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Abstract

The Generalized Linear discriminant Sequence
(GLDS) kernel has been showing to provide very good
performance in SVM speaker verification in NIST SRE
evaluations. The GLDS kernel is based on an explicit
mapping of each sequence to a single vector in a feature
space using polynomial expansions. Because of practical
limitations, these expansions have to be of degree less or
equal to 3. In this paper, we generalize the GLDS ker-
nel to allow not only any polynomial degree but also any
expansion (possibly infinite dimensional) that defines a
Mercer kernel (such as the RBF kernel). To do so, we
use low-rank decompositions of the Gram matrix to ex-
press the feature space kernel in terms of input space data
only. We present experiments on the Biosecure project
data. The results show that our new sequence kernel out-
performs the GLDS one as well as the one developed in
our recent work.

1. Introduction

The technique of Support Vector Machines (SVM) is
an interesting alternative to Gaussian Mixture Models
(GMMs) for speaker verification systems using acoustic
features, as they are well suited to separate complex re-
gions in binary classification problems, through an opti-
mal nonlinear decision boundary. A challenge however in
applying SVM to monitor conversations in a communica-
tion network, such as in NIST SRE evaluations, is to deal
with the huge amount of data available. Thus, in order
to exploit a rich database involving various types of low
quality cell phones with a SVM training algorithm, the
frame-based approach such as the one in [1] needs to be
adapted to make a tractable training and testing proce-
dure. A solution could be to use clustering methods to
reduce the size of the training corpus as was done in [2].
On the other hand, the problem in speaker verification
is to classify sequences of vectors. It is then more nat-
ural to conceive kernels that measure similarity between
sequences and use them in a SVM architecture.

The use of sequence kernels in SVM speaker verifica-
tion has gained considerable attention in recent years. In
[3, 4, 5] for instance, sequence kernels based on genera-
tive probabilistic models have been used. However, the
sequence kernel that has shown the best results so far in
NIST SRE evaluations is the GLDS kernel [6]. The latter
consists basically of an explicit mapping of each sequence
to a single vector in a feature space using polynomial ex-
pansions. Then, a SVM with a linear kernel is used in

this feature space.
The GLDS kernel has however both practical and the-

oretical limitations. The former is due to the fact that
only polynomial expansions of degree less or equal to 3
can be used in practice. The latter is due to the fact that
it does not (readily) generalize to infinite expansions such
as the radial basis one. The purpose of this paper is to
overcome these two limitations. We first start by defin-
ing a class of sequence kernels by allowing the expansion
in GLDS to be any expansion that defines a Mercer ker-
nel. We then provide a finite-dimensional form to the
sequence kernels defined this way. This form can still be
intractable in speaker verification applications. We then
use low rank matrix decompositions to achieve tractable
sequence kernels.

2. Overview of the GLDS kernel

The original form of the GLDS kernel [6] involves a
polynomial expansion φp, with monomials (between each
combination of vector components) up to a given degree
p. For example, if p = 2 and x = [x1, x2]

> is a 2-
dimensional input vector, φp(x) = [x1, x2, x

2
1, x1x2, x

2
2]
>.

The GLDS kernel between two sequences of vectors
X = {xt}t=1...TX and Y = {yt}t=1...TY is given as a
rescaled dot product between average expansions:

KGLDS(X, Y ) =
1

TX

TXX
t=1

φp(xt)
> M−1

p
1

TY

TYX
s=1

φp(ys)

(1)
where Mp is the second moment matrix of polynomial
expansions φp estimated on some background population,
or its diagonal approximation for more efficiency.

Conceived in this way, the GLDS kernel is difficult to
tune, because the size of the explicit polynomial expan-
sion φp becomes intractable for polynomial expansions
with maximal degree p higher than 3. Indeed, let d be
the dimension of the input space, the dimension of the

expansion is D = (d+p)!
d!p!

. In practice d is about 25, and

D becomes too large when p > 3 (e.g. D = 23, 751 when
d = 25 and p = 4). That is why in practice GLDS SVM
based systems use an expansion with monomials up to
degree 3.

