℓ^{1}-norm
- Convexity
- Solutions of penalized problem have low rank
- Algorithms

Dictionary learning [EA06, MSE08]

- Given $X \in \mathbb{R}^{n \times p}$, i.e., n vectors in \mathbb{R}^{p}, find
- m dictionary elements in $\mathbb{R}^{p}: V=\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{R}^{p \times m}$
- m set of decomposition coefficients: $U=\in \mathbb{R}^{n \times m}$
- such that U is sparse and small reconstruction error, i.e., $\left\|X-U V^{\top}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|X(i,:)-U(i,:) V^{\top}\right\|_{2}^{2}$ is small
- NB: Opposite view: not sparse in term of ranks, sparse in terms of decomposition coefficients
- Minimize with respect to U and V, such that $\|V(:, i)\|_{2}=1$,

$$
\frac{1}{2}\left\|X-U V^{\top}\right\|_{F}^{2}+\lambda \sum_{i=1}^{N}\|U(i,:)\|_{1}
$$

- non convex, alternate minimization

Dictionary learning - Applications [MSE08]

- Applications in image denoising

Dictionary learning - Applications - Inpainting

Sparse PCA [DGJL07, ZHT06]

- Consider $\Sigma=\frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$ covariance matrix
- Goal: find a unit norm vector x with maximum variance $x^{\top} \Sigma x$ and minimum cardinality
- Combinatorial optimization problem: $\max _{\|x\|_{2}=1} x^{\top} \Sigma x+\rho\|x\|_{0}$
- First relaxation: $\|x\|_{2}=1 \Rightarrow\|x\|_{1} \leqslant\|x\|_{0}^{1 / 2}$
- Rewriting using $X=x x^{\top}:\|x\|_{2}=1 \Leftrightarrow \operatorname{tr} X=1,1^{\top}|X| 1=\|x\|_{1}^{2}$

$$
\max _{X \succcurlyeq 0, \operatorname{tr} X=1, \operatorname{rank}(X)=1} \operatorname{tr} X \Sigma+\rho 1^{\top}|X| 1
$$

Sparse PCA [DGJL07, ZHT06]

- Sparse PCA problem equivalent to

$$
\max _{X \succcurlyeq 0, \operatorname{tr} X=1, \operatorname{rank}(X)=1} \operatorname{tr} X \Sigma+\rho 1^{\top}|X| 1
$$

- Convex relaxation: dropping the rank constraint $\operatorname{rank}(X)=1$

$$
\max _{X \succcurlyeq 0, \operatorname{tr} X=1} \operatorname{tr} X \Sigma+\rho 1^{\top}|X| 1
$$

- Semidefinite program [BV03]
- Deflation to get multiple components
- "dual problem" to dictionary learning

Sparse PCA [DGJL07, ZHT06]

- Non-convex formulation

$$
\min _{\alpha^{\top} \alpha=I}\left\|\left(I-\alpha \beta^{\top}\right) X\right\|_{F}^{2}+\lambda\|\beta\|_{1}
$$

- Dual to sparse dictionary learning

Sparse ???

Summary

- Notion of sparsity quite general
- Interesting links with convexity
- Convex relaxation
- Sparsifying the world
- All linear methods can be kernelized
- All linear methods can be sparsified
* Sparse PCA
* Sparse LDA
* Sparse

Course Outline

1. ℓ^{1}-norm regularization

- Review of nonsmooth optimization problems and algorithms
- Algorithms for the Lasso (generic or dedicated)
- Examples

2. Extensions

- Group Lasso and multiple kernel learning (MKL) + case study
- Sparse methods for matrices
- Sparse PCA

3. Theory - Consistency of pattern selection

- Low and high dimensional setting
- Links with compressed sensing

Theory

- Sparsity-inducing norms often used heuristically
- When does it converge to the correct pattern?
- Yes if certain conditions on the problem are satisfied (low correlation)
- what if not?
- Links with compressed sensing

