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Abstract

We propose to investigate test statistics for testing haneiy based on kernel
Fisher discriminant analysis. Asymptotic null distrilmrtiunder null hypothesis
is derived, and consistency against fixed alternativesssssed. Finally, exper-
imental evidence of the performance of the proposed approaairtificial data
and on a speaker verification task is provided.

1 Introduction

An important problem in statistics and machine learningstgis in testing whether the distributions
of two random variables are identical under the alterndtia¢they may differ in some ways. More
precisely, Iet{X{l), . ,Xr(fl)} and{Xf), . ,Xr(i)} be independent random variables taking val-
ues in the input spadg, d), with common distribution®; andP-, respectively. The problem con-
sists in testing the null hypothesdik, : P, = P, against the alternative 4 : P; % IP,. This problem
arises in many applications, ranging from computationatamy [10] to process monitoring [7]. We
shall allow the input spacké to be quite general, including for example finite-dimenaidtuclidean
spaces but also function spaces, or more sophisticateristes such as strings or graphs (see [15])
arising in applications such as bioinformatics (seg, [4]).

Traditional approaches to this problem are based on disiwito functions and use a certain distance
between the empirical distributions obtained from the tamples. The most popular procedures
are the two-sample Kolmogorov-Smirnov tests or the CravioarMises tests, that have been the
standard for addressing these issues (at least when thesloneof the input space is small, and
most often wherX = R). Although these tests are popular due to their simplititgy are known
to be insensitive to certain characteristics of the diatiim, such as densities containing high-
frequency components or local features such as bumps. Wipdwer of the traditional density
based statistics can be improved on using test statist&mdban kernel density estimators [2] and
[1] and wavelet estimators/[6]. Recent work [4] has showr tme could difference in means in
RKHSs in order to consistently test for homogeneity. In gaper, we show that taking into account
the covariance structure in the RKHS allows to obtain sintipiéing distributions.

The paper is organized as follows: in Secfion 2 and Settiove3state the main definitions and we
construct the test statistics. In Sectidn 4, we give the asgtic distribution of our test statistic under
the null hypothesis, and investigate, the consistencylapawer of the test for fixed alternatives. In



Section 5 we provide experimental evidence of the perfonmanf our test statistic on both artificial
and real datasets. Detailed proofs are presented in thedetsbns.

2 Mean and covariance in reproducing kernel Hilbert spaces

We first highlight the main assumptions we make in the papehemneproducing kernel, then intro-
duce operator-theoretic tools for working with distrilauts in infinite-dimensional spaces.

2.1 Reproducing kernel Hilbert spaces

Let (X,d) be a separable metric space, and denotethihe associated-algebra. LetX be X-
valued random variable, with probability measiitethe corresponding expectation is denold
Consider a Hilbert spacgt, (-, -),,) of functions fromX to R. The Hilbert spacét is an RKHS if
at eache € X, the point evaluation operatér, : H — R, which mapsf € H to f(z) € R, is a
bounded linear functional. To each point X, there corresponds an elemérit:) € H (we call®
the feature map) such thab(z), f),, = f(x) forall f € H, and(®(x), ®(y)),, = k(z,y), where

kX x X — Ris a positive definite kernel. We denote by, = (f, f>1/2 the associated norm.

It is assumed in the remainder ttidtis a separable Hilbert space. Note that this is always the cas
if X is a separable metric space and if the kernel is continuees[{$]). Throughout this paper, we
make the following two assumptions on the kernel:

(A1) The kernelk is bounded, that if[o = sup(, ,)exxx k(7,y) < o0

(A2) For all probability measureB on (X, '), the RKHS associated with(-,-) is dense in
L2(P).