An interesting problem then is to find a tractable way
to compute or approximate (1) for any p. A more general
problem is how to to provide a finite-dimensional form of
(1) for any expansion φ including infinite ones, so as to
really exploit the“kernel trick”. By this way, Radial Basis



Functions (RBF) expansion could also be used. This is
the purpose of the next section.

3. A rich class of kernels

Let’s consider the class of sequence kernels of the form:

K̂(X, Y ) = 1
TX

PTX
t=1 φ(xt)

> M−1 1
TY

PTY
s=1 φ(ys)

= φ(X)> M−1 φ(Y )

(2)
where

• φ is a vector expansion of size D ≤ +∞ defining a
Mercer kernel k:

k(x, y) = φ(x)>φ(y) (3)

• M = E(φφ>) is the second moment matrix of ex-
pansions φ estimated on a set of background pop-
ulation B = {b1, . . . , bn} (of size n). M can be
expressed as a matrix product

M =
1

n
ΦBΦ>B (4)

where ΦB = [φ(b1), . . . , φ(bn)] is the D×n matrix
of background vector expansions.

Note that k̂(x, y) = φ(x)>M−1φ(y) is also a kernel
satisfying the Mercer condition, with a rescaling process
in the feature space defined by the expansion φ. The se-
quence kernel can be written with this re-weighted kernel
as K̂(X, Y ) = 1

TXTY

P
t

P
s k̂(xt, ys).

Note also that the GLDS expansion φp does not lead
exactly to the standard polynomial kernel k(x, y) = (c +
x ·y)p (each monomial would have to be normalized with
the appropriate coefficients).

Note finally that the kernel K̂ is invariant to sequence
permutation. It is thus a kernel between sets of vectors.
We use however the terminology ”sequence kernel” for
simplicity.

3.1. Expressing K̂ in a dual form

In this section, we show how to express the re-weighted
vector kernel k̂ as a function of the standard vector kernel
k, and of the set of background vectors B = {b1, . . . , bn}
considered for the rescaling operated by the matrix M−1.

Let’s consider the thin Singular-Value Decomposition
(SVD) of background expansions ΦB :

ΦB = USV > (5)

where U and V are orthogonal matrices of sizes D × r
and n × r respectively, r ≤ min(n, D) being the rank of
ΦB . Then

M = 1
n
USV > V SU>

= U
`

1
n
S2

´
U> (6)

Note that in the general case M is not guaranteed to
be invertible and has to be regularized, by replacing for
instance M by M = E(φφ>) + 1

n
εI. This regularization

is needed for statistical reasons in cases where the di-
mension of the feature space D is larger than the number

of data points n [7]. We refer to [8] for the theoretical
development using such regularization.

To invert (6), we use the fact that all combinations
of rational operations do not change eigenvectors U and
apply only on singular values included in 1

n
S2. We can

thus consider the pseudo-inversion [9]

M−1 = nUS−2U>

= nΦBV S−4V >Φ>B
(7)

The kernel Gram matrix on background data, de-
fined by Ki,j = k(bi, bj), can be written K = Φ>BΦB .
Using (5), it has an explicit singular value decompo-
sition K = V S2V >. Considering the pseudo-inverse
K−2 = V S−4V >, the kernel k̂ can be written as:

k̂(x, y) = n φ(x)>ΦB K−2 Φ>Bφ(y)
= n ΨB(x)> K−2 ΨB(y)

(8)

where we define the vector mapping of size n, using the
vector kernel (3), as:

ΨB(x) = [k(b1, x), . . . , k(bn, x)]> (9)

Note that ΨB is exactly the empirical kernel map
defined in [7].