Model consistency of the Lasso

- Sparsity-inducing norms often used heuristically
- If the responses y_{1}, \ldots, y_{n} are such that $y_{i}=w_{0}^{\top} x_{i}+\varepsilon_{i}$ where ε_{i} are i.i.d. and w_{0} is sparse, do we get back the correct pattern of zeros?
- Intuitive answer: yes if and ony if some consistency condition on the generating covariance matrices is satisfied [ZY06, YL07, Zou06, Wai06]

Asymptotic analysis - Low dimensional setting

- Asymptotic set up
- data generated from linear model $Y=X^{\top} \mathbf{w}+\varepsilon$
- \hat{w} any minimizer of the Lasso problem
- number of observations n tends to infinity
- Three types of consistency
- regular consistency: $\|\hat{w}-\mathbf{w}\|_{2}$ tends to zero in probability
- pattern consistency: the sparsity pattern $\hat{J}=\left\{j, \hat{w}_{j} \neq 0\right\}$ tends to $\mathbf{J}=\left\{j, \mathbf{w}_{j} \neq 0\right\}$ in probability
- sign consistency: the sign vector $\hat{s}=\operatorname{sign}(\hat{w})$ tends to $\mathbf{s}=\operatorname{sign}(\mathbf{w})$ in probability
- NB: with our assumptions, pattern and sign consistencies are equivalent once we have regular consistency

Assumptions for analysis

- Simplest assumptions (fixed p, large n):

1. Sparse linear model: $Y=X^{\top} \mathbf{w}+\varepsilon, \varepsilon$ independent from X, and w sparse.
2. Finite cumulant generating functions $\mathbb{E} \exp \left(a\|X\|_{2}^{2}\right)$ and $\mathbb{E} \exp \left(a \varepsilon^{2}\right)$ finite for some $a>0$ (e.g., Gaussian noise)
3. Invertible matrix of second order moments $\mathbf{Q}=\mathbb{E}\left(X X^{\top}\right) \in \mathbb{R}^{p \times p}$.

Asymptotic analysis - simple cases

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|Y-X w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to infinity
- \hat{w} tends to zero with probability tending to one
- \hat{J} tends to \varnothing in probability

Asymptotic analysis - simple cases

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to infinity
- \hat{w} tends to zero with probability tending to one
- \hat{J} tends to \varnothing in probability
- If μ_{n} tends to $\mu_{0} \in(0, \infty)$
- \hat{w} converges to the minimum of $\frac{1}{2}(w-\mathbf{w})^{\top} \mathbf{Q}(w-\mathbf{w})+\mu_{0}\|w\|_{1}$
- The sparsity and sign patterns may or may not be consistent
- Possible to have sign consistency without regular consistency

Asymptotic analysis - simple cases

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|Y-X w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to infinity
- \hat{w} tends to zero with probability tending to one
- \hat{J} tends to \varnothing in probability
- If μ_{n} tends to $\mu_{0} \in(0, \infty)$
- \hat{w} converges to the minimum of $\frac{1}{2}(w-\mathbf{w})^{\top} \mathbf{Q}(w-\mathbf{w})+\mu_{0}\|w\|_{1}$
- The sparsity and sign patterns may or may not be consistent
- Possible to have sign consistency without regular consistency
- If μ_{n} tends to zero faster than $n^{-1 / 2}$
- \hat{w} converges in probability to \mathbf{w}
- With probability tending to one, all variables are included

Asymptotic analysis - important case

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|Y-X w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to zero slower than $n^{-1 / 2}$
- \hat{w} converges in probability to \mathbf{w}
- the sign pattern converges to the one of the minimum of

$$
\frac{1}{2} v^{\top} \mathbf{Q} v+v_{\mathbf{J}}^{\top} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)+\left\|v_{\mathbf{J}}{ }^{c}\right\|_{1}
$$

- The sign pattern is equal to s (i.e., sign consistency) if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

- Consistency condition found by many authors: Yuan \& Lin (2007), Wainwright (2006), Zhao \& Yu (2007), Zou (2006)