The asymptotic normality of our test statistics is validheitit assumption (A2), while consistency
results against fixed alternatives does need (A2). Assom@f2) is true for translation-invariant

kernels Fg] and in particular for the Gaussian kernelRsh[16]. Note that we do not require the
compactness of as in [16],

2.2 Mean element and covariance operator

We shall need some operator-theoretic tools to define meamesilts and covariance operators in
RKHS. A linear operatof is said to be bounded if there is a numbgsuch that| 7' f||,, < C'|| 1|,

for all f € H. The operator-norm df’ is then defined as the infimum of such numb@tghat is
|7 = Sup| s, <1 |7 f||,,- Furthermore, a bounded linear operatds said to be Hilbert-Schmidit,

if the quantity|| T|| ;g = {>°2, (Te,, Te,), }'/? isfinite, with {e, },>1 is a complete orthonormal
basis ofH{. The Hilbert-Schmidt nornjT’|| ;4 is independent of the choice of the orthonormal basis.
We shall make frequent use of tensor product notations. &hgot product operatdi ® v) for

u,v € His defined for allf € Has(u®@v)f = (v, f),, u (see [9)).

We recall below some basic facts about first and second-ondenents of RKHS-valued random
variables. If[ k'/2(z, 2)P(dx) < oo, the mean element: is defined for all functiong’ € H as the
unique element irk satisfying,

(g, f)py = BF / JdP . )

If furthermore [ k(x, z)P(dz) < oo, then the covariance operafos is defined as the unique linear
operator ontd satisfying for allf, g € H,

(f,pg)y &

JE S @
Note that when assumption[(A2) is satisfied, then the map ffom wp is injective. The operator
Yp is a self-adjoint nonnegative trace-class operator. Irsétgiel, the dependenceaf andXp in
P is omitted whenever there is no risk of confusion.



Given a sampld X, ..., X,,}, the empirical estimates respectively of the mean elemeuhttlae
covariance operator are then defined using empirical maaet lead to:

p=n""Y k(X)) S=nt) k(X ) @k(XG, ) - @ (3)
i=1 =1

The operatol is a self-adjoint nonnegative trace-class operators. éldghcan de diagonalized in
an orthonormal basis, with a spectrum composed of a staeityeasing sequeneg > 0 tending
to zero and potentially a null spagé(>) composed of functiong in H such that[{ f —Pf}?dP =

0 [5], i.e., functions which are constant in the supporfPof

The null space may be reduced to the null element (in paatidor the Gaussian kernel), or may
be infinite-dimensional. Similarly, there may be infinitehany strictly positive eigenvalues (true
nonparametric case) or finitely many (underlying finite disienal problems).

3 KFDA-based test statistic

In the feature space, the two-sample homogeneity testguoeean be formulated as follows. Given
(xW L xPyand{x?, ..., x?} from distributionsP; andP,, two independent identically
distributed samples respectively frdhm andP,, having mean and covariance operators respectively
given by (i1, 1) and(us, X2), we wish to test the null hypothesigy, 111 = p2 and¥; = X,
against the alternative hypothesls,, 11 # ps.

In this paper, we tackle the problem by using a (regulariedhelized version of the Fisher dis-

criminant analysis. Denote By, Lof (n1/n)X1+(ng/n)E, the pooled covariance operator, where

n n1 + ne, corresponding to the within-class covariance matrix anfthite-dimensional setting

(see[12]. Letus denofep def (ning/n?) (12 — p1) ® (u2 — 1) the between-class covariance oper-

ator. Fora = 1, 2, denote by(ji,, 2, ) respectively the empirical estimates of the mean elemaht an
def

the covariance operator, defined as previously statéd iD@)oteSy < (ny/n)21 + (na/n)Ss
the empirical pooled covariance estimator, ahgl def (nina/n?)(fiz — fi1) @ (fis — fi1) the em-
pirical between-class covariance operator. {-gt},,>0 be a sequence of strictly positive numbers.
The maximum Fisher discriminant ratio serves as a basisraestistatistics:

n max <f723f>H = 22 H(EW + D) 726

(1 Cw +alf) "

wherel denotes the identity operator. Note that if the input spadeticlideang.g.X = R?, the
kernel is lineark(x,y) = ="y and~, = 0, this quantity matches the so-called Hotellin@'s-
statistic in the two-sample case [13]. Moreover, in practienay be computed thanks to the kernel
trick, adapted to the kernel Fisher discriminant analysid autlined in [15, Chapter 6]. We shall
make the following assumptions respectivelyXnand:,

(4)

2
)
H

(B1) Foru = 1,2, the eigenvalue$), (X,)},>1 satisfyd 2 | )\,1,/2(2”) < 00.
(B2) Foru = 1,2, there are infinitely many strictly positive eigenvalyes,(2.,,) } p>1 of £,,.

