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Optimal Estimation of Smooth Transport Maps with Kernel SoS\ast 

Adrien Vacher\dagger , Boris Muzellec\ddagger , Francis Bach\ddagger , Fran\c cois-Xavier Vialard\dagger , and Alessandro Rudi\ddagger 

Abstract. Under smoothness conditions, it was recently shown by Vacher et al. [Proceedings of the 34th Confer-
ence on Learning Theory, Proc. Mach. Learn. Res. 134, 2021] that the squared Wasserstein distance
between two distributions could be approximately computed in polynomial time with appealing sta-
tistical error bounds. In this paper, we propose to extend their result to the problem of estimating
in L2 distance the transport map between two distributions. Also building upon the kernelized
sum-of-squares approach, a way to model smooth positive functions, we derive a computationally
tractable estimator of the transport map. Contrary to the aforementioned work, the dual problem
that we solve is closer to the so-called semidual formulation of optimal transport that is known to
gain convexity with respect to the linear dual formulation. After deriving a new stability result
on the semidual and using localization-like techniques through Gagliardo--Nirenberg inequalities, we
manage to prove under the same assumptions as in Vacher et al. that our estimator is minimax
optimal up to polylog factors. Then we prove that this estimator can be computed in the worst case
in \~O(n5) time, where n is the number of samples, and show how to improve its practical computa-
tion with a Nystr\"om approximation scheme, a classical tool in kernel methods. Finally, we showcase
several numerical simulations in medium dimension, where we compute our estimator on simple
examples.

Key words. optimal transport, sum-of-squares, kernel methods

MSC codes. 62E20, 46E22

DOI. 10.1137/22M1528847

1. Introduction. Optimal transport (OT) provides a principled method to compare prob-
ability distributions by finding the optimal way of coupling one to another based on a cost
function defined on their supports. Formally, given two probability distributions \mu and \nu 
supported over metric spaces X and Y and a cost c : X \times Y \rightarrow \BbbR , the OT value between \mu 
and \nu was defined by Monge as follows:

OT(\mu ,\nu ) = inf
T\#(\mu )=\nu 

\int 
c(x,T (x))d\mu (x) ,(1.1)
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312 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

where the infimum is taken over maps T that pushforward \mu onto \nu , that is, for all Borel sets
A of Y , \mu (T - 1(A)) = \nu (A). This nonconvex problem was later relaxed by Kantorovitch into
the following linear program whose primal formulation reads

inf
\pi \in \scrM +(X\times Y )

\langle \pi , c\rangle + \iota (\pi 1 = \mu ) + \iota (\pi 2 = \nu ) ,(1.2)

where \langle \cdot , \cdot \rangle is the duality pairing between measures and functions, \iota (\cdot ) is the convex indicator
function, \scrM +(X \times Y ) is the set of positive Radon measures over X \times Y , and \pi i is the ith
marginal of \pi . The dual formulation of this problem reads

sup
\phi ,\psi 

\langle \phi ,\mu \rangle + \langle \psi ,\nu \rangle + \iota (\phi \oplus \psi \leq c) ,(1.3)

where \phi ,\psi are continuous real valued functions over X (resp., Y ), that we shall refer to as
potentials in the rest of the paper, and where \phi \oplus \psi is defined over X \times Y as \phi \oplus \psi : (x, y) \mapsto \rightarrow 
\phi (x) + \psi (y). In the Euclidean setting X,Y \subset \BbbR d and for the quadratic cost c(x, y) = \| x - y\| 2

2 ,
Brenier [6] showed that under regularity assumptions on \mu ,\nu , the Monge problem (1.1) and
the dual Kantorovitch problem (1.3) are equal and are linked as follows: given \phi 0 the first
potential solution of (1.3), the OT map T0 is given by T0(x) = x - \nabla \phi 0(x).

