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ABSTRACT

We propose an unsupervised inference procedure for audio
source separation. Components in nonnegative matrix factor-
ization (NMF) are grouped automatically in audio sources
via a penalized maximum likelihood approach. The penalty
term we introduce favors sparsity at the group level, and is
motivated by the assumption that the local amplitude of the
sources are independent. Our algorithm extends multiplica-
tive updates for NMF ; moreover we propose a test statistic to
tune hyperparameters in our model, and illustrate its adequacy
on synthetic data. Results on real audio tracks show that our
sparsity prior allows to identify audio sources without knowl-
edge on their spectral properties.

Index Terms— Blind source separation, audio signal pro-
cessing, unsupervised learning, nonnegative matrix factoriza-
tion, sparsity priors

1. INTRODUCTION

In this paper, we propose a contribution to the problem of
unsupervised source separation of audio signals, more specifi-
cally single channel audio signals. Nonnegative matrix factor-
ization (NMF) of time-frequency representations such as the
power spectrogram has become a popular tool in the signal
processing community. Given such a time-frequency repre-
sentation V ∈ RF×N+ , NMF consists in finding a factoriza-
tion of the form V 'WH where W ∈ RF×K+ , H ∈ RK×N+ ,
and K � F,N . The factorization is obtained by minimizing
a loss function of the form D(V,WH). For simple signals,
individual components of NMF were found to retrieve mean-
ingful signals such as notes or events [1, 2]. However, when
applied to more complex signals, such as music instruments,
it is more reasonable to suppose that each sound source corre-
sponds to a subset of components. Grouping is usually done
either by the user, or based on heuristics, but as the number of
components grows large, this task becomes even more time-
consuming than the parameter inference task (it involves con-
sidering all permutations ofK components). In this paper, we
argue that grouping may be incorporated in the inference of
the dictionary W as part of a structured statistical model. We
make the hypothesis that the instantaneous local amplitudes
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(i.e., the “volume” ) of the sources are independent and de-
rive a marginal distribution for H. This results in a maximum
likelihood problem penalized with a sparsity-inducing term.
Sparsity-inducing functions have been a subject of intensive
research. According to the loss function used, either sparsity-
inducing norms [3, 4] or divergences [1, 5] are preferred. The
penalty term we introduce is designed to deal with a specific
choice of loss function, the Itakura-Saito divergence. This pa-
per is organized as follows : in Section 2 we propose a pe-
nalized maximum-likelihood estimation method, that favors
group-sparsity in NMF. We provide in Section 3 an efficient
descent algorithm, building on a majorization-minimization
procedure. In Section 4.2 we propose a statistic to select hy-
perparameters. In Section 5, we validate our algorithm and
parameter selection procedure on synthetic data and discuss
the influence of remaining free parameters. Finally, we em-
phasize the benefits of our approach in an unsupervised audio
source separation task.

Notation. Matrices are bold upper-case (e.g., X ∈
RF×N ), column vectors are bold lower-case (e.g., x ∈ RF ),
and scalars are plain lower case (e.g., x ∈ R). x·n denotes
the n-th column of matrix X, xf · the k-th line, while xfn
is the (f, n) coefficient. Moreover, if g is a set of inte-
gers, then hg is a vector in R|g| of elements of h indexed
by g. In algorithms we write elementwise matrix multi-
plication A � B, division A

B , matrix power A·k, and co-
efficientwise modulus |A|. For any vector or matrix X,
X ≥ 0 means that all entries are nonnegative. Sums are
for k ∈ {1 . . .K}, f ∈ {1 . . . F}, n ∈ {1 . . . N}, unless
otherwise stated. Finally, we use the convention Ṽ = WH
throughout the paper.