The statistical analysis conducted in Section 4 shall destnate, asy,, — 0 at an appropriate
rate, the need to respectively recenter and rescale (assthsthtistical transformation known as
studentization) the maximum Fisher discriminant ratiarder to get a theoretically well-calibrated
test statistic. These roles, recentering and rescalingbe/played respectively by, (X ,~) and
d2(Zw,v), where for a given compact operafwith decreasing eigenvalues (S), the quantity
d-(X,~) is defined for ally > 1 as

o0

1/r
d(,7) < {Z(Ap + v)’“A;} . )

p=1



4 Theoretical results

We consider in the sequel the following studentized tesissia
nina

- A2 -
i 22 ||Sw + D)7V = du(Swn)

T7L(77L) = \ﬁdg(iw,’}/n) . (6)

In this paper, we first consider the asymptotic behavidf,plunder the null hypothesis, and then
against a fixed alternative. This will establish that ourpemametric test procedure is consistent in
power.

4.1 Asymptotic normality under null hypothesis

In this section, we derive the distribution of the test stats under the null hypothedik, : P; = Py
of homogeneityi.e. iy = o and¥; = Y5 = 3. As+y,, — 0tends to zero,

Theorem 1. Assume (A1) and (B1). , = P, = Pand ify, + v, 'n~'/? — 0, then
s D
T (yn) — N(0,1) (7)

The proof is postponed to Sectioh 7. Under the assumptiohkedren 1, the sequence of tests that

rejects the null hypothesis Whéh (7,,) > 21 _q, Wherez; _, is the(1 — a)-quantile of the standard
normal distribution, is asymptotically level Note that the limiting distribution does not depend on
the kernel nor on the regularization parameter.

4.2 Power consistency

We study the power of the test based ﬁ[‘(’yn) under alternative hypotheses. The minimal re-
quirement is to to prove that this sequence of tests is cemsigh power. A sequence of tests of
constant levety is said to beconsistent in poweif the probability of accepting the null hypothesis
of homogeneity goes to zero as the sample size goes to indinitgr afixedalternative.

The following proposition shows that the limit s finite,istty positive and independent of the kernel
otherwise (see [8] for similar results for canonical catien analysis). The following result gives
some useful insights OHE;VI/QCSHH’ i.ethe population counterpart #Kﬁ);‘}p + V,LI)*l/QSHH on
which our test statistics is based upon.

Proposition 2. Assume (A1) and (A2). 4f, +~,, 'n~'/? — 0, then for any probability distributions

Py andIP2,
2 1 -1
"271/26” _ (1 _/ P1p2 dV) (/ P1p2 dp) 7
W "o p1p2 p1P1 + p2p2 pP1P1 + p2p2

wherev is any probability measure such thét and P, are absolutely continuous w.r..z and p;
andp, are the densities df; andP, with respect ta.

2
The normHE;}/QéHH is finite when they2-divergence[ p; ! (p2 — p1)2dp is finite. It is equal to
zero if they2-divergence is null, that is, if and only; = Ps.

By combining the two previous propositions, we thereforgaobthe following consistency Theo-
rem.

Theorem 3. Assume (Al) and [(A2). L&; and P, be two distributions ove(X, X’), such that
Py # Py. If 7, + 7, 'n" /2 — 0, then

PHA(fn(V) > Zl—oc) — 0. (8)

5 Experiments

In this section, we investigate the experimental perforrearof our test statistic KFDA, and com-
pare it in terms of power against other nonparametric tasssts.



y= |10t | 1074 | 1077 | 10710
KFDA | 0.01:£0.0032| 0.11+0.0062| 0.98+0.0031| 0.99£0.0001
MMD | 0.01:+0.0023| id. id. id.

Table 1: Evolution of power of KFDA and MMD respectively, agoes ta0.