Proof (μ_{n} tends to zero slower than $n^{-1 / 2}$) - I

- Write $y=X \mathbf{w}+\varepsilon$

$$
\begin{aligned}
\frac{1}{n}\|y-X w\|_{2}^{2} & =\frac{1}{n}\|X(\mathbf{w}-w)+\varepsilon\|_{2}^{2} \\
& =(\mathbf{w}-w)^{\top}\left(\frac{1}{n} X^{\top} X\right)(\mathbf{w}-w)+\frac{1}{n}\|\varepsilon\|_{2}^{2}+\frac{2}{n}(\mathbf{w}-w)^{\top} X^{\top} \varepsilon
\end{aligned}
$$

- Write $w=\mathbf{w}+\mu_{n} \Delta$. Cost function (up to constants):

$$
\begin{aligned}
& \frac{1}{2} \mu_{n}^{2} \Delta^{\top}\left(\frac{1}{n} X^{\top} X\right) \Delta-\frac{1}{n} \mu_{n} \Delta^{\top} X^{\top} \varepsilon+\mu_{n}\left(\left\|\mathbf{w}+\mu_{n} \Delta\right\|_{1}-\|\mathbf{w}\|_{1}\right) \\
= & \frac{1}{2} \mu_{n}^{2} \Delta^{\top}\left(\frac{1}{n} X^{\top} X\right) \Delta-\frac{1}{n} \mu_{n} \Delta^{\top} X^{\top} \varepsilon+\mu_{n}\left(\mu_{n}\left\|\Delta_{\mathbf{J}}\right\|_{1}+\mu_{n} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)^{\top} \Delta_{\mathbf{J}}\right)
\end{aligned}
$$

Proof (μ_{n} tends to zero slower than $n^{-1 / 2}$) - II

- Write $w=\mathbf{w}+\mu_{n} \Delta$. Cost function (up to constants):

$$
\begin{aligned}
& \frac{1}{2} \mu_{n}^{2} \Delta^{\top}\left(\frac{1}{n} X^{\top} X\right) \Delta-\frac{1}{n} \mu_{n} \Delta^{\top} X^{\top} \varepsilon+\mu_{n}\left(\left\|\mathbf{w}+\mu_{n} \Delta\right\|_{1}-\|\mathbf{w}\|_{1}\right) \\
= & \frac{1}{2} \mu_{n}^{2} \Delta^{\top}\left(\frac{1}{n} X^{\top} X\right) \Delta-\frac{1}{n} \mu_{n} \Delta^{\top} X^{\top} \varepsilon+\mu_{n}\left(\mu_{n}\left\|\Delta_{\mathbf{J}}\right\|_{1}+\mu_{n} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)^{\top} \Delta_{\mathbf{J}}\right)
\end{aligned}
$$

- Asymptotics 1: $\frac{1}{n} X^{\top} \varepsilon=O_{p}\left(n^{-1 / 2}\right)$ negligible compared to μ_{n} (TCL)
- Asymptotics 2: $\frac{1}{n} X^{\top} X$ "converges" to \mathbf{Q} (covariance matrix)
- Δ is thus the minimum of $\frac{1}{2} \Delta^{\top} \mathbf{Q} \Delta+\Delta_{\mathbf{J}}^{\top} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)+\left\|\Delta_{\mathbf{J}}\right\|_{1}$
- Check when the previous problem has solution such that $\Delta_{\mathrm{J}} \mathbf{c}=0$

Proof (μ_{n} tends to zero slower than $n^{-1 / 2}$) - II

- Write $w=\mathbf{w}+\mu_{n} \Delta$.
- Asymptotics $\Rightarrow \Delta$ minimum of $\frac{1}{2} \Delta^{\top} \mathbf{Q} \Delta+\Delta_{\mathbf{J}}^{\top} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)+\left\|\Delta_{\mathbf{J}}\right\|_{1}$
- Check when the previous problem has solution such that $\Delta_{\mathbf{J}}{ }^{c}=0$
- Solving for $\Delta_{\mathbf{J}}: \Delta_{\mathbf{J}}=-\mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)$
- Subgradient:
- on variables in \mathbf{J} : equal to zero
- on variables in $\mathbf{J}^{c}: \mathbf{Q}_{\mathbf{J}}{ }^{c} \mathbf{J} \Delta_{\mathbf{J}}+g$ such that $\|g\|_{\infty} \leqslant 1$
- Optimality conditions: $\left\|\mathbf{Q}_{\mathbf{J}{ }^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1$

