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Abstract

We consider moment matching techniques for estimation in latent Dirichlet allo-
cation (LDA). By drawing explicit links between LDA and discrete versions of
independent component analysis (ICA), we first derive a new set of cumulant-
based tensors, with an improved sample complexity. Moreover, we reuse standard
ICA techniques such as joint diagonalization of tensors to improve over existing
methods based on the tensor power method. In an extensive set of experiments on
both synthetic and real datasets, we show that our new combination of tensors and
orthogonal joint diagonalization techniques outperforms existing moment match-
ing methods.

1 Introduction

Topic models have emerged as flexible and important tools for the modelisation of text corpora.
While early work has focused on graphical-model approximate inference techniques such as varia-
tional inference [1] or Gibbs sampling [2], tensor-based moment matching techniques have recently
emerged as strong competitors due to their computational speed and theoretical guarantees [3, 4].
In this paper, we draw explicit links with the independent component analysis (ICA) literature
(e.g., [5] and references therein) by showing a strong relationship between latent Dirichlet allocation
(LDA) [1] and ICA [6, 7, 8]. We can then reuse standard ICA techniques and results, and derive new
tensors with better sample complexity and new algorithms based on joint diagonalization.

2 Is LDA discrete PCA or discrete ICA?

Notation. Following the text modeling terminology, we define a corpus X = {x1, . . . , xN} as a
collection of N documents. Each document is a collection {wn1, . . . , wnLn

} of Ln tokens. It is
convenient to represent the `-th token of the n-th document as a 1-of-M encoding with an indicator
vector wn` ∈ {0, 1}M with only one non-zero, where M is the vocabulary size, and each document
as the count vector xn :=

∑
` wn` ∈ RM . In such representation, the length Ln of the n-th

document is Ln =
∑
m xnm. We will always use the index k ∈ {1, . . . ,K} to refer to topics,the

index n ∈ {1, . . . , N} to refer to documents, the index m ∈ {1, . . . ,M} to refer to words from
the vocabulary, and the index ` ∈ {1, . . . , Ln} to refer to tokens of the n-th document. The plate
diagrams of the models from this section are presented in Appendix A.

Latent Dirichlet allocation [1] is a generative probabilistic model for discrete data such as text
corpora. In accordance to this model, the n-th document is modeled as an admixture over the vo-
cabulary of M words with K latent topics. Specifically, the latent variable θn, which is sampled
from the Dirichlet distribution, represents the topic mixture proportion over K topics for the n-th
document. Given θn, the topic choice zn`|θn for the `-th token is sampled from the multinomial dis-
tribution with the probability vector θn. The tokenwn`|zn`, θn is then sampled from the multinomial
distribution with the probability vector dzn`

, or dk if k is the index of the non-zero element in zn`.
This vector dk is the k-th topic, that is a vector of probabilities over the words from the vocabulary
subject to the simplex constraint, i.e., dk ∈ ∆M , where ∆M := {d ∈ RM : d � 0,

∑
m dm = 1}.

This generative process of a document (the index n is omitted for simplicity) can be summarized as
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θ ∼ Dirichlet(c),

z`|θ ∼ Multinomial(1, θ),

w`|z`, θ ∼ Multinomial(1, dz`).

(1)

One can think of the latent variables z` as auxiliary variables which were introduced for convenience
of inference, but can in fact be marginalized out [9], which leads to the following model

θ ∼ Dirichlet(c),

x|θ ∼ Multinomial(L,Dθ),
LDA model (2)

where D ∈ RM×K is the topic matrix with the k-th column equal to the k-th topic dk, and c ∈ RK++
is the vector of parameters for the Dirichlet distribution. While a document is represented as a set
of tokens w` in the formulation (1), the formulation (2) instead compactly represents a document as
the count vector x. Although the two representations are equivalent, we focus on the second one in
this paper and therefore refer to it as the LDA model.

Importantly, the LDA model does not model the length of documents. Indeed, although the original
paper [1] proposes to model the document length as L|λ ∼ Poisson(λ), this is never used in practice
and, in particular, the parameter λ is not learned. Therefore, in the way that the LDA model is
typically used, it does not provide a complete generative process of a document as there is no rule to
sample L|λ. In this paper, this fact is important, as we need to model the document length in order
to make the link with discrete ICA.

Discrete PCA. The LDA model (2) can be seen as a discretization of principal component anal-
ysis (PCA) via replacement of the normal likelihood with the multinomial one and adjusting the
prior [9] in the following probabilistic PCA model [10, 11]: θ ∼ Normal(0, IK) and x|θ ∼
Normal(Dθ, σ2IM ), where D ∈ RM×K is a transformation matrix and σ is a parameter.

Discrete ICA (DICA). Interestingly, a small extension of the LDA model allows its interpreta-
tion as a discrete independent component analysis model. The extension naturally arises when the
document length for the LDA model is modeled as a random variable from the gamma-Poisson
mixture (which is equivalent to a negative binomial random variable), i.e., L|λ ∼ Poisson(λ) and
λ ∼ Gamma(c0, b), where c0 :=

∑
k ck is the shape parameter and b > 0 is the rate parameter. The

LDA model (2) with such document length is equivalent (see Appendix B.1) to

αk ∼ Gamma(ck, b),

xm|α ∼ Poisson([Dα]m),
GP model (3)

where all α1, α2, . . . , αK are mutually independent, the parameters ck coincide with the ones of the
LDA model in (2), and the free parameter b can be seen (see Appendix B.2) as a scaling parameter
for the document length when c0 is already prescribed.

This model was introduced by Canny [12] and later named as a discrete ICA model [13]. It is more
natural, however, to name model (3) as the gamma-Poisson (GP) model and the model

α1, . . . , αK ∼ mutually independent,
xm|α ∼ Poisson([Dα]m)

DICA model (4)

as the discrete ICA (DICA) model. The only difference between (4) and the standard ICA model [6,
7, 8] (without additive noise) is the presence of the Poisson noise which enforces discrete, instead of
continuous, values of xm. Note also that (a) the discrete ICA model is a semi-parametric model that
can adapt to any distribution on the topic intensities αk and that (b) the GP model (3) is a particular
case of both the LDA model (2) and the DICA model (4).

Thanks to this close connection between LDA and ICA, we can reuse standard ICA techniques to
derive new efficient algorithms for topic modeling.

3 Moment matching for topic modeling

The method of moments estimates latent parameters of a probabilistic model by matching theoretical
expressions of its moments with their sample estimates. Recently [3, 4], the method of moments
was applied to different latent variable models including LDA, resulting in computationally fast
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learning algorithms with theoretical guarantees. For LDA, they (a) construct LDA moments with a
particular diagonal structure and (b) develop algorithms for estimating the parameters of the model
by exploiting this diagonal structure. In this paper, we introduce the novel GP/DICA cumulants with
a similar to the LDA moments structure. This structure allows to reapply the algorithms of [3, 4]
for the estimation of the model parameters, with the same theoretical guarantees. We also consider
another algorithm applicable to both the LDA moments and the GP/DICA cumulants.

3.1 Cumulants of the GP and DICA models

In this section, we derive and analyze the novel cumulants of the DICA model. As the GP model is
a particular case of the DICA model, all results of this section extend to the GP model.

The first three cumulant tensors for the random vector x can be defined as follows

cum(x) := E(x), (5)

cum(x, x) := cov(x, x) = E
[
(x− E(x))(x− E(x))>

]
, (6)

cum(x, x, x) := E [(x− E(x))⊗ (x− E(x))⊗ (x− E(x))] , (7)

where ⊗ denotes the tensor product (see some properties of cumulants in Appendix C.1). The
essential property of the cumulants (which does not hold for the moments) that we use in this paper
is that the cumulant tensor for a random vector with independent components is diagonal.

Let y = Dα; then for the Poisson random variable xm|ym ∼ Poisson(ym), the expectation is
E(xm|ym) = ym. Hence, by the law of total expectation and the linearity of expectation, the
expectation in (5) has the following form

E(x) = E(E(x|y)) = E(y) = DE(α). (8)

Further, the variance of the Poisson random variable xm is var(xm|ym) = ym and, as x1,
x2, . . . , xM are conditionally independent given y, then their covariance matrix is diagonal, i.e.,
cov(x, x|y) = diag(y). Therefore, by the law of total covariance, the covariance in (6) has the form

cov(x, x) = E [cov(x, x|y)] + cov [E(x|y),E(x|y)]

= diag [E(y)] + cov(y, y) = diag [E(x)] +Dcov(α, α)D>,
(9)

where the last equality follows by the multilinearity property of cumulants (see Appendix C.1).
Moving the first term from the RHS of (9) to the LHS, we define

S := cov(x, x)− diag [E(x)] . DICA S-cum. (10)

From (9) and by the independence of α1, . . . , αK (see Appendix C.3), S has the following diagonal
structure

S =
∑

k
var(αk)dkd

>
k = Ddiag [var(α)]D>. (11)

By analogy with the second order case, using the law of total cumulance, the multilinearity property
of cumulants, and the independence of α1, . . . , αK , we derive in Appendix C.2 the expression (24),
similar to (9), for the third cumulant (7). Moving the terms in this expression, we define a tensor T
with the following element

[T ]m1m2m3
:= cum(xm1

, xm2
, xm3

) + 2δ(m1,m2,m3)E(xm1
) DICA T-cum. (12)

− δ(m2,m3)cov(xm1 , xm2)− δ(m1,m3)cov(xm1 , xm2)− δ(m1,m2)cov(xm1 , xm3),

where δ is the Kronecker delta. By analogy with (11) (Appendix C.3), the diagonal structure of the
tensor T :

T =
∑

k
cum(αk, αk, αk)dk ⊗ dk ⊗ dk. (13)

In Appendix E.1, we recall (in our notation) the matrix S (39) and the tensor T (40) for the LDA
model [3], which are analogues of the matrix S (10) and the tensor T (12) for the GP/DICA mod-
els. Slightly abusing terminology, we refer to the matrix S (39) and the tensor T (40) as the LDA
moments and to the matrix S (10) and the tensor T (12) as the GP/DICA cumulants. The diagonal
structure (41) & (42) of the LDA moments is similar to the diagonal structure (11) & (13) of the
GP/DICA cumulants, though arising through a slightly different argument, as discussed at the end of
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Appendix E.1. Importantly, due to this similarity, the algorithmic frameworks for both the GP/DICA
cumulants and the LDA moments coincide.

The following sample complexity results apply to the sample estimates of the GP cumulants:1

Proposition 3.1. Under the GP model, the expected error for the sample estimator Ŝ (29) for the
GP cumulant S (10) is:

E
[
‖Ŝ − S‖F

]
≤
√
E
[
‖Ŝ − S‖2F

]
≤ O

(
1√
N

max
[
∆L̄2, c̄0L̄

])
, (14)

where ∆ := max k ‖dk‖22, c̄0 := min(1, c0) and L̄ := E(L).

A high probability bound could be derived using concentration inequalities for Poisson random
variables [14]; but the expectation already gives the right order of magnitude for the error (for
example via Markov’s inequality). The expression (29) for an unbiased finite sample estimate Ŝ of S
and the expression (30) for an unbiased finite sample estimate T̂ of T are defined2 in Appendix C.4.
A sketch of a proof for Proposition 3.1 can be found in Appendix D.

By following a similar analysis as in [15], we can rephrase the topic recovery error in term of the
error on the GP cumulant. Importantly, the whitening transformation (introduced in Section 4) redi-
vides the error on S (14) by L̄2, which is the scale of S (see Appendix D.5 for details). This means
that the contribution from Ŝ to the recovery error will scale as O(1/

√
N max{∆, c̄0/L̄}), where

both ∆ and c̄0/L̄ are smaller than 1 and can be very small. We do not present the exact expression
for the expected squared error for the estimator of T , but due to a similar structure in the derivation,
we expect the analogous bound of E[‖T̂ − T‖F ] ≤ 1/

√
N max{∆3/2L̄3, c̄

3/2
0 L̄3/2}.