5.1 Artificial data

We shall focus here on a particularly simple setting, in o@galyze the major issues arising in
applying our approach in practice. Indeed, we consider gr@gic smoothing spline kernel (see
ﬁE?F]) for a detailed derivation), for which explicit formudaare available for the eigenvalues of the
corresponding covariance operator when the underlyingiloigion is uniform. This allows us to
alleviate the issue of estimating the spectrum of the camag operator, and weigh up the practical
impact of the regularization on the power of our test statist

Periodic smoothing spline kernel ConsiderX as the two-dimensional circle identified with the
interval [0, 1] (with periodicity conditions). We consider the strictly gitive sequencds, =
(27v)~2™ and the following norm:

2 _ <facO>2 <facu>2+ <fa SV>2
v>0
wherec, (t) = /2 cos 2t ands,, (t) = v/2sin 2rvt for v > 1 andcy(t) = 1x. This is always an
RKHS norm associated with the following kernel

e Ban((s =)~ s~ )

whereBs,,, is the2m-th Bernoulli polynomial. We havés(x) = 22 — z + 1/6.

K(s,t) =

We consider the following testing problem

Ho: p1=p2
Ha: p2#po

with p; the uniform density (i.e., the density with respect to thbdsgue measure is equaldy,
and densitieps = p1(co +.25%c4). The covariance operatdl(p; ) has eigenvectors), c,, s, with
eigenvalue9 for ¢y and K, for others.

Comparison with MMD ~ We conducted experimental comparison in terms of powenyfce 2
andn = 10* ande = 0.5. All quantities involving the eigenvalues of the covariamperator were
computed from their counterparts instead of being estichdtbe sampling fromp? was performed
by inverting the cumulative distribution function. The katbelow displays the results, averaged
over 10 Monte-Carlo runs.

5.2 Speaker verification

We conducted experiments in a speaker verification task 8] a subset of 8 female speakers
using data from the NIST 2004 Speaker Recognition EvalnatMe refer the reader to [14] for
instance for details on the pre-processing of data. Thedigliows averaged results over all couples
of speakers. For each couple of speaker, at each run we3tititksamples of each speaker and
launched our KFDA-test to decide whether samples come fhensame speaker or not, and com-
puted the type Il error by comparing the prediction to grotmth. We averaged the results fi0
runs for each couple, and all couples of speaker. The levelseatoor = 0.05, since the empirical
level seemed to match the prescribed for this value of thed Bewwe noticed in previous subsection.
We performed the same experiments for the Maximum Mean Bpsorcy and the Tajvidi-Hall test
statistic (TH). We summed up the results by plotting the R&G+e for all competing methods. Our
method reaches good empirical power for a small value of thegpibed level { — 3 = 90% for

a = 0.05%). Maximum Mean Discrepancy also yields good empirical genance on this task.
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6 Conclusion

We proposed a well-calibrated test statistic, built on kéFisher discriminant analysis, for which
we proved that the asymptotic limit distribution under rufpothesis is standard normal distribu-
tion. Our test statistic can be readily computed from Grantriges once a kernel is defined, and
allows us to perform nonparametric hypothesis testing fondgeneity for high-dimensional data.
The KFDA-test statistic yields competitive performancedpeaker identification.

7 Sketch of proof of asymptotic normality under null hypothesis

Outline. The proof of the asymptotic normality of the test statisticsler null hypothesis follows
four steps. As a first step, we derive an asymptotic appraidmaf the test statistics ag, +

—1In=1/2 — 0, where the only remaining stochastic termisThe test statistics is then spanned
onto the eigenbasis af, and decomposed into two ternis, andC,,. The second step allows to
prove the asymptotic negligibility oB,,, while the third step establishes the asymptotic normality
of C,, by a martingale central limit theorem (MCLT).