Asymptotic analysis

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|Y-X w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to zero slower than $n^{-1 / 2}$
- \hat{w} converges in probability to \mathbf{w}
- the sign pattern converges to the one of the minimum of

$$
\frac{1}{2} v^{\top} \mathbf{Q} v+v_{\mathbf{J}}^{\top} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)+\left\|v_{\mathbf{J}}{ }^{c}\right\|_{1}
$$

- The sign pattern is equal to s (i.e., sign consistency) if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}}{ }^{c} \mathbf{J} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

- Consistency condition found by many authors: Yuan \& Lin (2007), Wainwright (2006), Zhao \& Yu (2007), Zou (2006)
- Disappointing?

Summary of asymptotic analysis

$\begin{aligned} & \hline \lim \mu_{n} \\ & \lim n^{1 / 2} \mu_{n} \end{aligned}$	$\begin{aligned} & +\infty \\ & +\infty \end{aligned}$	$\begin{aligned} \hline \mu_{0} & \in(0, \infty) \\ & +\infty \end{aligned}$	$\begin{gathered} 0 \\ +\infty \end{gathered}$	$\begin{gathered} 0 \\ \nu_{0} \in(0, \infty) \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$
regular consistency	inconsistent	inconsistent	consistent	consistent	consistent
sign pattern	no variable selected	deterministic pattern (depending on μ_{0})	deterministic pattern	??	all variables selected

- If μ_{n} tends to zero exactly at rate $n^{-1 / 2}$?

Summary of asymptotic analysis

$\begin{aligned} & \hline \lim \mu_{n} \\ & \lim n^{1 / 2} \mu_{n} \end{aligned}$	$\begin{aligned} & +\infty \\ & +\infty \end{aligned}$	$\begin{aligned} \mu_{0} & \in(0, \infty) \\ & +\infty \end{aligned}$	$\begin{gathered} 0 \\ +\infty \end{gathered}$	$\begin{gathered} 0 \\ \nu_{0} \in(0, \infty) \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$
regular consistency	inconsistent	inconsistent	consistent	consistent	consistent
sign pattern	no variable selected	deterministic pattern (depending on μ_{0})	deterministic pattern	all patterns consistent on J, with proba. > 0	all variables selected

- If μ_{n} tends to zero exactly at rate $n^{-1 / 2}$?

Positive or negative result?

- Rather negative: Lasso does not always work!
- Making the Lasso consistent
- Adaptive Lasso: reweight the ℓ^{1} using ordinary least-square estimate, i.e., replace $\sum_{i=1}^{p}\left|w_{i}\right|$ by $\sum_{i=1}^{p} \frac{\left|w_{i}\right|}{\left|\hat{w}_{i}^{L L S}\right|}$
\Rightarrow provable consistency in all cases
- Using the bootstrap \Rightarrow Bolasso [Bac08a]

Asymptotic analysis

- If μ_{n} tends to zero at rate $n^{-1 / 2}$, i.e., $n^{1 / 2} \mu_{n} \rightarrow \nu_{0} \in(0, \infty)$
- \hat{w} converges in probability to \mathbf{w}
- All (and only) patterns which are consistent with w on J are attained with positive probability

Asymptotic analysis

- If μ_{n} tends to zero at rate $n^{-1 / 2}$, i.e., $n^{1 / 2} \mu_{n} \rightarrow \nu_{0} \in(0, \infty)$
- \hat{w} converges in probability to \mathbf{w}
- All (and only) patterns which are consistent with w on J are attained with positive probability
- Proposition: for any pattern $s \in\{-1,0,1\}^{p}$ such that $s_{\mathbf{J}} \neq$ $\operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)$, there exist a constant $A\left(\mu_{0}\right)>0$ such that

$$
\log \mathbb{P}(\operatorname{sign}(\hat{w})=s) \leqslant-n A\left(\mu_{0}\right)+O\left(n^{-1 / 2}\right)
$$