Current sample complexity results of the LDA moments [3] can be summarized asO(1/
√
N). How-

ever, the proof (which can be found in the supplementary material [15]) analyzes only the case when
finite sample estimates of the LDA moments are constructed from one triple per document, i.e.,
w1 ⊗ w2 ⊗ w3 only, and not from the U-statistics that average multiple (dependent) triples per doc-
ument as in the practical expressions (43) and (44) (Appendix F.4). Moreover, one has to be careful
when comparing upper bounds. Nevertheless, comparing the bound (14) with the current theoretical
results for the LDA moments, we see that the GP/DICA cumulants sample complexity contains the
`2-norm of the columns of the topic matrix D in the numerator, as opposed to the O(1) coefficient
for the LDA moments. This norm can be significantly smaller than 1 for vectors in the simplex
(e.g., ∆ = O(1/‖dk‖0) for sparse topics). This suggests that the GP/DICA cumulants may have
better finite sample convergence properties than the LDA moments and our experimental results in
Section 5.2 are indeed consistent with this statement.

The GP/DICA cumulants have a somewhat more intuitive derivation than the LDA moments as
they are expressed via the count vectors x (which are the sufficient statistics for the model) and
not the tokens w`’s. Note also that the construction of the LDA moments depend on the unknown
parameter c0. Given that we are in an unsupervised setting and that moreover the evaluation of
LDA is a difficult task [16], setting this parameter is non-trivial. In Appendix G.4, we observe
experimentally that the LDA moments are somewhat sensitive to the choice of c0.

4 Diagonalization algorithms

How is the diagonal structure (11) of S and (13) of T going to be helpful for the estimation of the
model parameters? This question has already been thoroughly investigated in the signal processing
(see, e.g., [17, 18, 19, 20, 21, 5] and references therein) and machine learning (see [3, 4] and refer-
ences therein) literature. We review the approach in this section. Due to similar diagonal structure,
the algorithms of this section apply to both the LDA moments and the GP/DICA cumulants.

For simplicity, let us rewrite the expressions (11) and (13) for S and T as follows

S =
∑

k
skdkd

>
k , T =

∑
k
tkdk ⊗ dk ⊗ dk, (15)

1Note that the expected squared error for the DICA cumulants is similar, but the expressions are less compact
and, in general, depend on the prior on αk.

2For completeness, we also present the finite sample estimates Ŝ (43) and T̂ (44) of S (39) and T (40) for
the LDA moments (which are consistent with the ones suggested in [4]) in Appendix F.4.
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where sk := var(αk) and tk := cum(αk, αk, αk). Introducing the rescaled topics d̃k :=
√
skdk,

we can also rewrite S = D̃D̃>. Following the same assumption from [3] that the topic vectors are
linearly independent (D̃ is full rank), we can compute a whitening matrix W ∈ RK×M of S, i.e.,
a matrix such that WSW> = IK where IK is the K-by-K identity matrix (see Appendix F.1 for
more details). As a result, the vectors zk := Wd̃k form an orthonormal set of vectors.

Further, let us define a projection T (v) ∈ RK×K of a tensor T ∈ RK×K×K onto a vector u ∈ RK :

T (u)k1k2 :=
∑

k3
Tk1k2k3uk3 . (16)

Applying the multilinear transformation (see, e.g., [4] for the definition) with W> to the tensor T
from (15) and projecting the resulting tensor T := T (W>,W>,W>) onto some vector u ∈ RK ,
we obtain

T (u) =
∑

k
t̃k〈zk, u〉zkz>k , (17)

where t̃k := tk/s
3/2
k is due to the rescaling of topics and 〈·, ·〉 stands for the inner product. As the

vectors zk are orthonormal, the pairs zk and λk := t̃k〈zk, u〉 are the eigenpairs of the matrix T (u),
which are uniquely defined if the eigenvalues λk are all different. If they are unique, we can recover
the GP/DICA (as well as LDA) model parameters via d̃k = W †zk and t̃k = λk/〈zk, u〉.

This procedure was referred to as the spectral algorithm for LDA [3] and the fourth-order3 blind
identification algorithm for ICA [17, 18]. Indeed, one can expect that the finite sample estimates
Ŝ (29) and T̂ (30) possess approximately the diagonal structure (11) and (13) and, therefore, the rea-
soning from above can be applied, assuming that the effect of the sampling error is controlled.

This spectral algorithm, however, is known to be quite unstable in practice (see, e.g., [22]). To over-
come this problem, other algorithms were proposed. For ICA, the most notable ones are probably
the FastICA algorithm [20] and the JADE algorithm [21]. The FastICA algorithm, with appropriate
choice of a contrast function, estimates iteratively the topics, making use of the orthonormal struc-
ture (17), and performs the deflation procedure at every step. The recently introduced tensor power
method (TPM) for the LDA model [4] is close to the FastICA algorithm. Alternatively, the JADE al-
gorithm modifies the spectral algorithm by performing multiple projections for (17) and then jointly
diagonalizing the resulting matrices with an orthogonal matrix. The spectral algorithm is a special
case of this orthogonal joint diagonalization algorithm when only one projection is chosen. Impor-
tantly, a fast implementation [23] of the orthogonal joint diagonalization algorithm from [24] was
proposed, which is based on closed-form iterative Jacobi updates (see, e.g., [25] for the later).

In practice, the orthogonal joint diagonalization (JD) algorithm is more robust than FastICA (see,
e.g., [26, p. 30]) or the spectral algorithm. Moreover, although the application of the JD algorithm
for the learning of topic models was mentioned in the literature [4, 27], it was never implemented in
practice. In this paper, we apply the JD algorithm for the diagonalization of the GP/DICA cumulants
as well as the LDA moments, which is described in Algorithm 1. Note that the choice of a projection
vector vp ∈ RM obtained as vp = Ŵ>up for some vector up ∈ RK is important and corresponds to
the multilinear transformation of T̂ with Ŵ> along the third mode. Importantly, in Algorithm 1, the
joint diagonalization routine is performed over (P +1) matrices of sizeK×K, where the number of
topics K is usually not too big. This makes the algorithm computationally fast (see Appendix G.1).
The same is true for the spectral algorithm, but not for TPM.

In Section 5.1, we compare experimentally the performance of the spectral, JD, and TPM algorithms
for the estimation of the parameters of the GP/DICA as well as LDA models. We are not aware of
any experimental comparison of these algorithms in the LDA context. While already working on
this manuscript, the JD algorithm was also independently analyzed by [27] in the context of tensor
factorization for general latent variable models. However, [27] focused mostly on the comparison
of approaches for tensor factorization and their stability properties, with brief experiments using a
latent variable model related but not equivalent to LDA for community detection. -In contrast, we
provide a detailed experimental comparison in the context of LDA in this paper, as well as propose
a novel cumulant-based estimator. Due to the space restriction the estimation of the topic matrix D
and the (gamma/Dirichlet) parameter c are moved to Appendix F.6.

3See Appendix C.5 for a discussion on the orders.
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Algorithm 1 Joint diagonalization (JD) algorithm for GP/DICA cumulants (or LDA moments)

1: Input: X ∈ RM×N , K, P (number of random projections); (and c0 for LDA moments)
2: Compute sample estimate Ŝ ∈ RM×M ((29) for GP/DICA / (43) for LDA in Appendix F)
3: Estimate whitening matrix Ŵ ∈ RK×M of Ŝ (see Appendix F.1)

option (a): Choose vectors {u1, u2, . . . , uP } ⊆ RK uniformly at random from the unit `2-
sphere and set vp = Ŵ>up ∈ RM for all p = 1, . . . , P (P = 1 yields the spectral algorithm)
option (b): Choose vectors {u1, u2, . . . , uP } ⊆ RK as the canonical basis e1, e2, . . . , eK of
RK and set vp = Ŵ>up ∈ RM for all p = 1, . . . ,K

4: For ∀p, computeBp = Ŵ T̂ (vp)Ŵ
> ∈ RK×K ((52) for GP/DICA / (54) for LDA; Appendix F)

5: Perform orthogonal joint diagonalization of matrices {Ŵ ŜŴ> = IK , Bp, p = 1, . . . , P}
(see [24] and [23]) to find an orthogonal matrix V ∈ RK×K and vectors {a1, a2, . . . , aP } ⊂ RK
such that

V Ŵ ŜŴ>V > = IK , and V BpV > ≈ diag(ap), p = 1, . . . , P

6: Estimate joint diagonalization matrix A = V Ŵ and values ap, p = 1, . . . , P
7: Output: Estimate of D and c as described in Appendix F.6

5 Experiments

In this section, (a) we compare experimentally the GP/DICA cumulants with the LDA moments and
(b) the spectral algorithm [3], the tensor power method [4] (TPM), the joint diagonalization (JD)
algorithm from Algorithm 1, and variational inference for LDA [1].

Real data: the associated press (AP) dataset, from D. Blei’s web page,4 withN = 2, 243 documents
and M = 10, 473 vocabulary words and the average document length L̂ = 194; the NIPS papers
dataset5 [28] of 2, 483 NIPS papers and 14, 036 words, and L̂ = 1, 321; the KOS dataset,6 from the
UCI Repository, with 3, 430 documents and 6, 906 words, and L̂ = 136.

Semi-synthetic data are constructed by analogy with [29]: (1) the LDA parameters D and c are
learned from the real datasets with variational inference and (2) toy data are sampled from a model
of interest with the given parameters D and c. This provides the ground truth parameters D and c.
For each setting, data are sampled 5 times and the results are averaged. We plot error bars that are
the minimum and maximum values. For the AP data, K ∈ {10, 50} topics are learned and, for
the NIPS data, K ∈ {10, 90} topics are learned. For larger K, the obtained topic matrix is ill-
conditioned, which violates the identifiability condition for topic recovery using moment matching
techniques [3]. All the documents with less than 3 tokens are resampled.

Sampling techniques. All the sampling models have the parameter c which is set to c = c0c̄/ ‖c̄‖1,
where c̄ is the learned c from the real dataset with variational LDA, and c0 is a parameter that we
can vary. The GP data are sampled from the gamma-Poisson model (3) with b = c0/L̂ so that
the expected document length is L̂ (see Appendix B.2). The LDA-fix(L) data are sampled from the
LDA model (2) with the document length being fixed to a given L. The LDA-fix2(γ,L1,L2) data
are sampled as follows: (1− γ)-portion of the documents are sampled from the LDA-fix(L1) model
with a given document length L1 and γ-portion of the documents are sampled from the LDA-fix(L2)
model with a given document length L2.

Evaluation. The evaluation of topic recovery for semi-synthetic data is performed with the `1-
error between the recovered D̂ and true D topic matrices with the best permutation of columns:
err`1(D̂,D) := minπ∈PERM

1
2K

∑
k ‖d̂πk

− dk‖1 ∈ [0, 1]. The minimization is over the possible
permutations π ∈ PERM of the columns of D̂ and can be efficiently obtained with the Hungarian
algorithm for bipartite matching. For the evaluation of topic recovery in the real data case, we use
an approximation of the log-likelihood for held out documents as the metric [16]. See Appendix G.6
for more details.

4http://www.cs.columbia.edu/˜blei/lda-c
5http://ai.stanford.edu/˜gal/data
6https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Figure 1: Comparison of the diagonalization algorithms. The topic matrix D and Dirichlet parameter c are
learned for K = 50 from AP; c is scaled to sum up to 0.5 and b is set to fit the expected document length
L̂ = 200. The semi-synthetic dataset is sampled from GP; number of documents N varies from 1, 000 to
50, 000. Left: GP/DICA moments. Right: LDA moments. Note: a smaller value of the `1-error is better.

We use our Matlab implementation of the GP/DICA cumulants, the LDA moments, and the diag-
onalization algorithms. The datasets and the code for reproducing our experiments are available
online.7 In Appendix G.1, we discuss the complexity and implementation of the algorithms. We
explain how we initialize the parameter c0 for the LDA moments in Appendix G.3.