2. STATISTICAL FRAMEWORK AND
OPTIMIZATION PROBLEM

2.1. Overview of the generative model

Given a short time Fourier transform X ∈ CF×N of an
audio track, we make the assumption that X is a linear instan-
taneous mixture of i.i.d. Gaussian signals :

xfn =
∑
k

x
(k)
fn where x

(k)
fn ∼ N (0, wfkhkn) . (1)

As a consequence, we have E(V) = WH where V = |X|2
is the observed power spectrogram. Furthermore, V has the



following distribution :

p(V|Ṽ) =
∏
f,n

1

ṽfn
exp

(
− vfn
ṽfn

)
. (2)

As shown in [2], maximum-likelihood estimation of (W,H)
is equivalent to minimizing the Itakura-Saito divergence be-
tween V and WH. The Itakura-Saito loss is defined on
strictly positive scalars by : dIS(x, y) = x

y − log x
y −

1. It may be generalized to vectors or matrices by sum-
ming over all available components, e.g., DIS(X,Y) =∑
f,n dIS(xfn, yfn). In our model, the power spectral den-

sity of each component k is w·khk· ∈ RF×N+ . If we assume a
source is characterized by a subset of components g, then the
Wiener filter is an unbiased estimator of X(g) =

∑
k∈g X(k) :

E
(
X(g)|X,W,H

)
=

W·gHg·

WH
�X . (3)

2.2. Maximum Likelihood with a sparsity penalty

We wish to partition the K components into G non-
overlapping groups. In the following a source will be uniquely
identified by the subset g to which it corresponds. In the
framework of statistical inference, many priors have been
proposed to identify components, either on W or H or
both (see e.g., [1, 5]). We focus here on a simple group-
ing principle : if a source is inactive at a given frame n
of the spectrogram, then all the corresponding gains hgn
should be set to zero. Instead of modelling individual gains
we model the local amplitudes α(g)

n of the sources, which
we define as follows : assume ‖w·k‖1 = 1 without loss
of generality, and define α(g)

n = ‖hgn‖1. We make the hy-
pothesis that α(g)

n are mutually independent variables drawn
from an inverse Gamma distribution with shape parame-
ter b and scale a. Furthermore we suppose that the condi-
tional distribution of the gains hkn factorizes in groups, i.e.,
p(h·n|(α(g)

n )g∈G) =
∏
g

∏
k∈g p(hkn|α

(g)
n ) ; and that hkn are

exponentially distributed conditionally on α
(g)
n , with mean

α
(g)
n . The marginal distribution of h·n is then given by :

p(h·n) =
∏
g

Γ(|g|+ b)

Γ(b)

ab

(a+ ‖hgn‖1)b+|g|
. (4)

Combining this prior and the likelihood term, we propose
a penalized maximum likelihood inference in the following
form :

min DIS(V,WH) + λΨ(H),
W ≥ 0,H ≥ 0
∀k, ‖w·k‖1 = 1

(5)

with Ψ(H) =
∑
g,n ψ(‖hgn‖1) and ψ(x) = log(a + x). We

refer to Eq. (5) as the GIS-NMF problem (group Itakura-Saito
NMF), and call L(W,H) the objective function. Eq. (5) gen-
eralizes IS-NMF in the sense that when λ = 0 we recover the

standard IS-NMF problem. In GIS-NMF a tradeoff is made
between the fit to data as measured by the loss term, and the
grouping criterion defined by Ψ. Although we impose a par-
ticular choice of ψ, note that for optimization purposes we
only require that ψ be a differentiable, concave, increasing
function.

3. MAJORIZATION-MINIMIZATION ALGORITHMS

In this Section we derive an efficient algorithm for solving
Eq. (5), inspired by multiplicative updates and majorization
minimization techniques [6]. We optimize alternately in W
and H. Descent at each step yields a descent algorithm.