- Proposition: for any sign pattern $s \in\{-1,0,1\}^{p}$ such that $s_{\mathbf{J}}=\operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right), \mathbb{P}(\operatorname{sign}(\hat{w})=s)$ tends to a limit $\rho\left(s, \nu_{0}\right) \in(0,1)$, and we have:

$$
\mathbb{P}(\operatorname{sign}(\hat{w})=s)-\rho\left(s, \nu_{0}\right)=O\left(n^{-1 / 2} \log n\right) .
$$

μ_{n} tends to zero at rate $n^{-1 / 2}$

- Summary of asymptotic behavior:
- All relevant variables (i.e., the ones in \mathbf{J}) are selected with probability tending to one exponentially fast
- All other variables are selected with strictly positive probability

μ_{n} tends to zero at rate $n^{-1 / 2}$

- Summary of asymptotic behavior:
- All relevant variables (i.e., the ones in J) are selected with probability tending to one exponentially fast
- All other variables are selected with strictly positive probability
- If several datasets (with same distributions) are available, intersecting support sets would lead to the correct pattern with high probability

Bootstrap

- Given n i.i.d. observations $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, i=1, \ldots, n$
- m independent bootstrap replications: $k=1, \ldots, m$,
- ghost samples $\left(x_{i}^{k}, y_{i}^{k}\right) \in \mathbb{R}^{p} \times \mathbb{R}, \quad i=1, \ldots, n$, sampled independently and uniformly at random with replacement from the n original pairs
- Each bootstrap sample is composed of n potentially (and usually) duplicated copies of the original data pairs
- Standard way of mimicking availability of several datasets [ET98]

Bolasso algorithm

- m applications of the Lasso/Lars algorithm [EHJT04]
- Intersecting supports of variables
- Final estimation of w on the entire dataset

Intersection

Bolasso - Consistency result

- Proposition [Bac08a]: Assume $\mu_{n}=\nu_{0} n^{-1 / 2}$, with $\nu_{0}>0$. Then, for all $m>1$, the probability that the Bolasso does not exactly select the correct model has the following upper bound:

$$
\mathbb{P}(J \neq \mathbf{J}) \leqslant A_{1} m e^{-A_{2} n}+A_{3} \frac{\log (n)}{n^{1 / 2}}+A_{4} \frac{\log (m)}{m}
$$

where $A_{1}, A_{2}, A_{3}, A_{4}$ are strictly positive constants.

- Valid even if the Lasso consistency is not satisfied
- Influence of n, m
- Could be improved?

Consistency of the Lasso/Bolasso - Toy example

- Log-odd ratios of the probabilities of selection of each variable vs. μ

LASSO

BOLASSO

Consistency condition satisfied

not satisfied

High-dimensional setting

- $p \geqslant n$: important case with harder analysis (no invertible covariance matrices)
- If consistency condition is satisfied, the Lasso is indeed consistent as long as $\log (p) \ll n$
- A lot of on-going work [MY08, Wai06]

High-dimensional setting (Lounici, 2008) [Lou08]

- Assumptions
$-y_{i}=\mathbf{w}^{\top} x_{i}+\varepsilon_{i}, \varepsilon$ i.i.d. normal with mean zero and variance σ^{2}
- $Q=X^{\top} X / n$ with unit diagonal and cross-terms less than $\frac{1}{14 s}$
- Theorem: if $\|\mathbf{w}\|_{0} \leqslant s$, and $A>8^{1 / 2}$, then

$$
\mathbb{P}\left(\|\hat{w}-\mathbf{w}\|_{\infty} \leqslant 5 A \sigma\left(\frac{\log p}{n}\right)^{1 / 2}\right) \leqslant 1-p^{1-A^{2} / 8}
$$

- Get the correct sparsity pattern if $\min _{j, \mathbf{w}_{j} \neq 0}\left|\mathbf{w}_{j}\right|>C \sigma\left(\frac{\log p}{n}\right)^{1 / 2}$
- Can have a lot of irrelevant variables!