5.1 Comparison of the diagonalization algorithms

In Figure 1, we compare the diagonalization algorithms on the semi-synthetic AP dataset forK = 50
using the GP sampling. We compare the tensor power method (TPM) [4], the spectral algorithm
(Spec), the orthogonal joint diagonalization algorithm (JD) described in Algorithm 1 with different
options to choose the random projections: JD(k) takes P = K vectors up sampled uniformly from
the unit `2-sphere in RK and selects vp = W>up (option (a) in Algorithm 1); JD selects the full basis
e1, . . . , eK in RK and sets vp = W>ep (as JADE [21]) (option (b) in Algorithm 1); JD(f) chooses
the full canonical basis of RM as the projection vectors (computationally expensive).

Both the GP/DICA cumulants and LDA moments are well-specified in this setup. However, the
LDA moments have a slower finite sample convergence and, hence, a larger estimation error for the
same value N . As expected, the spectral algorithm is always slightly inferior to the joint diagonal-
ization algorithms. With the GP/DICA cumulants, where the estimation error is low, all algorithms
demonstrate good performance, which also fulfills our expectations. However, although TPM shows
almost perfect performance in the case of the GP/DICA cumulants (left), it significantly deteriorates
for the LDA moments (right), which can be explained by the larger estimation error of the LDA
moments and lack of robustness of TPM. The running times are discussed in Appendix G.2. Over-
all, the orthogonal joint diagonalization algorithm with initialization of random projections as W>
multiplied with the canonical basis in RK (JD) is both computationally efficient and fast.

5.2 Comparison of the GP/DICA cumulants and the LDA moments

In Figure 2, when sampling from the GP model (top, left), both the GP/DICA cumulants and LDA
moments are well specified, which implies that the approximation error (i.e., the error w.r.t. the
model (mis)fit) is low for both. The GP/DICA cumulants achieve low values of the estimation error
already for N = 10, 000 documents independently of the number of topics, while the convergence
is slower for the LDA moments. When sampling from the LDA-fix(200) model (top, right), the
GP/DICA cumulants are mis-specified and their approximation error is high, although the estimation
error is low due to the faster finite sample convergence. One reason of poor performance of the
GP/DICA cumulants, in this case, is the absence of variance in the document length. Indeed, if
documents with two different lengths are mixed by sampling from the LDA-fix2(0.5,20,200) model
(bottom, left), the GP/DICA cumulants performance improves. Moreover, the experiment with a
changing fraction γ of documents (bottom, right) shows that a non-zero variance on the length
improves the performance of the GP/DICA cumulants. As in practice real corpora usually have a
non-zero variance for the document length, this bad scenario for the GP/DICA cumulants is not
likely to happen.

7 https://github.com/anastasia-podosinnikova/dica
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Figure 2: Comparison of the GP/DICA cumulants and LDA moments. Two topic matrices and parameters c1
and c2 are learned from the NIPS dataset for K = 10 and 90; c1 and c2 are scaled to sum up to c0 = 1.
Four corpora of different sizes N from 1, 000 to 50, 000: top, left: b is set to fit the expected document length
L̂ = 1300; sampling from the GP model; top, right: sampling from the LDA-fix(200) model; bottom, left:
sampling from the LDA-fix2(0.5,20,200) model. Bottom, right: the number of documents here is fixed to
N = 20, 000; sampling from the LDA-fix2(γ,20,200) model varying the values of the fraction γ from 0 to 1
with the step 0.1. Note: a smaller value of the `1-error is better.
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Figure 3: Experiments with real data. Left: the AP dataset. Right: the KOS dataset. Note: a higher value of
the log-likelihood is better.

5.3 Real data experiments

In Figure 3, JD-GP, Spec-GP, JD-LDA, and Spec-LDA are compared with variational inference (VI)
and with variational inference initialized with the output of JD-GP (VI-JD). We measure the held
out log-likelihood per token (see Appendix G.7 for details on the experimental setup). The orthogo-
nal joint diagonalization algorithm with the GP/DICA cumulants (JD-GP) demonstrates promising
performance. In particular, the GP/DICA cumulants significantly outperform the LDA moments.
Moreover, although variational inference performs better than the JD-GP algorithm, restarting varia-
tional inference with the output of the JD-GP algorithm systematically leads to better results. Similar
behavior has already been observed (see, e.g., [30]).

6 Conclusion

In this paper, we have proposed a new set of tensors for a discrete ICA model related to LDA, where
word counts are directly modelled. These moments make fewer assumptions regarding distributions,
and are theoretically and empirically more robust than previously proposed tensors for LDA, both
on synthetic and real data. Following the ICA literature, we showed that our joint diagonalization
procedure is also more robust. Once the topic matrix has been estimated in a semi-parametric way
where topic intensities are left unspecified, it would be interesting to learn the unknown distributions
of the independent topic intensities.

Aknowledgements. This work was partially supported by the MSR-Inria Joint Center. The authors
would like to thank Christophe Dupuy for helpful discussions.
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A Appendix. Plate diagrams for the models from Section 2
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Figure 4: Plate diagrams for the models from Section 2.

In Section 2, the index n, which stands for the n-th document, was omitted. For convenience, we
recall the models. The LDA model in the tokens representation:

θn ∼ Dirichlet(c),

zn`|θn ∼ Multinomial(1, θn),

wn`|zn`, θn ∼ Multinomial(1, dzn`
);

(18)

the LDA model with the marginalized out latent variable z:

θn ∼ Dirichlet(c),

xn|θn ∼ Multinomial(Ln, Dθn);
(19)

the GP model:
αnk ∼ Gamma(ck, b),

xnm|αn ∼ Poisson([Dαn]m);
(20)

and the DICA model:
αn1, . . . , αnK ∼ mutually independent,

xnm|αn ∼ Poisson([Dαn]m).
(21)

B Appendix. The GP model

B.1 The connection between the LDA and GP models

To show that the LDA model (2) with the additional assumption that the document length is modeled
as a gamma-Poisson random variable is equivalent to the GP model (3), we show that:

- when modeling the document length L as a Poisson random variable with a parameter λ,
the count vectors x1, x2, . . . , xM are mutually independent Poisson random variables;

- the Gamma prior on λ reveals the connection αk = λθk between the Dirichlet random
variable θ and the mutually independent gamma random variables α1, α2, . . . , αK .

For completeness, we repeat the known result that if L ∼ Poisson(λ) and x|L ∼
Multinomial(L,Dθ) (which thus means that L =

∑
m xm with probability one), then x1, x2,

. . . , xM are mutually independent Poisson random variables with parameters λ [Dθ]1, λ [Dθ]2, . . . ,

10



λ [Dθ]M . Indeed, we consider the following joint probability mass function where x and L are
assumed to be non-negative integers:

p(x, L|θ, λ) =p(L|λ)p(x|L, θ)

=1{L=
∑

m xm}
exp (−λ)λL

��L!

��L!∏
m xm!

∏
m

[Dθ]
xm

m

=1{L=
∑

m xm} exp(−λ
∑
m

[Dθ]m)λ
∑

m xm

∏
m

[Dθ]
xm

m

xm!

=1{L=
∑

m xm}
∏
m

exp(−λ [Dθ]m)(λ [Dθ]m)xm

xm!

=1{L=
∑

m xm}
∏
m

Poisson(xm;λ [Dθ]m),

where in the third equation we used the fact that∑
m

[Dθ]m =
∑
m,k

Dmkθk =
∑
k

θk
∑
m

Dmk = 1.

We thus have p(x, L|θ, λ) = p(L|x)
∏
m p(xm|λ[Dθ]m) where p(L|x) is simply the deterministic

distribution 1{L=∑
m xm} and p(xm|λ[Dθ]m) form = 1, . . . ,M are independent Poisson(λ[Dθ]m)

distributions (and thus do not depend on L). Note that in the notation introduced in the paper,
Dmk = dkm. Hence, by using the construction of the Dirichlet distribution from the normalization
of independent gamma random variables, we can show that the LDA model with a gamma-Poisson
prior over the length is equivalent to the following model (recall, that c0 =

∑
k ck):

λ ∼ Gamma(c0, b),

θ ∼ Dirichlet(c),

xm|λ, θ ∼ Poisson([D(λθ)]m).

(22)

More specifically, we complete the second part of the argument with the following properties. When
α1, α2, . . . , αK are mutually independent gamma random variables, each αk ∼ Gamma(ck, b),
their sum is also a gamma random variable

∑
k αk ∼ Gamma(

∑
k ck, b). The former is equivalent

to λ. It is known (e.g., [32]) that a Dirichlet random variable can be sampled by first sampling
independent gamma random variables (αk) and then dividing each of them by their sum (λ): θk =
αk/

∑
k′ αk′ , and, in other direction, the variables αk = λθk are mutually independent, giving back

the GP model (3).

B.2 The expectation and the variance of the document length for the GP model

From the drivations in Appendix B.1, it follows that the document length of the GP model (3) is a
gamma-Poisson random variable, i.e., L|λ ∼ Poisson(λ) and λ ∼ Gamma(c0, b). Therefore, the
following follows from the law of total expectation and the law of total variance

E(L) = E [E(L|λ)] = E(λ) = c0/b

var(L) = var [E(L|λ)] + E [var(L|λ)] = var(λ) + E(λ) = c0/b+ c0/b
2

The first expression shows that the parameter b controls the expected document length E(L) for a
given parameter c0: the smaller b, the larger E(L). On the other hand, if we allow c0 to vary as
well, only the ratio c0/b is important for the document length. We can then interpret the role of c0
as actually controlling the concentration of the distribution for the length L (through the variance).
More specifically, we have that:

var(L)

(E(L))2
=

1

E(L)
+

1

c0
. (23)

For a fixed target document length E(L), we can increase the variance (and thus decrease the con-
centration) by using a smaller c0.
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C Appendix. The cumulants of the GP and DICA models

C.1 Cumulants

For a random vector x ∈ RM , the first three cumulant tensors8 are

cum(xm) = E(xm),

cum(xm1 , xm2) = E [(xm1 − E(xm1))(xm2 − E(xm2)] = cov(xm1 , xm2),

cum(xm1
, xm2

, xm3
) = E [(xm1

− E(xm1
))(xm2

− E(xm2
))(xm3

− E(xm3
)))] .

Note that the 2nd and 3rd cumulants coincide with the 2nd and 3rd central moments (but not for
higher orders). In the following, cum(x, x, x) ∈ RM×M×M denotes the third order tensor with ele-
ments cum(xm1 , xm2 , xm3). Some of the properties of cumulants are listed below (see [5, chap. 5]).
The most important property that motivate us to use cumulants in this paper (and the ICA literature)
is the independence property, which says that the cumulant tensor for a random vector with inde-
pendent components is diagonal (this property does not hold for the (non-central) moment tensors
of any order, and neither for the central moments of order 4 or more).

- Independence. If the elements of x ∈ RM are independent, then their cross-cumulants
are zero as soon as two indices are different, i.e., cum(xm1 , xm2) = δ(m1,m2)E[(xm1 −
Em1

))2] and cum(xm1
, xm2

, xm3
) = δ(m1,m2,m3)E[(xm1

− E(xm1
))3], where δ is the

Kronecker delta.

- Multilinearity. If two random vectors y ∈ RM and α ∈ RK are linearly dependent, i.e.,
y = Dα for some D ∈ RM×K , then

cum(ym) =
∑
k

cum(αk)Dmk,

cum(ym1
, ym2

) =
∑
k1,k2

cum(αk1 , αk2)Dm1k1Dm2k2 ,

cum(ym1
, ym2

, ym3
) =

∑
k1,k2,k3

cum(αk1 , αk2 , αk3)Dm1k1Dm2k2Dm3k3 ,

which can also be denoted9 by

E(y) = DE(α),

cov(y, y) = Dcov(α, α)D>,

cum(y, y, y) = cum(α, α, α)(D>, D>, D>).

- The law of total cumulance. For two random vectors x ∈ RM and y ∈ RM , it holds

cum(xm) = E [E(xm|y)] ,

cum(xm1
, xm2

) = E [cov(xm1
, xm2

|y)] + cov [E(xm1
|y),E(xm2

|y)] ,

cum(xm1
, xm2

, xm3
) = E [cum(xm1

, xm2
, xm3

|y)] + cum [E(xm1
|y),E(xm2

|y),E(xm3
|y)]

+ cov [E(xm1
|y), cov(xm2

, xm3
|y)]

+ cov [E(xm2
|y), cov(xm1

, xm3
|y)]

+ cov [E(xm3
|y), cov(xm1

, xm2
|y)] .