3.1. Updates in H

The objective function is separable in the columns of H,
so we need only consider the following subproblem :

minh≥0 DIS(v,Wh) + λΨ(h) . (6)

where h ∈ RK+ . Let h ≥ 0 be the current estimate for h. The
authors of [6] derived an auxiliary function for DIS(v,Wh)
in the following form :

g(h,h) =
∑
k

(
−pk

hk
hk

+ qk

)
(hk − hk) . (7)

These derivations may easily accommodate additional con-
cave or convex terms. Applying the tangent inequality to x 7→
log(a + x), we derive an auxiliary function for the objective
function in (6) :

g(h,h) =
∑
g,k∈g

(
−pk

hk
hk

+qk+λψ′(‖hg‖1)

)
(hk−hk) ,

(8)
We may either (a) minimize the right hand side with respect
to hk, or (b) set each term−pk hk

hk
+ qk to 0, yielding the mul-

tiplicative updates found in [2]. We obtain new multiplicative
updates :

∀g,∀k ∈ g, hk = hk

( ∑
f wfk

vf
(Wh)2f∑

f wfk
1

(Wh)f
+ λψ′(‖hg‖1)

)δ
,

(9)
where δ = 0.5 (a) or δ = 1 (b). The additional term in the
denominator in Equation (9) favors low values of hkn : since
ψ′(x) decreases with x (ψ is concave), low values of ‖hg‖1
are more penalized than high values. Moreover the quantity
‖hg‖1 is the same for all k in group g. Thus, if at a given
frame n the volume of source g is small with respect to that of
source g′, the updates in (5) tend to mute source g. We thus get
the same grouping effect than the traditional penalization by
the `2-norms ‖hg‖2 [3], but with the added benefit of natural
multiplicative updates.



3.2. Updates in W

To optimize with respect to W, we notice that the mini-
mizers of Eq. (5) are also minimizers of :

min DIS(V,WH) + λΦ(W,H),
W ≥ 0,H ≥ 0

(10)

where Φ(W,H) =
∑
g

∑
n ψ(

∑
k∈g hkn‖w·k‖1). Thus up-

dates for W may be derived in the same way as for H. Since
the objective function in (10) is unchanged under the trans-
formation W ← WΛ−1, H ← ΛH, where Λ is a diagonal
matrix, we may rescale matrices W and H at each step to
return to the feasible set of (5). Thus, we derived a descent
algorithm to solve Eq. (5), that is summed up in Algorithm 1.

4. PROCEDURE FOR DICTIONARY LEARNING
AND INFERENCE

Algorithm 1 Algorithm for GIS-NMF
Input V, (W, H), G, (λ, a), δ,t
For t iterations
V̂←WH
For n = 1 . . . N, g ∈ G, k ∈ g

pkn ← ψ′(‖hgn‖1)
End

H← H�

(
W>(V �V̂·−2)

W>(V̂·−1) + λP

)·δ
, V̂←WH ,

For f = 1 . . . F, g ∈ G, k ∈ g
rfk =

∑
n hknψ

′(‖hgn‖1)
End

W←W �

(
H>(V �V̂·−2)

H>(V̂·−1) + λR

)·δ
,

Λ = diag(‖w·1‖1, . . . , ‖w·K‖1)

W←W Λ−1 H← Λ H, V̂←WH .
End

In Section 4.1, we summarize our procedure in a sim-
ple and fast algorithm with multiplicative updates. In prac-
tice the choice of regularization parameters a and λ is crucial.
In Section 4.2, we propose a test statistic inspired from the
Kolmogorov-Smirnov test to perform this selection automati-
cally.

4.1. Multiplicative updates algorithm

Algorithm 1 sums up our discussion in Section 3. It
encompasses both multiplicative updates with or without a
square root exponent by adding a parameter δ = 0.5 or 1.
Our algorithm is of complexity O(FKN) in time and mem-
ory, like many multiplicative updates algorithms. We run the
algorithm with several different initializations and keep the
result that yields the lowest cost value, in order to avoid local

minima. The objective function decreases at each step, and
convergence of the parameters is observed in practice. We
stop the algorithm after a fixed number of iterations.

4.2. Selection of hyperparameters with a Kolmogorov-
Smirnov statistics

Define standardized observations εfn = vfn/ṽfn. Then
if the observed data follow the model in Eq.(2), the empirical
distribution function of E converges towards that of an ex-
ponential random variable. We propose to select the parame-
ters of our model (a, λ) that yield the minimum Kolmogorov-
Smirnov (KS) statistic (see [7] for more details).