Links with compressed sensing [Bar07, CW08]

- Goal of compressed sensing: recover a signal $w \in \mathbb{R}^{p}$ from only n measurements $y=X w \in \mathbb{R}^{n}$
- Assumptions: the signal is k-sparse, $n \ll p$
- Algorithm: $\min _{w \in \mathbb{R}^{p}}\|w\|_{1}$ such that $y=X w$
- Sufficient condition on X and (k, n, p) for perfect recovery:
- Restricted isometry property (all submatrices of $X^{\top} X$ must be well-conditioned)
- that is, if $\|w\|_{0}=k$, then $\|w\|_{2}\left(1-\delta_{k}\right) \leqslant\|X w\|_{2} \leqslant\|w\|_{2}\left(1+\delta_{k}\right)$
- Such matrices are hard to come up with deterministically, but random ones are OK with $k=\alpha p$, and $n / p=f(\alpha)<1$

"Single-Pixel" CS Camera

w/ Kevin Kelly

Course Outline

1. ℓ^{1}-norm regularization

- Review of nonsmooth optimization problems and algorithms
- Algorithms for the Lasso (generic or dedicated)
- Examples

2. Extensions

- Group Lasso and multiple kernel learning (MKL) + case study
- Sparse methods for matrices
- Sparse PCA

3. Theory - Consistency of pattern selection

- Low and high dimensional setting
- Links with compressed sensing

Summary - interesting problems

- Sparsity through non Euclidean norms
- Alternative approaches to sparsity
- greedy approaches - Bayesian approaches
- Important (often non treated) question: when does sparsity actually help?
- Current research directions
- Algorithms, algorithms, algorithms!
- Design of good projections/measurement matrices for denoising or compressed sensing [See08]
- Structured norm for structured situations (variables are usually not created equal) \Rightarrow hierarchical Lasso or MKL[ZRY08, Bac08b]

Lasso in action

(left: sparsity is expected, right: sparsity is not expected)

Hierarchical multiple kernel learning (HKL) [Bac08b]

- Lasso or group Lasso, with exponentially many variables/kernels
- Main application:
- nonlinear variables selection with $x \in \mathbb{R}^{p}$
$k_{v_{1}, \ldots, v_{p}}(x, y)=\prod_{j=1}^{p} \exp \left(-v_{i} \alpha\left(x_{i}-y_{i}\right)^{2}\right)=\prod_{j, v_{j}=1} \exp \left(-\alpha\left(x_{i}-y_{i}\right)^{2}\right)$
where $v \in\{0,1\}^{p}$
-2^{p} kernels! (as many as subsets of $\{1, \ldots, p\}$)
- Learning sparse combination \Leftrightarrow nonlinear variable selection
- Two questions:
- Optimization in polynomial time?
- Consistency?

Hierarchical multiple kernel learning (HKL) [Bac08b]

- The 2^{p} kernels are not created equal!
- Natural hierarchical structure (directed acyclic graph)
- Goal: select a subset only after all of its subsets have been selected
- Design a norm to achieve this behavior

$$
\sum_{v \in V}\left\|\beta_{\text {descendants }(v)}\right\|=\sum_{v \in V}\left(\sum_{w \in \operatorname{descendants}(v)}\left\|\beta_{w}\right\|^{2}\right)^{1 / 2}
$$

- Feature search algorithm in polynomial time in p and the number of selected kernels

Hierarchical multiple kernel learning (HKL) [Bac08b]