Note that the first expression is also well known as the law of total expectation or the tower
property, while the second one is known as the law of total covariance.

8Strictly speaking, the (scalar) n-th cumulant κn of a random variable X is defined via the cumulant-
generating function g(t), which is the natural logarithm of the moment-generating function, i.e g(t) :=
logE

[
etX
]
. The cumulant κn is then obtained from a power series expansion of the cumulant-generating

function, that is g(t) =
∑∞

n=1 κnt
n/n! [Wikipedia].

9In [4], given a tensor T ∈ RK×K×K , T (D>, D>, D>) is referred to as the multilinear map. In [34], the
same entity is denoted by T ×1 D

> ×2 D
> ×3 D

>, where ×n denotes the n-mode tensor-matrix product.
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C.2 The third cumulant of the GP/DICA models

In this section, by analogy with Section 3.1, we derive the third GP/DICA cumulant.

As the third cumulant of a Poisson random variable xm with parameter ym is E((xm −
E(xm))3|ym) = ym, then by the independence property of cumulants from Section C.1, the cu-
mulant of x|y is diagonal:

cum(xm1 , xm2 , xm3 |y) = δ(m1,m2,m3) ym1 .

Substituting the cumulant of x|y into the law of total cumulance, we obtain

cum(xm1
, xm2

, xm3
) = E [cum(xm1

, xm2
, xm3

|y)]

+ cum [E(xm1
|y),E(xm2

|y),E(xm3
|y)] + cov [E(xm1

|y), cov(xm2
, xm3

|y)]

+ cov [E(xm2
|y), cov(xm1

, xm3
|y)] + cov [E(xm3

|y), cov(xm1
, xm2

|y)]

= δ(m1,m2,m3)E(ym1
) + cum(ym1

, ym2
, ym3

)

+ δ(m2,m3)cov(ym1
, ym2

) + δ(m1,m3)cov(ym1
, ym2

) + δ(m1,m2)cov(ym1
, ym3

)

= δ(m1,m2,m3)E(xm1
) + cum(ym1

, ym2
, ym3

)

+ δ(m2,m3)cov(xm1
, xm2

)− δ(m1,m2,m3)E(xm1
)

+ δ(m1,m3)cov(xm1
, xm2

)− δ(m1,m2,m3)E(xm1
)

+ δ(m1,m2)cov(xm1
, xm3

)− δ(m1,m2,m3)E(xm1
)

= cum(ym1
, ym2

, ym3
)− 2δ(m1,m2,m3)E(xm1

)

+ δ(m2,m3)cov(xm1
, xm2

) + δ(m1,m3)cov(xm1
, xm2

) + δ(m1,m2)cov(xm1
, xm3

)

=
[
cum(α, α, α)(D>, D>, D>)

]
m1m2m3

− 2δ(m1,m2,m3)E(xm1
)

+ δ(m2,m3)cov(xm1 , xm2) + δ(m1,m3)cov(xm1 , xm2) + δ(m1,m2)cov(xm1 , xm3), (24)

where, in the third equality, we used the previous result from (9) that cov(y, y) = cov(x, x) −
diag(E(x)).

C.3 The diagonal structure of the GP/DICA cumulants

In this section, we provide detailed derivation of the diagonal structure (11) of the matrix S (10) and
the diagonal structure (13) of the tensor T (12).

From the independence of α1, α2, . . . , αK and by the independence property of cumulants
from Section C.1, it follows that cov(α, α) is a diagonal matrix and cum(α, α, α) is a
diagonal tensor, i.e., cov(αk1 , αk2) = δ(k1, k2)cov(αk1 , αk2) and cum(αk1 , αk2 , αk3) =
δ(k1, k2, k3)cum(αk1 , αk1 , αk1). Therefore, the following holds

cov(ym1
, ym2

) =
∑
k

cov(αk, αk)Dm1kDm2k,

cum(ym1
, ym2

, ym3
) =

∑
k

cum(αk, αk, αk)Dm1kDm2kDm3k,

which we can rewrite in a matrix/tensor form as

cov(y, y) =
∑
k

cov(αk, αk)dkd
>
k ,

cum(y, y, y) =
∑
k

cum(αk, αk, αk)dk ⊗ dk ⊗ dk.

Moving cov(y, y) / cum(y, y, y) in the expression for cov(x, x) (9) / cum(x, x, x) (24) on one side of
equality and all other terms on the other side, we define matrix S ∈ RM×M / tensor T ∈ RM×M×M
as follows

S := cov(x, x)− diag (E(x)) , (25)
Tm1m2m3

:= cum(xm1
, xm2

, xm3
) + 2δ(m1,m2,m3)E(xm1

)

− δ(m2,m3)cov(xm1
, xm2

)

− δ(m1,m3)cov(xm1
, xm2

)

− δ(m1,m2)cov(xm1
, xm3

). (26)
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By construction, S = cov(y, y) and T = cum(y, y, y) and, therefore, it holds that

S =
∑
k

cov(αk, αk)dkd
>
k , (27)

T =
∑
k

cum(αk, αk, αk)dk ⊗ dk ⊗ dk. (28)

This means that both the matrix S and the tensor T are sums of rank-1 matrices and tensors, respec-
tively10. This structure of the matrix S and the tensor T is the basis for the algorithms considered in
this paper.

C.4 Unbiased finite sample estimators for the GP/DICA cumulants

Given a sample {x1, x2, . . . , xN}, we obtain a finite sample estimate Ŝ of S (10) / T̂ of T (12) for
the GP/DICA cumulants:

Ŝ := ĉov(x, x)− diag
(
Ê(x)

)
, (29)

T̂m1m2m3
:= ĉum(xm1

, xm2
, xm3

) + 2δ(m1,m2,m3)Ê(xm1
)

− δ(m2,m3)ĉov(xm1
, xm2

)

− δ(m1,m3)ĉov(xm1
, xm2

)

− δ(m1,m2)ĉov(xm1
, xm3

), (30)
where unbiased estimators of the first three cumulants are

Ê(xm1) =
1

N

∑
n

xnm1
,

ĉov(xm1 , xm2) =
1

N − 1

∑
n

znm1znm2 ,

ĉum(xm1 , xm2 , xm3) =
N

(N − 1)(N − 2)

∑
n

znm1znm2znm3 ,

(31)

where the word vocabulary indexes are m1,m2,m3 = 1, 2, . . . ,M and the centered documents
znm := xnm − Ê(xm). (The latter is introduced only for compact representation of (31) and is
different from z in the LDA model.)

C.5 On the orders of cumulants

Note that the factorization of S = D̃D̃> does not uniquely determine D̃ as one can equivalently use
S = (D̃U)(D̃U)> with any orthogonal K × K matrix U . Therefore, one has to consider higher
than the second order information. Moreover, in ICA the fourth-order tensors are used, because the
third cumulant of the Gaussian distribution is zero, which is not the case in the DICA/LDA models,
where the third order information is sufficient.

D Appendix. The sketch of the proof for Proposition 3.1

D.1 Expected squared error for the sample expectation

The sample expectation is Ê(x) = 1
N

∑
n xn is an unbiased estimator of the expectation and:

E
(
‖Ê(x)− E(x)‖22

)
=
∑
m

E
[(

Ê(xm)− E(xm)
)2]

=
1

N2

∑
m

E(∑
n

(xnm − E(xm))
2

)
+ E

∑
n

∑
n6=n′

(xnm − E(xm)) (xn′m − E(xm))


=

1

N

∑
m

E
[
(xm − E(xm))

2
]

=
1

N

∑
m

var(xm).

10For tensors, such decomposition is also known under the names CANDECOMP/PARAFAC or, simply, the
CP decomposition (see, e.g., [34]).
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Further, by the law of total variance:

E
(
‖Ê(x)− E(x)‖22

)
=

1

N

∑
m

[E(var(xm|y)) + var(E(xm|y))] =
1

N

∑
m

[E(ym) + var(ym)]

=
1

N

[∑
k

E(αk) +
∑
k

〈dk, dk〉var(αk)

]
,

using the fact that
∑
mDmk = 1 for any k.

D.2 Expected squared error for the sample covariance

The following finite sample estimator of the covariance cov(x, x) = E(xx>)−E(x)E(x)>

ĉov(x, x) =
1

N − 1

∑
n

xnx
>
n − Ê(x)Ê(x)> =

1

N − 1

∑
n

(
xnx

>
n −

1

N2

∑
n′

∑
n′′

xn′x>n′′

)

=
1

N

∑
n

xnx>n − 1

N − 1
xn
∑
n′ 6=n

x>n′


(32)

is unbiased, i.e., E(ĉov(x, x)) = cov(x, x). Its squared error is

E
(
‖ĉov(x, x)− cov(x, x)‖2F

)
=
∑
m,m′

E
[
(ĉov(xm, xm′)− E[ĉov(xm, xm′)])

2
]
.

The m,m′-th element of the sum above is equal to

1

N2

∑
n,n′

cov

xnmxnm′ − 1

N − 1
xnm

∑
n′′ 6=n

xn′′m′ , xn′mxn′m′ − 1

N − 1
xn′m

∑
n′′′ 6=n′

xn′′′m′


=

1

N2

∑
n,n′

cov (xnmxnm′ , xn′mxn′m′)− 2

N2(N − 1)

∑
n,n′

cov

xnm ∑
n′′ 6=n

xn′′m′ , xn′mxn′m′


+

1

N2(N − 1)2

∑
n,n′

cov

xnm ∑
n′′ 6=n

xn′′m′ , xn′m

∑
n′′′ 6=n′

xn′′′m′


=

1

N2

∑
n

cov (xnmxnm′ , xnmxnm′)

− 2

N2(N − 1)

∑
n

∑
n′′ 6=n

cov (xnmxn′′m′ , xnmxnm′) +
∑
n

∑
n′ 6=n

cov (xnmxn′m′ , xn′mxn′m′)


+

1

N2(N − 1)2

∑
n

∑
n′′ 6=n

∑
n′′′ 6=n

cov (xnmxn′′m′ , xnmxn′′′m′) +
∑
n′

∑
n6=n′

∑
n′′ 6=n

cov (xnmxn′′m′ , xn′mxnm′)


+

1

N2(N − 1)2

∑
n′

∑
n 6=n′

∑
n′′′ 6=n′

cov (xnmxn′m′ , xn′mxn′′′m′) +
∑
n′

∑
n 6=n′

∑
n′′ 6=n

cov (xnmxn′′m′ , xn′mxn′′m′)

 ,
where we used mutual independence of the observations xn in a sample {xn}Nn=1 to conclude that
the covariance between the two expressions involving only independent variables is zero.
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Further:

E
(
‖ĉov(x, x)− cov(x, x)‖2F

)
=

1

N2

∑
m,m′

N
(
E(x2mx

2
m′)− [E(xmxm′)]

2
)

− 4

N2(N − 1)

∑
m,m′

N(N − 1)
(
E(x2mxm′)E(xm′)− E(xmxm′)E(xm)E(xm′)

)
+

2

N2(N − 1)2

∑
m,m′

N(N − 1)(N − 2)
(
E(x2m) [E(xm′)]

2 − [E(xm)]
2

[E(xm′)]
2
)

+
2

N2(N − 1)2

∑
m,m′

N(N − 1)(N − 2)
(
E(xmxm′)E(xm)E(xm′)− [E(xm)]

2
[E(xm′)]

2
)

+O

(
1

N2

)
,

which after simplification gives

E
(
‖ĉov(x, x)− cov(x, x)‖2F

)
=

1

N

∑
m,m′

[
var(xmxm′) + 2 [E(xm)]

2
var(xm′)

]
+

1

N

∑
m,m′

[2E(xm)E(xm′)cov(xm, xm′)− 4E(xm)cov(xmxm′ , xm′)] +O

(
1

N2

)
,

where in the last equality, by symmetry, the summation indexes m and m′ can be exchanged. As
xm ∼ Poisson(ym), by the law of total expectation and law of total covariance, it follows, for
m 6= m′ (and using the auxiliary expressions from Section D.4):

var(xmxm′) = E(x2mx
2
m′)− [E[xmxm′ ]]

2
= E

[
E(x2mx

2
m′ |y)

]
− [E [E(xmxm′ |y)]]

2

= E
[
y2my

2
m′ + y2mym′ + ymy

2
m′ + ymym′

]
− [E(ymym′)]

2
,

[E(xm)]
2

var(xm′) = [E(ym)]
2 E(ym′) + [E(ym)]

2 E(y2m′)− [E(ym)]
2

[E(ym′)]
2
,

E(xm)E(xm′)cov(xm, xm′) = E(ymym′)E(ym)E(ym′)− [E(ym)]
2

[E(ym′)]
2
,

E(xm)cov(xmxm′ , xm′) = E(ym)
[
E(ymym′) + E(ymy

2
m′)− E(ymym′)E(ym′)

]
.