By linearity in the feature space, we can finally write
K̂ in a finite-dimensional form as

K̂(X, Y ) = 1
TXTY

PTX
t=1

PTY
s=1 k̂(xt, ys)

= n ΨB(X)> K−2 ΨB(Y )

(10)

where we define the sequence map of size n

ΨB(X) =

264 1
TX

PTX
t=1 k(b1, xt)

...
1

TX

PTX
t=1 k(bn, xt)

375 (11)

In practice, the number of background vectors avail-
able for speech application is very high. In the case
of monitoring conversations, the size n of background
data available can be enormous. The computation of
K̂ would thus be intractable since its complexity is
O (n(TX + TY + n)). In the next section, we use a low-
rank matrix decomposition to provide an approximate
but tractable form for (10).

4. Incomplete Cholesky
Decomposition of the Gram Matrix

Current methods of reducing training data for kernel-
based methods correspond to low-rank approximations of
the gram matrix [10, 11]. The goal of these methods is to
pick up a subset C ⊂ B that would allow an approxima-
tion of the gram matrix Ki,j = k (xi, xj)(xi,xj)∈B2 with a

lower rank matrix, so as to rewrite kernel formulas with
lower complexity.

An appealing technique is the Incomplete Cholesky
Decomposition (ICD). The algorithm, described in [12],
has a relatively low complexity O(m2n), if m is the de-
sired size of the set C. Besides, it does not require to
keep in memory the entire gram matrix K at any time.



Given a gram matrix K of size n × n (the actual
rank of K may be smaller than n), the ICD of K is a
n × m matrix Gm, such that K can be approximated
by GmGm

>. Gm, with rank m < n, is spanned by the
columns of K indexed by a sequence I = {i1, . . . , im} ⊂
{1, . . . , n}. By doing so, we can consider that the ICD
provides a codebook C = {bi1 , . . . , bim} ⊂ B. In the
following, we show how to express our sequence kernel
with a tractable form involving C instead of B.

It can be shown [13] that Gm can be written:

Gm = K(:, I)K(I, I)−1/2 (12)

where K(:, I) means all columns of K indexed by I.
With the same notation, K(I, I) is a m×m gram matrix
with {bi1 , . . . , bim} as entries.

The fact that ΦB and Gm
> have the same square

(K = Φ>BΦB ≈ GmGm
>) implies that there exists a

D × m orthogonal matrix U such that we can consider
the incomplete decomposition (instead of (5)):

ΦB = UGm
> (13)

The second moment matrix M can thus be replaced
by M = 1

n
UGm

>GmU>. This approximation amounts
to regularizing the second moment matrix. Given the
previous decomposition, we can invert

M−1 = n U (Gm
>Gm)−1 U>

= U K(I, I)1/2 R−1 K(I, I)1/2 U> (14)

where we define using (12) the m×m matrix:

R =
1

n
K(:, I)>K(:, I) (15)

The ICD guarantees that rank(Gm
>Gm) =

rank(Gm) = m, which in turn guarantees that Gm
>Gm

and R are invertible.
We can also derive from (12) and (13) that

Φ>B = GmU> = K(:, I)K(I, I)−1/2U>.

If we assume that every expansion φ(x) belongs to the
convex hull of the background expansions included in ΦB ,
then we can show [8] that

φ(x)> = ΨC(x)>K(I, I)−1/2U>

where ΨC(x) is the (reduced) map involving the m
codebook vectors {bi1 , . . . , bim} extracted from the ICD:

ΨC(x) = [k(bi1 , x), . . . , k(bim , x)]> (16)

Replacing in (2) the new expressions of M−1 and
φ(X) (resp. φ(Y )) leads to the new form of our sequence
kernel:

K̂ICDS(X, Y ) = ΨC(X)> R−1 ΨC(Y ) (17)

where we consider the sequence map

ΨC(X) =

264 1
TX

PTX
t=1 k(bi1 , xt)

...
1

TX

PTX
t=1 k(bim , xt)

375 (18)

The computational complexity of K̂ICDS(X, Y ) is
O(m(TX + TY + m)). In practice the value of m can be

chosen to be much lower than n, which leads in turn to an
efficient kernel computation. Moreover, diagonal approx-
imations of R can be considered to make the computation
highly efficient (we do not consider such approximations
in this paper). Note finally that computation of R−1 can
be done off-line.