Step 1:fn(%) =T, (vn) + op(1). First, we may prove, using perturbation results of covaman
operators, that, ag, + v, 'n~'/2 — 0, we have

N (ning/n) “(E+’yl)71/25“i —dy(2,7)

Tuin) = VXK +op(1) . ©

O

For ease of notation, in the following, we shall often oliin quantities involving it. Hence, from
oW oNn,\,, Ay, da,p, stand forh,(X), A, (), d2(X, vy, ). Define

wr | (27 (XY ~Bley(x)) 1<i<m,
T () (X2 Bl (xP)) mr1 i<,

1—"N1

(10)

We now give formulas for the moments Y, ,, ; }1<i<n p>1, Often used in the proof. Straightfor-
ward calculations give

ZE[}/’IL,p,i)/TI,,q,i] - >\11,/2/\é/26p,q ) (11)
=1
while the Cauchy-Schwarz inequality and the reproducirgerty give
2 2 —2 1/2y1/2
Cov (Y7 5 Vi) < On~2lklocAy/ 202 . (12)



DenotesS,, ,, def Sor Y, - Using Eq.[(11), our test statistics now writesTas= (v/2dz,,,) ' A,

with

A2 =
Ay 2 (04728 = du =30 () {82, ~ES}, ) = Bu+ 20,

(13)
whereB,, andC,, are defined as follows

defZZ{ npliEYnzpl}’ (14)

p=11i=1
dof - L
Co Y o +7) 7" D Yapid D Yaui ¢ - (15)
p=1 i=1 j=1

Step 2:B,, = op(1). The proof consists in computing the variance of this termc&ihe variables
Y, andY, , ; are independent if # j, thenVar(B,,) = Y., v, i, Where

Un,i déf Var <Z( + 771) { n,pyi E[)/n Dyt ]})

p=1
Z Ap +90) H g + 7)) HCov(Y,E LY )

Using Eq.[(12), we get

n [ee] 2 [ee] 2

S <ot (S0 ka0 ) <ot ()

i=1 p=1 p=1
where the RHS above is indeed negligible, since by assumpti® havey, 'n~'/2 — 0 and
22021 )\11,/2 < 0. ]

Step 3: d2 C, 2, N(0,1/2). We use the central limit theorem (MCLT) for triangular asayf
martmgale differences (see e.g. [11, Theorem 3.2]).=Fdr . . ., n, denote
(oo}
i L dy LS Oy ) YoMy g1, where M, < ZYW , (1)
p=1 Jj=1
andletF,; = o (Y, ,p € {1,...,n},j €{0,...,4}). Note that, by constructiod,, ; is a mar-
tingale incrementi.e. E[¢, ;| F,,i—1] = 0. The first step in the proof of the CLT is to establish
that

- ZE [ffw | fn,i—l} L 1/2 . (17)
i=1

The second step of the proof is t:) establish the negligibditndition. We use [11, Theorem

3.2], which requires to establish thatax;<;<y £, L0 (smallness) andt(maxi<;<, gfm)
is bounded inn (tightness), wheré,, ; is defined in[(16). We will establish the two conditions
simultaneously by checking that

E (lrgfzxnf ) =o(1). (18)
Splitting the sums?, between diagonal termi3,,, and off-diagonal term&,,, we have
Dn:dQ_ )‘ +77L ZZ n,p,i— 1]E npz]v (19)
p=1
En=dy2> p+7m) " Ag+7m)" Z My pi1My gi B[V piYnqi - (20)
PF#q i=1



Consider first the diagonal terms,,. We first compute its mean. Note th&f
S E[Y2 ]. Using Eq.[(11) we get

npz]

Jj=1 7,D,J

o) n i—1

Do) ) Y BN, BNV,
p=1 =1 j=1

1

%Z/\ +7n)72 ZE npt Z]E2 rL,p7 - 27L{1+O 71)}'

Therefore E[D,,] = 1/2 + o(1). Next, we may prove thab,, — E[D,,] = op(1) is negligible, by
checking thaVar[D,,] = o(1). We finally considetZ,, defined in[(20), and prove th#t, = op(1)
using Eq.[(11). This concludes the proof of Eq./(17).

We finally show Eq./(18). Sincg’, ,.i| < n=1/2|k| 5 P-a.s we may bound

max €l < Cdy ™ '/2 Zl(Ap )T max Mool - (21)
p=
Then, the Doob inequality implies th&#/2[max; <;<,, [My 1|2 < EV2[MZ2, 1] < ON/? .
Plugging this bound in (21), the Minkowski inequality
1/2 < ~1,,-1/2 1/2
2 () < {astaitam S}
p:
and the proof is concluded using the fact thatt+ v, 'n~/2 — 0 and Assumption (B1). O
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