Now, considering the m = m′ case, we have:

var(x2m) = E[E(x4m|y)]−
[
E[E(x2m|y)]

]2
= E

[
y4m + 6y3m + 7y2m + ym

]
−
[
E
[
y2m + ym

]]2
,

E(xm)E(xm)cov(xm, xm) = E(ym)2
[
E(y2m) + E(ym)− [E(ym)]

2
]
,

E(xm)cov(x2m, xm) = E(ym)
[
E(y3m) + 3E(y2m) + E(ym)− E(ym)

[
E(y2m) + E(ym)

]]
.

Substitution of ym =
∑
kDmkαk gives the following

E
(
‖ĉov(x, x)− cov(x, x)‖2F

)
=

1

N

∑
k,k′,k′′,k′′′

〈dk, dk′〉〈dk′′ , dk′′′〉Akk′k′′k′′′

+
1

N

∑
k,k′,k′′

[
〈dk, dk′〉〈dk′′ ,~1〉Bkk′k′′ + 〈dk ◦ dk′ , dk′′〉Ekk′k′′

]
+

1

N

∑
k,k′

[
〈dk,~1〉〈dk′ ,~1〉E(αkαk′) + 〈dk, dk′〉Fkk′

]
+
∑
k

〈dk,~1〉E(αk) +O

(
1

N2

)
,

where ~1 is the vector with all the elements equal to 1 and
Akk′k′′k′′′ = E(αkαk′αk′′αk′′′)− E(αkαk′′)E(αk′αk′′′) + 2E(αk)E(αk′)E(αk′′αk′′′)

− 2E(αk)E(αk′)E(αk′′)E(αk′′′) + 2E(αkαk′′)E(αk′)E(αk′′′)− 2E(αk)E(αk′)E(αk′′)E(αk′′′)

− 4E(αk)E(αk′αk′′αk′′′) + 4E(αk)E(αk′αk′′)E(αk′′′),

Bkk′k′′ = 2E(αkαk′αk′′) + 2E(αk)E(αk′)E(αk′′)− 4E(αk)E(αk′αk′′),

Ekk′k′′ = 4E(αkαk′αk′′) + 6E(αk)E(αk′)E(αk′′)− 10E(αkαk′)E(αk′′),

Fkk′ = 6E(αkαk′)− 5E(αk)E(αk′),
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where we used the expressions from Section D.4.

D.3 Expected squared error of the estimator Ŝ for the GP/DICA cumulants

As the estimator Ŝ (29) of S (10) is unbiased, its expected squared error is

E
[
‖Ŝ − S‖2F

]
=E

[∥∥∥(ĉov(x, x)− cov(x, x)) +
(

diag[Ê(x)]− diag [E(x)]
)∥∥∥2

F

]
= E

[
‖Ê(x)− E(x)‖2F

]
+ E

[
‖ĉov(x, x)− cov(x, x)‖2F

]
+ 2

∑
m

E
[(

Ê(xm)− E(xm)
)

(ĉov(xm, xm)− cov(xm, xm))
]
.

(33)

As Ê(xm) and ĉov(xm, xm) are unbiased, the m-th element of the last sum is equal to

cov
[
Ê(xm), ĉov(xm, xm)

]
=

1

N2

∑
n,n′

cov
[
xnm, x

2
n′m

]
− 1

N2(N − 1)

∑
n,n′,n′′ 6=n′

cov [xnm, xn′mxn′′m]

=
1

N2

∑
n

cov
[
xnm, x

2
nm

]
− 2

N2(N − 1)

∑
n,n′ 6=n

cov [xnm, xn′mxnm] +O

(
1

N2

)

=
1

N
E(x3m)− 2

N

(
E(x2m)E(xm)− [E(xm)]

3
)

+O

(
1

N2

)
≤ 1

N
E(x3m) +

2

N
[E(xm)]

3
+O

(
1

N2

)
=

1

N

[
E(y3m) + 3E(y2m) + E(ym) + 2 [E(ym)]

3
]

+O

(
1

N2

)
,

where we neglected the negative term−E(x2m)E(xm) for the inequality, and the last equality follows
from the expressions in Section D.4. Further, the fact that ym =

∑
kDmkαk gives∑

m

cov
[
Ê(xm), ĉov(xm, xm)

]
=

1

N

∑
k,k′,k′′

〈dk ◦ dk′ , dk′′〉Ckk′k′′

+
3

N

∑
k,k′

〈dk, dk′〉E(αkαk′) +
1

N

∑
k

〈dk,~1〉E(αk) +O

(
1

N2

)
,

where ◦ denotes the elementwise Hadamard product and
Ckk′k′′ = E(αkαk′αk′′) + 2E(αk)E(αk′)E(αk′′).

Plugging this and the expressions for E(‖Ê(x) − E(x)‖2F ) and E(‖ĉov(x, x) − cov(x, x)‖2F ) from
Sections D.1 and D.2, respectively, into (33) gives

E
[
‖Ŝ − S‖2F

]
=

1

N

∑
k

〈dk, dk〉var(αk) +
∑
k

E(αk) +
∑

k,k′,k′′,k′′′

〈dk, dk′〉〈dk′′ , dk′′′〉Akk′k′′k′′′

+O

(
1

N2

)

+
1

N

 ∑
k,k′,k′′

[〈dk, dk′〉Bkk′k′′ + 2〈dk ◦ dk′ , dk′′〉Ckk′k′′ ] +
∑
k,k′

(1 + 6 〈dk, dk′〉)E(αkαk′) + 2
∑
k

E(αk)

 ,
where we used that, by the simplex constraint on the topics, 〈dk,~1〉 = 1 for all k. To analyze this
expression in more details, let us now consider the GP model, i.e., αk ∼ Gamma(ck, b):∑
k,k′,k′′,k′′′

Akk′k′′k′′′ ≤
30c40 + 23c30 + 14c20 + 8c0

b4
, and

∑
k,k′,k′′

Bkk′k′′ ≤
6c30 + 10c20 + 4c0

b3
,

∑
k,k′,k′′

Ckk′k′′ ≤
7c30 + 6c20 + 2c0

b3
, and

∑
k,k′,k′′

Ekk′k′′ ≤
12c30 + 10c20 + 8c0

b3
,

∑
k,k′

Fkk′ ≤
2c20 + c0

b2
and

∑
k,k′

E(αkαk′) ≤
2c20 + c0

b2
,
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where we used the expressions from Section D.4, which gives

E
[
‖Ŝ − S‖2F

]
≤ ν

N

[
max
k
‖dk‖22

c0
b2

+
c0
b

+

(
max
k,k′
〈dk, dk′〉

)2

max

[
c40
b4
,
c0
b4

]
+ max

k,k′
〈dk, dk′〉max

[
c30
b3
,
c0
b3

]]

+
ν

N

[(
max
k,k′,k′′

〈dk ◦ dk′ , dk′′〉
)

max

[
c30
b3
,
c0
b3

]
+

(
1 + max

k,k′
〈dk, dk′〉

)
max

[
c20
b2
,
c0
b2

]]
+O

(
1

N2

)
,

where ν ≤ 30 is a universal constant. As, by the Cauchy-Schwarz inequality, max k,k′〈dk, dk′〉 ≤
max k ‖dk‖22 =: ∆1 and max k,k′,k′′〈dk ◦ dk′ , dk′′〉 ≤ max k ‖dk‖∞ ‖dk‖

2
2 ≤ max k ‖dk‖32 =: ∆2

(note that for the topics in the simplex, ∆2 ≤ ∆1 as well as ∆2
1 ≤ ∆1), it follows that

E
[
‖Ŝ − S‖2F

]
≤ ν

N

[
∆1

(
L2

c̄0
+
L3

c̄20

)
+ L+ ∆2

1

L4

c̄30
+
L2

c̄20
+ ∆2

L3

c̄20

]
+O

(
1

N2

)
≤ 2ν

N

1

c̄30

[
∆2

1L
4 + c̄0∆1L

3 + c̄20L
2 + c̄30L

]
+O

(
1

N2

)
,

where c̄0 = min(1, c0) ≤ 1 and, from Section B.2, c0 = bL where L is the expected document
length. The second term c̄0∆1L

3 cannot be dominant as the system c̄0∆1L
3 > c̄20L

2 and c̄0∆1L
3 >

∆2
1L

4 is infeasible. Also, with the reasonable assumption that L ≥ 1, we also have that the 4th term
c̄30L ≤ c̄20L2. Therefore,

E
[
‖Ŝ − S‖2F

]
≤ 3ν

N
max

[
∆2

1L
4, c̄20L

2
]

+O

(
1

N2

)
.

D.4 Auxiliary expressions

As {xm}Mm=1 are conditionally independent given y in the DICA model (3), we have the following
expressions by using the law of total expectation for m 6= m′ and using the moments of the Poisson
distribution with parameter ym:

E(xm) = E[E(xm|ym)] = E(ym),

E(x2m) = E[E(x2m|ym)] = E(y2m) + E(ym),

E(x3m) = E[E(x3m|ym)] = E(y3m) + 3E(y2m) + E(ym),

E(x4m) = E[E(x4m|ym)] = E(y4m) + 6E(y3m) + 7E(y2m) + E(ym),

E(xmxm′) = E[E(xmxm′ |y)] = E[E(xm|ym)E(xm′ |ym′)] = E(ymym′),

E(xmx
2
m′) = E[E(xmx

2
m′ |y)] = E[E(xm|ym)E(x2m′ |ym′)] = E(ymy

2
m′) + E(ymym′),

E(x2mx
2
m′) = E[E(x2m|ym)E(x2m′ |ym′)] = E(y2my

2
m′) + E(y2mym′) + E(ymy

2
m′) + E(ymym′).

Moreover, the moments of αk ∼ Gamma(ck, b) are

E(αk) =
ck
b
, E(α2

k) =
c2k + ck
b2

, E(α3
k) =

c3k + 3c2k + 2ck
b3

, E(α4
k) =

c4k + 6c3k + 11c2k + 6ck
b4

, etc.

D.5 Analysis of the whitening and recovery error

We can follow a similar analysis as in Appendix C of [15] to derive the topic recovery error given the
sample estimate error. In particular, if we define the following sampling errors ES and ET :

‖Ŝ − S‖ ≤ ES ,
‖T̂ (u)− T (u)‖ ≤ ‖u‖2ET ,

then the following form of their Lemma C.2 holds for both the LDA moments and the GP/DICA
cumulants:

‖Ŵ T̂ (Ŵ>u)Ŵ> −WT (W>u)W>‖ ≤ ν

[
(maxkγk)ES

σK
(
D̃
)2 +

ET

σK
(
D̃
)3
]
, (34)
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where σk(·) denotes the k-th singular value of a matrix, ν is some universal constant, and in both

cases D̃ was defined such that S = D̃D̃>. For the LDA moments, γk = 2
√

c0(c0+1))
ck(c0+2)2 , whereas for

the GP/DICA cumulants, γk takes the simpler form γk := cum(αk)/[var(αk)]3/2 = 2/
√
ck.