5. RESULTS

5.1. Validation on synthetic data

We designed an optimization procedure to enforce struc-
tured sparsity on the columns of H. In order to validate our
algorithm, we picked W(?) ∈ R100×20

+ at random and H(?)

with two groups of 10 components each and disjoint supports.
10 synthetic data sets of various sizes were generated accord-
ing to model (2). Define the support recovery error as the
proportion of frames where the active sources are incorrectly
identified. Figure 1 displays, for various data set sizesN , how
the test statistic and the support recovery error vary with λ.
For fixed N , the KS statistic reaches a minimum in the inter-
val [100, 102]. As N grows large, the support recovery error
decreases towards zero, and the minimizer of the KS statistic
(which does not require to know the ground truth) matches
the one of the recovery error.

5.2. Results in single channel source separation

track source GIS-NMF base random ideal
love bass 8.88 -67.53 -8.55 8.86
0 % guitar 13.60 3.77 -2.19 13.94 1

love bass 4.33 -4.60 -8.74 4.56
33 % guitar 9.77 -7.40 -2.02 9.90
love bass 1.47 -5.29 -9.08 3.12
66 % guitar 7.72 -8.11 -1.94 8.68
love bass -5.13 -4.16 -9.02 2.54

100 % guitar -0.21 -2.68 -2.02 8.09

Table 1. Source to distortion ratios (SDR) for the track “We are in
love”2 . x% is the overlap between sources.

We experiment our algorithm on two audio tracks found
on the Internet Archive (www.archive.org) : the individ-
ual sources x(g), g = 1 . . . 2. were available, from which we
took 20-30 seconds excerpts 2. For each track, we propose the

1. “ideal NMF” serves for comparison, but is not an upper bound for the
performance of our algorithm, see text.

2. Complete results on all mixtures, including .wav files, are available
online (www.di.ens.fr/~lefevrea/demos.html)



following mixture :

xn =


x
(1)
n if n ≤ 1−p

2 T

x
(2)
n if n ≥ 1+p

2 T

x
(1)
n + x

(2)
n otherwise

. (11)

where T is the total length of the track : thus if p = 0.33,
we make sure that sources overlap over no more than 33%
of the track. The goal is to analyze how important sparsity is
to estimate the mixtures correctly by varying p. Table 1 com-
pares our algorithm (GIS-NMF) with a baseline strategy, an
ideal strategy and the result of a random binary mask. We
take SDR (source to distortion ratio) as a performance indi-
cator (see [8]). The baseline we took consists in estimating
Itakura-Saito NMF and then group components so as to min-
imize Ψ(H), so that Ψ(H) plays the role of a heuristic cri-
terion to group components. Ideal NMF consists in running
NMF and choose groups that yield optimal SDR (by select-
ing from all possible of K! permutations) : the aim of our
procedure is to obtain the same performance. However, note
that it is not an oracle performance (not the same objective
function). Finally, we computed the average SDR of 10 ran-
dom binary masks. In Table 1 we display our results on one
audio track. In GIS-NMF, parameters (a, λ) were chosen to
minimize the test statistic, then we tuned the number of com-
ponents per group as to maximize SDR. In most cases, we
perform better than a random binary mask, unlike the base-
line. For overlap p up to 66%, we obtain SDR values close to
that of the ideal i.e., we find the best assignment for source
separation. Thus group-sparsity in the columns of H plays a
key role in identifying sources. Our algorithm meets his lim-
its when there is too much overlap, then we fail to identify the
sources correctly, and more knowledge about the sources is
needed.

6. CONCLUSION

We introduced an optimization procedure to find groups
in NMF with the Itakura-Saito divergence. Instead of finding
groups after running NMF, we incorporate grouping in the op-
timization. Our algorithm keeps the attractive features of mul-
tiplicative updates algorithm (low complexity, descent prop-
erty), and allows to perform blind source separation on com-
plex signals, with no assumption on the frequency profiles of
the sources. We are working on adding temporal smoothness
priors to improve separation quality.
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