References

[Aro50] N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337-404, 1950.
[Bac08a] F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML), 2008.
[Bac08b] F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008.
[Bac08c] F. R. Bach. Consistency of trace norm minimization. Journal of Machine Learning Research, to appear, 2008.
[Bar07] Richard Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118-121, 2007.
[BB08] Léon Bottou and Olivier Bousquet. Learning using large datasets. In Mining Massive DataSets for Security, NATO ASI Workshop Series. IOS Press, Amsterdam, 2008. to appear.
[BGLS03] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizbal. Numerical Optimization Theoretical and Practical Aspects. Springer, 2003.
[BHH06] F. R. Bach, D. Heckerman, and E. Horvitz. Considering cost asymmetry in learning classifiers. Journal of Machine Learning Research, 7:1713-1741, 2006.
[BHK98] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In 14th Conference on Uncertainty in Artificial Intelligence, pages 43-52, Madison, W.I., 1998. Morgan Kaufman.
[BL00] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. Number 3 in CMS Books in Mathematics. Springer-Verlag, 2000.
[BLJ04] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the International Conference on Machine Learning (ICML), 2004.
[BTJ04] F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels. In Advances in Neural Information Processing Systems 17, 2004.
[BV03] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2003.
[CDS01] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by basis pursuit. SIAM Rev., 43(1):129-159, 2001.
[CW08] Emmanuel Candès and Michael Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2):21-30, 2008.
[DGJL07] A. D'aspremont, El L. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434-48, 2007.
[EA06] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc., 15(12):3736-3745, 2006.
[EHJT04] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.
[ET98] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman \& Hall, 1998.
[FHB01] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings American Control Conference, volume 6, pages 4734-4739, 2001.
[GFW03] Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives. In COLT, 2003.
[HB07] Z. Harchaoui and F. R. Bach. Image classification with segmentation graph kernels. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 2007.
[$\mathrm{HCM}^{+} 00$] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res., 1:49-75, 2000.
[HRTZ05] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector machine. Journal of Machine Learning Research, 5:1391-1415, 2005.
[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. SpringerVerlag, 2001.
[KW71] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applicat., 33:82-95, 1971.
[LBC ${ }^{+}$04] G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical framework for genomic data fusion. Bioinf., 20:2626-2635, 2004.
[LBRN07] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In NIPS, 2007.
[LCG ${ }^{+}$04] G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
[Lou08] K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics, 2, 2008.
[MSE08] J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modeling and Simulation, 7(1):214-241, 2008.
[MY08] N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for highdimensional data. Ann. Stat., page to appear, 2008.
[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, chapter 1. Springer, 2nd edition, 2006.
[OTJ07] G. Obozinski, B. Taskar, and M. I. Jordan. Multi-task feature selection. Technical report, UC Berkeley, 2007.
[PAE07] M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In Advances in Neural Information Processing Systems, 2007.
[RBCG08] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. Simplemkl. Journal of Machine Learning Research, to appear, 2008.
[See08] M. Seeger. Bayesian inference and optimal design in the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
[SMH07] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 791-798, New York, NY, USA, 2007. ACM.
[SRJ05] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances in Neural Information Processing Systems 17, 2005.
[SRSS06] S. Sonnenbrug, G. Raetsch, C. Schaefer, and B. Schoelkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.
[SS01] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
[STC04] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.
[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of The Royal Statistical Society Series B, 58(1):267-288, 1996.
[Wah90] G. Wahba. Spline Models for Observational Data. SIAM, 1990.
[Wai06] M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_{1}-constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.
[WL08] Tong Tong Wu and Kenneth Lange. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat., 2(1):224-244, 2008.
[YL07] M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal of The Royal Statistical Society Series B, 69(2):143-161, 2007.
[ZHT06] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. J. Comput. Graph. Statist., 15:265-286, 2006.
[Zou06] H. Zou. The adaptive ILsso and its oracle properties. Journal of the American Statistical Association, 101:1418-1429, December 2006.
[ZRY08] P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, To appear, 2008.
[ZY06] P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research, 7:2541-2563, 2006.

Code

- ℓ^{1}-penalization: Matlab and R code available from www.dsp.ece.rice.edu/cs
- Multiple kernel learning:
asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html www.stat.berkeley.edu/~gobo/SKMsmo.tar
- Other interesting code www.shogun-toolbox.org