We note that the scaling for S isO(L2) for the GP/DICA cumulants, in contrast toO(1) for the LDA
moments. Thus, to compare the upper bound (34) for the two types of moments, we need to put it in
quantities which are common. In the first section of the Appendix C of [15], it was mentioned that
σK
(
D̃
)
≥
√

cmin

c0(c0+1)σK(D) for the LDA moments, where cmin := mink ck. In contrast, for the

GP/DICA cumulants, we can show that σK
(
D̃
)
≥ L

√
cmin

c0
σK(D), where L := c0/b is the average

length of a document in the GP model. Using this lower bound for the singular vector, we thus get
the following bound in the case of the GP cumulant:

‖Ŵ T̂ (Ŵ>u)Ŵ> −WT (W>u)W>‖ ≤ ν

c
3/2
min

[
ES
L2

2c20[
σK
(
D
)]2 +

ET
L3

c30

[σK(D)]
3

]
. (35)

The c3/2min factor is common for both the LDA moment and GP cumulant, but as we mentioned
after Proposition 3.1, the sample error ES term gets divided by L2 for the GP cumulant, as ex-
pected.

The recovery error bound in [15] is based on the bound (35), and thus by showing that the error
ES/L

2 for the GP cumulant is lower than the ES term for the LDA moment, we expect to also
gain a similar gain for the recovery error, as the rest of the argument is the same for both types of
moments (see Appendix C.2, C.3 and C.4 in [15] for the completion).

E Appendix. The LDA moments

E.1 Our notation

The LDA moments were derived in [3]. Note that the full version of the paper with proofs appeared
in [15] and a later version of the paper also appeared in [31]. In this section, we recall the form of the
LDA moments using our notation. This section does not contain any novel results and is included
for the reader’s convenience. We also refer to this section when deriving the practical expressions
for computation of the sample estimates of the LDA moments in Appendix F.4.

For deriving the LDA moments, a document is assumed to be composed of at least three tokens:
L ≥ 3. As the LDA generative model (1) is only defined conditional on the length L, this is not
too problematic. But given that we present models in this paper which also model L, we mention
for clarity that we can suppose that all expectations and probabilities defined below are implicitly
conditioning on L ≥ 3.11 The theoretical LDA moments are derived only using the first three words
w1, w2 and w3 of a document. But note that since the words w`’s are conditionally i.i.d. given θ (for
1 ≤ ` ≤ L), we have M3 := E(w1 ⊗w2 ⊗w3) = E(w`1 ⊗w`2 ⊗w`3) for any three distinct tokens
`1, `2 and `3. The tensor M3 is thus symmetric, and could have been defined using any distinct
`1, `2 and `3 that are less than L. To highlight this arbitrary choice and to make the links with the
U-statistics estimator presented later, we thus use generic distinct `1, `2 and `3 in the definition of
the LDA moments below, instead of `1 = 1, `2 = 2 and `3 = 1 as in [3].

11Note that another advantage of the DICA cumulants from Section 3.1 is that they do not require such a
somewhat artificial condition: they are well-defined for any document length (even a document of length zero!).
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Using this notation, then by the law of total expectation and the properties of the Dirichlet distribu-
tion, the non-central moments12 of the LDA model (1) take the form [3]:

M1 = E(w`1) = D
c

c0
, (36)

M2 = E(w`1w
>
`2) =

c0
c0 + 1

M1M
>
1 +

1

c0(c0 + 1)
Ddiag (c)D>, (37)

M3 = E(w`1 ⊗ w`2 ⊗ w`3)

=
c0

c0 + 2
[E(w`1 ⊗ w`2 ⊗M1) + E(w`1 ⊗M1 ⊗ w`3) + E(M1 ⊗ w`2 ⊗ w`3)] ,

− 2c30
c0(c0 + 1)(c0 + 2)

M1 ⊗M1 ⊗M1 +
2

c0(c0 + 1)(c0 + 2)

K∑
k=1

ckdk ⊗ dk ⊗ dk. (38)

where ⊗ denotes the tensor product.

Similarly to the GP/DICA cumulants (as discussed in Appendix C.3), moving the terms in the non-
central moments (36), (37), (38), the following quantities are defined

(Pairs) = S := M2 −
c0

c0 + 1
M1M

>
1 , LDA S-moment

(39)

(Triples) = T := M3 −
c0

c0 + 2
[E(w`1 ⊗ w`2 ⊗M1) + E(w`1 ⊗M1 ⊗ w`3) + E(M1 ⊗ w`2 ⊗ w`3)]

+
2c20

(c0 + 1)(c0 + 2)
M1 ⊗M1 ⊗M1. LDA T-moment

(40)

Slightly abusing terminology, we refer to the entities S and T as the “LDA moments”. They have
the following diagonal structure

S =
1

c0(c0 + 1)

K∑
k=1

ckdkd
>
k , (41)

T =
2

c0(c0 + 1)(c0 + 2)

K∑
k=1

ckdk ⊗ dk ⊗ dk. (42)

Note however that this form of the LDA moments has a slightly different nature than the similar
form (11) and (13) of the GP/DICA cumulants. Indeed, the former is the result of properties of the
Dirichlet distribution, while the latter is the result of the independence of α’s. However, one can
think of the elements of a Dirichlet random vector as being almost independent (as, e.g., a Dirichlet
random vector can be obtained from independent gamma variables through dividing each by their
sum). Also, this closeness of the structures of the LDA moments and the GP cumulants can be
explained by the closeness of the respective models as discussed in Section 2.

E.2 Asymptotically unbiased finite sample estimators for the LDA moments

Given realizations wn`, n = 1, . . . , N , ` = 1, . . . , Ln, of the token random variable w`, we now
give the expressions for the finite sample estimates of S (39) and T (40) for the LDA model (and
we rewrite them as a function of the sample counts xn).13 We use the notation Ê below to express
a U-statistics empirical expectation over the token within a documents, uniformly averaged over the
whole corpus. For example, Ê(w`1⊗w`2⊗M̂1) := 1

N

∑N
n=1

1
Ln(Ln−1)

∑Ln

`1=1

∑Ln

`2=1
`2 6=`1

w`1⊗w`2⊗

12Note, the difference in the notation for the LDA moments in papers [3] and [4]. In [3], M1 = E(w`1),
M2 = E(w`1 ⊗w`2), and M3 = E(w`1 ⊗w`2 ⊗w`3). However, in [4], M2 is equivalent to S in our notation
and to Pairs in the notation of [3]; similarly, M3 is T in our notation or Triples in the notation of [3].

13Note that because non-linear functions of M̂1 appear in the expression for Ŝ (43) and T̂ (44), the estimator
is biased, i.e., E(Ŝ) 6= S. The bias is small though: ‖E(Ŝ)−S‖ = O(1/N) and the estimator is asymptotically
unbiased. This is in contrast with the estimator for the GP/DICA moments which is easily made unbiased.
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M̂1.

Ŝ := M̂2 −
c0

c0 + 1
M̂1M̂

>
1 , (43)

T̂ := M̂3 −
c0

c0 + 2

[
Ê(w`1 ⊗ w`2 ⊗ M̂1) + Ê(w`1 ⊗ M̂1 ⊗ w`3) + Ê(M̂1 ⊗ w`2 ⊗ w`3)

]
+

2c20
(c0 + 1)(c0 + 2)

M̂1 ⊗ M̂1 ⊗ M̂1, (44)

where, as suggested in [4], unbiased U-statistics estimates of M1, M2 and M3 are:

M̂1 := Ê(w`) =
1

N

N∑
n=1

1

Ln

Ln∑
`=1

wn` =
1

N

N∑
n=1

[δ1]nxn =
1

N
Xδ1, (45)

M̂2 := Ê(w`1w
>
`2) =

1

N

N∑
n=1

1

Ln(Ln − 1)

Ln∑
`1=1

Ln∑
`2=1
`2 6=`1

wn`1w
>
n`2

=
1

N

N∑
n=1

[δ2]n

(
xnx

>
n −

Ln∑
`=1

wn`w
>
n`

)

=
1

N

N∑
n=1

[δ2]n
(
xnx

>
n − diag(xn)

)
=

1

N

[
Xdiag(δ2)X> − diag(Xδ2)

]
, (46)

(47)

M̂3 := Ê(w`1 ⊗ w`2 ⊗ w`3) =
1

N

N∑
n=1

δ3n

Ln∑
`1=1

Ln∑
`2=1
`2 6=`1

Ln∑
`3=1
`3 6=`2
`3 6=`1

wn`1 ⊗ wn`2 ⊗ wn`3

=
1

N

N∑
n=1

[δ3]n

(
xn ⊗ xn ⊗ xn −

Ln∑
`=1

wn` ⊗ wn` ⊗ wn`

−
Ln∑
`1=1

Ln∑
`2=1
`2 6=`1

(wn`1 ⊗ wn`1 ⊗ wn`2 + wn`1 ⊗ wn`2 ⊗ wn`1 + wn`1 ⊗ wn`2 ⊗ wn`2)


=

1

N

N∑
n=1

[δ3]n

(
xn ⊗ xn ⊗ xn + 2

M∑
m=1

xnm(em ⊗ em ⊗ em)

−
M∑

m1=1

M∑
m2=1

xnm1
xnm2

(em1
⊗ em1

⊗ em2
+ em1

⊗ em2
⊗ em1

+ em1
⊗ em2

⊗ em2
)

)
.

(48)

Here, the vectors δ1, δ2 and δ3 ∈ RN are defined as [δ1]n := L−1n ; [δ2]n := (Ln(Ln − 1))−1, i.e.,

[δ2]n =
[(
Ln

2

)
2!
]−1

is the number of times to choose an ordered pair of tokens out of Ln tokens;

[δ3]n := (Ln(Ln − 1)(Ln − 2))−1, i.e., [δ3]n =
[(
Ln

3

)
3!
]−1

is the number of times to choose an
ordered triple of tokens out of Ln tokens. Note that the vectors δ1, δ2, and δ3 have nothing to do
with the Kronecker delta δ.

For a vector a ∈ RN , we sometimes use notation [a]n to denote its n-th element. Similarly, for a
matrix A ∈ RM×N we use notation [A]mn to denote its (m,n)-th element.
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There is a slight abuse of notation in the expressions above as w` is sometimes treated as a random
variable (i.e., in Ê(w`), Ê(w`1w

>
`2

), etc.) and sometimes as its realization. However, the difference
is clear from the context.

F Appendix. Practical aspects and implementation details

F.1 Whitening of S and dimensionality reduction

The algorithms from Section 4 require the computation of a whitening matrix W of S. Due to
the similar diagonal structure ((41) and (11)) of the matrix S for both the LDA moments (39) and
the GP/DICA cumulants (10), the computation of a whitening matrix is exactly the same in both
cases.

By a whitening matrix, we mean a matrix W ∈ RK×M (in practice, M � K) that does not only
whiten S ∈ RM×M , but also reduces its dimensionality such that14 WSW> = IK .

Let S = UΣU> be an orthogonal eigendecomposition of the symmetric matrix S. Let Σ1:K denotes
the diagonal matrix that contains the largest K eigenvalues15 of S on its diagonal and let U1:K be a
matrix with the respective eigenvalues in its columns. Then, a whitening matrix is

W = Σ
†1/2
1:K U>1:K , (49)

where Σ
†1/2
1:K is a diagonal matrix constructed from Σ1:K by taking the inverse and the square root

of its non-zero diagonal values († stands for the pseudo-inverse).

In practice, when only a finite sample estimator Ŝ of S is available, the following finite sample
estimator Ŵ of W can be introduced

Ŵ := Σ̂
†1/2
1:K Û>1:K , (50)

where Ŝ = Û Σ̂Û>.

F.2 Computation of the finite sample estimators of the GP/DICA cumulants

In this section, we present efficient formulas for computation of the finite sample estimate (see
Appendix C.4 for the definition of T̂ ) of Ŵ T̂ (v)Ŵ> for the GP/DICA models. The construction
of the finite sample estimator Ŵ is discussed in Appendix F.1, while the computation of Ŝ (29) is
straightforward.