The sequence kernel K̂ICDS given by (17) has a sim-
ilar form to the RKHS Sequence kernel given in our pre-
vious work [14], where we had adopted the same pro-
cedure as Campbell in [6] to conceive a kernel between
two sequences. This procedure consists in training a dis-
criminant model (with outputs 0/1) on a sequence (in a
Reproducing Kernel Hilbert Space generated by k) and
testing on the other. After some approximation a sym-
metric kernel, that satisfies the Mercer Conditions, is ob-
tained.

The kernel arising from our last approach has the
expression:

KRKHS(X, Y ) = ΨC(X)> K−2
C ΨC(Y ) (19)

where C = {c1, . . . , cm} is a set of codebook vectors
obtained by a vector quantization of the background set
B. KC is the Gram matrix on C: KCi,j = K(ci, cj).

5. Experiments

5.1. Corpora and front-end

Our experiments used female data from the NIST 2004
Speaker Recognition Evaluation, in accordance with the
development protocol defined by the Biosecure project
[15]. In this scenario, we consider 113 background speak-
ers for tuning the system, and more than 7000 tests in-
volving 181 target speakers and 368 testing sequences.
All sequences, including about 2 minutes of speech, come
from the NIST SRE 2004 evaluation database in core
conditions (1side-1side).

To extract acoustic vectors from a speech sequence,
12 MFCC and their first order time derivatives are ex-
tracted on a 16ms window, at a 10ms frame rate. The
derivative of the energy logarithm is also added. Then,
a speech activity detector discards silence frames, using
an unsupervised bi-Gaussian model [16]. Finally, the 25-
dimensional input vectors are warped [17] over 3 sec win-
dows.

5.2. System implementation

The first step is to run the ICD on the Gram matrix of the
background population. In our case, it would be compu-
tationally expensive to run this iterative algorithm on a
huge amount n of data, as we need to memorize a matrix
Gm of size n × m. Our experiments showed that if we
finally pick up about m ∼ 5000 codebook vectors, there
is no point in considering all background data available.
We have roughly the same performance when considering
20, 000 background vectors or 200, 000 background vec-
tors. We thus fix m = 5000 and run the ICD on the
Gram matrix of 20, 000 background vectors picked up
randomly in the background corpus. These vectors have
to be representative of observed speech features, as the
set of background vectors used to estimate Mp for the
GLDS kernel.

Once the codebook for the mapping (18) is chosen,
we can compute off-line the normalisation matrix R de-



fined by (15). In a SVM speaker verification scheme,
we have to train several target speaker models using a
common set of background sequences considered as im-
postors, whose characteristics can be computed off-line
and kept in memory. To save computations for training
target speaker models when some sequences are given to
the system, we decide to pre-compute the sequence ker-
nel between all pairs of impostors, and to keep in memory
all rescaled maps of impostors, defined by R−1ΨC . By
doing so, when a target speaker sequence is given to the
system for training, we only need to compute its map
ΨC , and then a dot product between this map and all
background rescaled maps, in order to obtain all kernel
values to train a SVM.

The testing procedure can be made efficient with a
similar trick. If we note (Ti) the training sequences (im-
postors + given target sp), the discriminative function
(defined with some Lagrangian coefficients (αi)) can be
encompassed into a single m-dimensional vector ω̂sp (as
was done in [6]):

f(·) =
P

i αiK̂(Ti, ·) + β

= ΨC(·)>
X

i

αiR
−1ΨC(Ti)| {z }

ω̂sp

+β
(20)

5.3. Choice of the kernel parameters

In this section, we discuss how to choose the parameters
of the kernel k chosen to define K̂ (degree for a polyno-
mial, width of a gaussian function).

5.3.1. Polynomial kernels

Considering a polynomial kernel kp(x, y) = (c + x · y)p,
we can see comparing results when c = 0 (Fig. 1) and
c = 1 (Fig. 2) that it is better to take a non-zero c. This
means that it is better to take into account all monomials
with a degree equal or lower than p, as was done with the
GLDS kernel (when c = 0 only monomials with degree p
are taken into account).