14Note that such a whitening matrixW ∈ RK×M is not uniquely defined as left multiplication by any orthog-
onal matrix V ∈ RK×K does not change anything. Indeed, let W̃ = VW , then W̃SW̃> = VWSW>V > =
IK .

15We mean the largest non-negative eigenvalues. In theory, S have to be PSD. In practice, when we deal with
finite number of samples, respective estimate of S can have negative eigenvalues. However, for K sufficiently
small, S should have enough positive eigenvalues. Moreover, it is standard practice to use eigenvalues of S for
estimation of a good value of K, e.g., by thresholding all negative and close to zero eigenvalues.
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By plugging the definition of the tensor T̂ (30) in the formula (16) for the projection of a tensor onto
a vector, we obtain for a given v ∈ RM :

[
T̂ (v)

]
m1m2

=
∑
m3

ĉum(xm1
, xm2

, xm3
)vm3

+ 2
∑
m3

δ(m1,m2,m3)Ê(xm3
)vm3

−
∑
m3

δ(m2,m3)ĉov(xm1
, xm2

)vm3

−
∑
m3

δ(m1,m3)ĉov(xm1 , xm2)vm3

−
∑
m3

δ(m1,m2)ĉov(xm1
, xm3

)vm3

=
∑
m3

ĉum(xm1 , xm2 , xm3)vm3 + 2δ(m1,m2)Ê(xm1)vm1

− ĉov(xm1
, xm2

)vm2
− ĉov(xm1

, xm2
)vm1

− δ(m1,m2)
∑
m3

ĉov(xm1
, xm3

)vm3
.

This gives the following for the expression Ŵ T̂ (v)Ŵ>:

[
Ŵ T̂ (v)Ŵ>

]
k1k2

= Ŵk1
>T̂ (v)Ŵk2

=
∑

m1,m2,m3

ĉum(xm1
, xm2

, xm3
)vm3

Ŵk1m1
Ŵk2m2

+ 2
∑
m1,m2

δ(m1,m2)Ê(xm1
)vm1

Ŵk1m1
Ŵk2m2

−
∑
m1,m2

ĉov(xm1 , xm2)vm2Ŵk1m1Ŵk2m2

−
∑
m1,m2

ĉov(xm1
, xm2

)vm1
Ŵk1m1

Ŵk2m2

−
∑
m1,m3

ĉov(xm1
, xm3

)vm3
Ŵk1m1

Ŵk2m1
,

where Ŵk denotes the k-th row of Ŵ as a column vector. By further plugging in the expressions (31)
for the unbiased finite sample estimates of ĉov and ĉum, we further get

[
Ŵ T̂ (v)Ŵ>

]
k1k2

=
N

(N − 1)(N − 2)

∑
n

〈
Ŵk1 , xn − Ê(x)

〉〈
Ŵk2 , xn − Ê(x)

〉〈
v, xn − Ê(x)

〉
+ 2

∑
m

Ê(xm)vmŴk1mŴk2m

− 1

N − 1

∑
n

〈
Ŵk1 , xn − Ê(x)

〉〈
v ◦ Ŵk2 , xn − Ê(x)

〉
− 1

N − 1

∑
n

〈
v ◦ Ŵk1 , xn − Ê(x)

〉〈
Ŵk2 , xn − Ê(x)

〉
− 1

N − 1

∑
n

〈
Ŵk1 ◦ Ŵk2 , xn − Ê(x)

〉〈
v, xn − Ê(x)

〉
,

where ◦ denotes the elementwise Hadamard product. Introducing the counts matrix X ∈ RM×N
where each element Xmn is the count of the m-th word in the n-th document (note, the matrix X
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contain the vector xn in the n-th column), we further simplify the above expression

Ŵ T̂ (v)Ŵ> =
N

(N − 1)(N − 2)
(ŴX)diag[X>v](ŴX)>

+
N

(N − 1)(N − 2)

〈
v, Ê(x)

〉 [
2N(Ŵ Ê(x))(Ŵ Ê(x))> − (ŴX)(ŴX)>

]
− N

(N − 1)(N − 2)

[
ŴX(X>v)(Ŵ Ê(x))> + Ŵ Ê(x)(ŴX(X>v))>

]
+ 2Ŵdiag[v ◦ Ê(x)]Ŵ>

− 1

N − 1

[
(ŴX)(Ŵdiag(v)X)> + (Ŵdiag(v)X)(ŴX)> + Ŵdiag[X(X>v)]Ŵ>

]
+

N

N − 1

[
(Ŵ Ê(x))(Ŵdiag[v]Ê(x))> + (Ŵdiag[v]Ê(x))(Ŵ Ê(x))>

]
+

N

N − 1

〈
v, Ê(x)

〉
Ŵdiag[Ê(x)]Ŵ>.

(51)

A more compact way to write down expression (51) is as follows

Ŵ T̂ (v)Ŵ> =
N

(N − 1)(N − 2)

[
T1 + 〈v, Ê(x)〉 (T2 − T3)− (T4 + T>4 )

]
+

1

N − 1

[
T5 + T>5 − T6 − T>6 + Ŵdiag(a)Ŵ>

]
,

(52)

where

T1 = (ŴX)diag[X>v](ŴX)>,

T2 = 2N(Ŵ Ê(x))(Ŵ Ê(x))>,

T3 = (ŴX)(ŴX)>,

T4 = ŴX(X>v)(Ŵ Ê(x))>,

T5 = (ŴX)(Ŵdiag(v)X)>,

T6 = (Ŵdiag(v)Ê(x))(Ŵ Ê(x))>,

a = 2(N − 1)[v ◦ Ê(x)] + 〈v, Ê(x)〉Ê(x)−X(X>v).

F.3 Computational complexity of the GP/DICA T-cumulant estimator (52)

When computing the T-cumulant P times with the formula above, the following terms are dominant:
O(RNK)+O(NK2)+O(MK), whereR is the largest number of unique words (non-zero counts)
in a document over the corpus. In practice, almost always K < M < N , which gives the overall
complexity of P computations of the estimator (52) to be equal toO(PRNK)+O(PNK2).

F.4 Computation of the finite sample estimators of the LDA moments

In this section, we present efficient formulas for computation of the finite sample estimate (see Ap-
pendix E.2 for the definition of T̂ ) of Ŵ T̂ (v)Ŵ> for the LDA model. Note that the construction of
the sample estimator Ŵ of a whitening matrixW is discussed in Appendix F.1). The computation of
Ŝ (43) is straightforward. This approach to efficient implementation was discussed in [4], however,
to the best of our knowledge, the final expressions were not explicitly stated before. All derivations
are straightforward, but quite tedious.
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By analogy with the GP/DICA case, a projection (16) of the tensor T̂ ∈ RM×M×M (44) onto some
vector v ∈ RM in the LDA is[
T̂ (v)

]
m1m2

=

M∑
m3=1

[
M̂3

]
m1m2m3

vm3
+

2c20
(c0 + 1)(c0 + 2)

∑
m3

[M̂1]m1 [M̂1]m2 [M̂1]m3vm3

− c0
c0 + 2

M∑
m3=1

[
Ê(w`1 ⊗ w`2 ⊗ M̂1) + Ê(w`1 ⊗ M̂1 ⊗ w`3) + Ê(M̂1 ⊗ w`2 ⊗ w`3)

]
m1m2m3

vm3
.

Plugging in the expression (48) for an unbiased sample estimate M̂3 of M3, we get[
T̂ (v)

]
m1m2

=
1

N

N∑
n=1

[δ3]n

(
xnm1

xnm2
〈xn, v〉+ 2

∑
m3

δ(m1,m2,m3)xnm3
vm3

)

− 1

N

N∑
n=1

[δ3]n

M∑
m3=1

 M∑
i,j=1

xnixnj (ei ⊗ ei ⊗ ej + ei ⊗ ej ⊗ ei + ei ⊗ ej ⊗ ej)


m1m2m3

vm3

+
2c20

(c0 + 1)(c0 + 2)
[M̂1]m1

[M̂1]m2

〈
M̂1, v

〉
− c0
c0 + 2

(
[M̂2]m1m2

〈
M̂1, v

〉
+

M∑
m3=1

(
[M̂2]m1m3

[M̂1]m2
vm3

+ [M̂2]m2m3
[M̂1]m1

vm3

))
,

where e1, e2, . . . , eM denote the canonical vectors of RM (i.e., the columns of the identity matrix
IM ). Further, this gives the following for the expression Ŵ T̂ (v)Ŵ>:[
Ŵ T̂ (v)Ŵ>

]
k1k2

=
1

N

N∑
n=1

[δ3]n

(
〈xn, v〉

〈
xn, Ŵk1

〉〈
xn, Ŵk2

〉
+ 2

M∑
m=1

xnmvmŴk1mŴk2m

)

− 1

N

N∑
n=1

δ3n

M∑
i,j=1

xnixnj

(
Ŵk1iŴk2ivj + Ŵk1iŴk2jvi + Ŵk1iŴk2jvj

)
− c0
c0 + 2

(〈
Ŵk1 ,

[
M̂2

]
Ŵk2

〉
+
〈
Ŵk1 , M̂2v

〉〈
M̂1Ŵk2

〉
+
〈
Ŵk2 , M̂2v

〉〈
M̂1, Ŵk1

〉)
+

2c20
(c0 + 1)(c0 + 2)

〈
M̂1, Ŵk1

〉〈
M̂1, Ŵk2

〉〈
M̂1, v

〉
,

where Ŵk denotes the k-th row of Ŵ as a column-vector. This further simplifies to

Ŵ T̂ (v)Ŵ> =
1

N
(ŴX)diag

[
(X>v) ◦ δ3

]
(ŴX)>

+
1

N
Ŵdiag

[
2[(Xδ3) ◦ v]−X[(X>v) ◦ δ3]

]
Ŵ>

− 1

N
(Ŵdiag[v]X)diag[δ3](ŴX)>

− 1

N
(ŴX)diag[δ3](Ŵdiag[v]X)>

− c0
c0 + 2

[〈
M̂1, v

〉
(ŴM̂2Ŵ

>) + (Ŵ (M̂2v))(ŴM̂1)> + (ŴM̂1)(Ŵ (M̂2v))>
]

+
2c20

(c0 + 1)(c0 + 2)

〈
M̂1, v

〉
(ŴM̂1)(ŴM̂1)>.

(53)
A more compact representation gives:

Ŵ T̂ (v)Ŵ> =
1

N

[
T1 + T2 − T3 − T>3

]
− c0
c0 + 2

[
〈M̂1, v〉(ŴM̂2Ŵ

>) + T4 + T>4

]
+

2c20
(c0 + 1)(c0 + 2)

〈M̂1, v〉(ŴM̂1)(ŴM̂1)>,

(54)
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where

T1 = (ŴX)diag
[
(X>v) ◦ δ3

]
(ŴX)>,

T2 = Ŵdiag
[
2[(Xδ3) ◦ v]−X[(X>v) ◦ δ3]

]
Ŵ>,

T3 = [Ŵdiag(v)X]diag(δ3)(ŴX)>,

T4 = [Ŵ (M̂2v)](ŴM̂1)>.

F.5 Computational complexity of the LDA T-moment estimator (54)

By analogy with Appendix F.3, the computational complexity of the T-moment is O(RNK) +
O(NK2). However, in practice we noticed that the computation of (52) is slightly faster for larger
datasets than the computation of (54) (although the code for both was equally well optimized). This
means that the constants in O(RNK) + O(NK2) for the LDA T-moment are, probably, slightly
larger than for the GP/DICA T-cumulant.