Figure 1: Performance according to the degree of the
polynomial vector kernel of the form (x · y)p

Moreover, Figs.1 and 2 show that we have better per-
formance using a degree higher than 3. This suggests that

the GLDS kernel would perform better if it could consider
monomials with degrees higher than 3 in the expansion
φp. Unfortunately, such an extension is not tractable in
our application.

Figure 2: Performance according to the degree of the
polynomial vector kernel of the form (1 + x · y)p

5.3.2. RBF kernels

Considering a RBF kernel krbf (x, y) = e−γ‖x−y‖2 , [7]
recommends to choose the parameter γ in the order of
γ0 = 1/2dσ2, where σ2 is the mean of the variance of
each component of input vectors in <d. With the front-
end processing used in our experiments, it corresponds to
γ0 ≈ 0.3. Our experiments confirm this recommendation.

Indeed, if γ is too high, the vector kernel will fit too
much to the data: K will be close to an identity matrix
(maximal rank), and our sequence mapping defined in
(17) will amount to counting how many vectors from a
sequence lie in a narrow neighbourhood of each respec-
tive codebook vector. On the contrary, if γ is too low,
the rank of K will be low (with eigenvalues decreasing
rapidly) and we will only consider a (too) small number
of features. Experiments in Fig. 3 show that if γ lies
in a reasonable range around γ0, then performances are

Figure 3: Performance according to the spreading of the
RBF kernel



roughly the same (resp. are degraded when γ reaches
some obsolete values).

5.4. Comparison with GLDS

The best performances of our new ICD Sequence kernel
(in this experiment) were obtained using an RBF kernel
with γ = 0.2. In Fig. 4, we compare the performance of
this ICD Sequence kernel to

• The GLDS approach [6] with a polynomial expan-
sion of degree 3 and a diagonal approximation of
the second moment matrix Mp.

• The GLDS approach with a polynomial expansion
of degree 3 and a full matrix Mp, so as to compare
systems with comparable complexity.

• Our previous approach [14], which is referred to as
a RKHSS kernel

Figure 4: Comparison of the GLDS, RKHSS and ICDS
kernels

The results show that our new system is outperform-
ing all the others at all operating points. Recent experi-
ments show that this is still de case with other front-end
processing exploiting short-term spectral information.

6. Conclusion

Using low-rank decomposition of the Gram matrix, we
presented a new framework to generalize the GLDS ker-
nel to any feature space expansion that defines a Mercer
kernel. The sequence kernel we obtained, the ICD kernel,
leads to performances also better than the GLDS ones
and also than our previous approach. Moreover, many
extensions are possible. For instance, it is interesting to
consider a covariance matrix M instead of the second
order moment one because the kernel would then cor-
respond to a Malahanobis distance in the feature space.
The theoretical and experimental development of such an
extension and others can be found in [8].

7. References

[1] M. Schmidt and H. Gish, “Speaker identification via
support vector machines,” in Proc. ICASSP, 1996.

[2] Z. Lei, Y. Yang, and Z. Wu, “Mixture of support
vector machines for text-independent speaker recog-
nition,” in Proc. Interspeech, 2005.

[3] J. Kharroubi, D. Petrovska-Delacretaz, and G. Chol-
let, “Combining gmm’s with suport vector machines
for text-independent speaker verification,” in Proc.
Eurospeech, 2001.

[4] P. Ho and P Moreno, “SVM kernel adaptation in
speaker classification and verification,” in Proc. IC-
SLP, 2004.

[5] V. Wan, Speaker Verification using Support Vec-
tor Machines, Ph.D. thesis, University of Sheffield,
2003.

[6] W.M. Campbell, J. Campbell, D. Reynolds,
E. Singer, and P. Torres-Carrasquillo, “Support vec-
tor machines for speaker and language recognition,”
Computer Speech and Language, 2005.

[7] B. Schölkopf, S. Mika, C. J.C.Burges, P. Knirsch,
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