F.6 Estimation of the model parameters for GP/DICA model

Below we briefly discuss the recovery of the model parameters for the GP/DICA and LDA mod-
els from a joint diagonalization matrix A ∈ RK×M estimated in Algorithm 1. This matrix has
the property that AD should be approximately diagonal up to a permutation of the columns of D.
The standard approach [3] of taking the pseudo-inverse of A to get an estimate of the topic ma-
trix D has a problem that it does not preserve the simplex constraint of the topics (in particular,
the non-negativity of D̃). Due to the space constraints, we do not discuss this issue here, but we
observed experimentally that this can potentially significantly deteriorate performance of all mo-
ment matching algorithms for topic models considered in this paper. We made an attempt to solve
this problem by integrating the non-negativity constraint into the Jacobi-updates procedure of the
orthogonal joint diagonalization algorithm, but the obtained results did not lead to any significant
improvement. Therefore, in our experiments for both GP/DICA cumulants and LDA moments, we
estimate the topic matrix by thresholding the negative values of the pseudo-inverse of A:

d̂k := τk max(0, [A†]:k)/‖max(0, [A†]:k)‖1,

where [A†]:k is the k-th column of the pseudo-inverse A† of A, and τk = ±1 set to −1 if [A†]:k has
more negative than positive values. This might not be the best option, and we leave this issue for the
future research.

To estimate the parameters for the prior distribution over the topic intensities αk for the DICA
model (4), we use the diagonalized form of the projected tensor from (17) and relate it to the output
diagonal elements ap for the p-th projection:

[ap]k = t̃k〈zk, up〉 =
tk

s
3/2
k

〈zk, up〉 =
cum(αk, αk, αk)

[var(αk)]3/2

〈
τkd̃k,W

>up

〉
, (55)

where d̃k = τk max(0, [A†]:k). This formula is valid for any prior on αk in the DICA model. For the
GP model (3) where αk ∼ Gamma(ck, b), we have that var(αk) = ck

b2 and cum(αk, αk, αk) = 2ck
b3 ,

and thus t̃k = 2√
ck

, which enables us to estimate ck. Plugging this value of t̃k in (55), and solving
for ck gives the following expression:

ck =
4
〈
d̃k,W

>up

〉2
[ap]2k

.

By replacing the quantities on the RHS with their estimated ones, we get one estimate for ck per
projection. We use as our final estimate the average estimate over the projections:

ĉk :=
1

P

P∑
p=1

4
〈
d̃k, Ŵ

>up

〉2
[ap]2k

. (56)
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Reusing the properties of the length of documents for the GP model as described in Appendix B.2,
we finally use the following estimates for rate parameter b of the gamma distribution:

b̂ :=
ĉ0

L̂
, (57)

where ĉ0 :=
∑
k ĉk and L̂ is the average document length in the corpus.

By analogy, similar formulas for the estimation of the Dirichlet parameter c of the LDA model can
be derived and are a straightforward extension of the expression in [3].

G Appendix. Complexity of algorithms and details on the experiments

G.1 Code and complexity

Our (mostly Matlab) implementations of the diagonalization algorithms (JD, Spec, and TPM) for
both the GP/DICA cumulants and LDA moments are available online.16 Moreover, all datasets and
the code for reproducing our experiments are available.17 To our knowledge, no efficient implemen-
tation of these algorithms was available for LDA. Each experiment was run in a single thread.

The bottleneck for the spectral, JD, and TPM algorithms is the computation of the cumu-
lants/moments. However, the expressions (52) and (54) provide efficient formulas for fast com-
putation of the GP/DICA cumulants and LDA moments (O(RNK +NK2), where R is the largest
number of non-zeros in the count vector x over all documents, see Appendix F.3 and F.5), which
makes even the Matlab implementation fast for large datasets. Since all diagonalization algorithms
(spectral, JD, TPM) perform the whitening step once, it is sufficient to compare their complexities
by the number of times the cumulants/moments are computed.

Spectral. The spectral algorithm estimates the cumulants/moments only once leading to
O(NK(R+K)) complexity and, therefore, is the fastest.

JD. For JD, rather than estimating P cumulants/moments separately, one can jointly estimate these
values by precomputing and reusing some terms (e.g., WX). However, the complexity is still
O(PNK(R+K)), although in practice it is sufficient to have P = K or even smaller.

TPM. For TPM some parts of the cumulants/moments can also be precomputed, but as TPM nor-
mally does many more iterations than P , it can be significantly slower. In general, the complexity
of TPM can be significantly influenced by the initialization of the parameters of the algorithm.
There are two main parameters: Ltpm is the number of random restarts within one deflation step
and Ntpm is the maximum number of iterations for each of Ltpm random restarts (different from
N and L). Some restarts converge very fast (in much less than Ntpm iterations), while others are
slow. Moreover, as follows from theoretical results [4] and, as we observed in practice, the restarts
which converge to a good solution converge fast, while slow restarts, normally, converge to a worse
solution. Nevertheless, in the worst case, the complexity is O(NtpmLtpmNK(R+K)).

Note that for the experiment in Figure 1, Ltpm = 10 and Ntpm = 100 and the run with the best
objective is chosen. We believe that these values are reasonable in a sense that they provide a good
accuracy solution (ε = 10−5 for the norm of the difference of the vectors from the previous and the
current iteration) in a little number of iterations, however, they may not be the best ones.

JD implementation. For the orthogonal joint diagonalization algorithm, we implemented a faster
C++ version of the previous Matlab implementation18 by J.-F. Cardoso. Moreover, the orthogonal
joint diagonalization routine can be initialized in different ways: (a) with the K ×K identity matrix
or (b) with a random orthogonal K ×K matrix. We tried different options and in nearly all cases
the algorithm converged to the same solution, implying that initialization with the identity matrix is
sufficient.

Whitening matrix. For the large vocabulary size M , computation of a whitening matrix can be
expensive (in terms of both memory and time). One possible solution would be to reduce the vo-
cabulary size with, e.g., TF-IDF score, which is a standard practice in the topic modeling context.

16https://github.com/anastasia-podosinnikova/dica-light
17https://github.com/anastasia-podosinnikova/dica
18http://perso.telecom-paristech.fr/˜cardoso/Algo/Joint_Diag/joint_diag_

r.m
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min mean max
JD-GP 148 192 247
JD-LDA 252 284 366
JD(k)-GP 157 190 247
JD(k)-LDA 264 290 318
JD(f)-GP 1628 1846 2058
JD(f)-LDA 2545 2649 2806
Spec-GP 101 107 111
Spec-LDA 107 140 193
TPM-GP 1734 2393 2726
TPM-LDA 12723 16460 19356

Table 1: The running times in seconds of the algorithms from Figure 1, corresponds to the case when N =
50, 000. Each algorithm was run 5 times, so the times in the table display the minimum (min), mean, and
maximum (max) time.

Another option is using a stochastic eigendecomposition (see, e.g., [33]) to approximate the whiten-
ing matrix.

Variational inference. For variational inference, we used the code of D. Blei and modified it for the
estimation of a non-symmetric Dirichlet prior c, which is known to be important [35]. The default
values of the tolerance/maximum number of iterations parameters are used for variational inference.
The computational complexity of one iteration for one document of the variational inference algo-
rithm is O(RK), where R is the number of non-zeros in the count vector for this document, which
is then performed a significant number of times for each document.

G.2 Runtimes of the algorithms

In Table 1, we present the running times of the algorithms from Section 5.1. JD and JD(k) are
significantly faster than JD(f) as expected, although the performance in terms of the `1-error is
nearly the same for all of them. This indicates that preference should be given to the JD or JD(k)
algorithms.

The running time of all LDA-algorithms is higher than the one of the GP/DICA-algorithms. This
indicates that the computational complexity of the LDA-moments is slightly higher than the one
of the GP/DICA-cumulants (compare, e.g., the times for the spectral algorithm which almost com-
pletely consist of the computation of the moments/cumulants). Moreover, the runtime of TPM-LDA
is significantly higher (half an hour vs. several hours) than the one of TPM-GP/DICA. This can be
explained by the fact that the LDA-moments have more noise than the GP/DICA-cumulants and,
hence, the algorithm is slower. Interestingly, all versions of JD algorithm are not that sensitive to
noise.

Computation of a whitening matrix is roughly 30 sec (this time is the same for all algorithms and is
included in the numbers above).

G.3 Initialization of the parameter c0 for the LDA moments

The construction of the LDA moments requires the parameter c0, which is not trivial to set in the
unsupervised setting of topic modeling, especially taking into account the complexity of the evalu-
ation for topic models [16]. For the semi-synthetic experiments, the true value of c0 is provided to
the algorithms. It means that the LDA moments, in this case, have access to some oracle informa-
tion, which in practice is never available. For real data experiments, c0 is set to the value obtained
with variational inference. The experiments in Appendix G.4 show that this choice was somewhat
important. However, this requires more thorough investigation.

G.4 The LDA moments vs parameter c0

In this section, we experimentally investigate dependence of the LDA moments on the parameter c0.
In Figure 5, the joint diagonalization algorithm with the LDA moment is compared for different
values of c0 provided to the algorithm. The data is generated similarly to Figure 2. The experiment
indicates that the LDA moments are somewhat sensitive to the choice of c0. For example, the
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Figure 5: Performance of the LDA moments depending on the parameter c0. D and c are learned from the
AP dataset for K = 10 and K = 50 and true c0 = 1. JD-GP(10) for K = 10 and JD-GP(50) for K = 50.
Number of sampled documentsN = 20, 000. For the error bars, each dataset is resampled 5 times. Data (left):
GP sampling; (right): LDAfix(200) sampling. Note: a smaller value of the `1-error is better.
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Figure 6: Comparison of the `1- and `2- errors on the NIPS semi-synthetic dataset as in Figure 2 (top, left).
The `2 norms of the topics were normalized to [0,1] for the computation of the `2 error.

recovery `1-error doubles when moving from the correct choice c0 = 1 to the plausible alternative
c0 = 0.1 forK = 10 on the LDAfix(200) dataset (JD-LDA(10) line on the right of Figure 5).

G.5 Comparison of the `1- and `2-errors

The sample complexity results [3] for the spectral algorithm for the LDA moments allow straightfor-
ward extension to the GP/DICA cumulants, if the results from Proposition 3.1 are taken into account.
The analysis is, however, in terms of the `2-norm. Therefore, in Figure 6, we provide experimental
comparison of the `1- and `2-errors to verify that they are indeed behaving similarly.

G.6 Evaluation of the real data experiments

For the evaluation of topic recovery in the real data case, we use an approximation of the log-
likelihood for held out documents as the metric. The approximation is computed using a Chib-style
method as described by [16] using the implementation by the authors.19 Importantly, this evaluation
methods is applicable for both the LDA model as well as the GP model. Indeed, as it follows from
Section 2 and Appendix B.1, the GP model is equivalent to the LDA model when conditioning on
the length of a document L (with the same ck hyper parameters), while the LDA model does not
make any assumption on the document length. For the test log-likelihood comparison, we thus treat
the GP model as a LDA model (we do not include the likelihood of the document length).

G.7 More on the real data experiments

The detailed experimental setup is as follows. Each dataset is separated into 5 training/evaluation
pairs, where the documents for evaluation are chosen randomly and non-repetitively among the
folds (600 documents are held out for KOS; 400 documents are held out for AP; 450 documents
are held out for NIPS). Then, the model parameters are learned for a different number of topics.
The evaluation of the held-out documents is performed with averaging over 5 folds. In Figure 3 and
Figure 7, on the y-axis, the predictive log-likelihood in bits averaged per token is presented.

19http://homepages.inf.ed.ac.uk/imurray2/pub/09etm
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In addition to the experiments with AP and KOS in Figure 3, we demonstrate one more experiment
with the NIPS dataset in Figure 7 (right).

Note that, as the LDA moments require at least 3 tokens in each document, 1 document from the
NIPS dataset and 3 documents from the AP dataset, which did not fulfill this requirement, were
removed.
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Figure 7: Experiments with real data. Left: the KOS dataset. Right: the NIPS dataset. Note: a higher value of
the log-likelihood is better.

Importantly, we observed that VI when initialized with the output of the JD-GP is consistently better
in terms of the predictive log-likelihood. Therefore, the new algorithm can be used for more clever
initialization of other LDA/GP inference methods.

We also observe that the joint diagonalization algorithm for the LDA moments is worse than the
spectral algorithm. This indicates that the diagonal structure (41) and (42) might not be present in the
sample estimates (43) and (44) due to either model misspecification or to finite sample complexity
issues.
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