These OT maps are playing an increasingly important role in data sciences. Indeed, many
applications such as generative modeling [2, 32, 4, 23, 28], domain adaptation [12, 11], shape
matching [35, 17], dimensionality reduction [19], or predicting cell trajectories [33, 44] can
be formulated as the problem of finding a map from a reference distribution to a target dis-
tribution. Yet in the aforementioned applications, the measures \mu ,\nu are usually supported
on high dimensional spaces and they are usually only available via their n-samples empirical
counterparts \^\mu n, \^\nu n. Hence one must design an estimator \^Tn of the transport map T0 that is
both robust in high-dimension and that can be computed numerically for reasonable values
of n. Defining the error as e(T ) =

\int 
x \| T  - T0\| 2d\mu (x), this problem can be informally stated

as follows:
Can we design an estimator \^Tn(\^\mu n, \^\nu n) that can be computed in dimension-free polynomial

time and such that e( \^Tn) scales ``well"" with the dimension d?

1.1. Related works. Over the past few years, numerous works have focused instead on the
statistical approximation of the scalar quantity OT(\mu ,\nu ) for the quadratic cost, also known
as the quadratic Wasserstein distance W 2

2 (\mu ,\nu ). An intuitive choice of estimator is the plugin
estimator W 2

2 (\^\mu n, \^\nu n), which is simply the squared Wasserstein distance computed on the
empirical counterparts of \mu ,\nu . However, even though it can be computed in O(n3 log(n)) time
using the network simplex algorithm [1], it suffers from the curse of dimensionality as it was
shown that \BbbE [| W 2

2 (\mu ,\nu ) - W 2
2 (\^\mu n, \^\nu n)| ] \sim n - 2/d [16]. Another popular choice of estimator is

the Sinkhorn model [13], which regularizes the OT problem with the addition of an entropic
penalty in the primal problem (1.2). Even though the computational complexity of the plugin
Sinkhorn model is lowered to O(n2), the error still poorly scales in O(n - 2/d) [10]. When the
measures \mu ,\nu are assumed to have smooth densities, the statistical error can be improved as the
smoothness grows [21]. For instance, when the densities of \mu ,\nu are assumed to be m-smooth,
the authors of [40] designed an estimator \^wn that yields an average error \BbbE [| \^wn  - W2(\mu ,\nu )| ]
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 313

scaling as n - 
1+m

d+2m ; in particular, the parametric rate 1/
\surd 
n is recovered in the very smooth

regime m\rightarrow \infty . However, their estimator \^wn requires O(n
(1+m)(2d+2)

d+2m ) time to be computed. It
was only recently that this computational/statistical gap was closed by [37]. Relying on the
kernelized sum-of-squares (SoS) tool [25] (see section 2 for a detailed background on SoS), the
authors proposed an estimator \^w2

n that can be computed in O(n3.5) time and that achieved

an average error \BbbE [| \^w2
n - W 2

2 (\mu ,\nu )| ] scaling in n - \mathrm{m}\mathrm{i}\mathrm{n}(m - d - 1

2d
,1/2) when the densities are assumed

to be m-smooth.
The question of how to estimate the transport map T0 came afterward. Again, when no

smoothness assumption is made on the transport map T0, this task also suffers from the curse
of dimensionality. For instance, the authors of [24] designed a so-called plugin estimator \^Tn
of the transport map, computed via the coupling \^\pi n solution of the empirical version of the
primal problem (1.2), such that the error \| \^Tn - T0\| 2L2(\mu ) := e( \^Tn) scaled as n - 2/d. Similarly, it

was shown that the maps \^Tn obtained with the Sinkorn model achieved an error e( \^Tn)\sim n - 1/d

[29]; note that both these estimators can be computed in either O(n3) or O(n2) time yet, as
these rates show, and these models do suffer the curse of dimensionality. At the opposite end
of the spectrum, it was shown in [21] if T0 is assumed to be C\alpha , one could design an estimator
\^Tn that achieved an error e( \^Tn) \sim n

 - \alpha 

\alpha +d/2 - 1 , hence recovering a 1/n error when smoothness
grows and that this rate was actually statistically minimax; yet this time the estimator cannot
be computed numerically as it involves solving an infinite dimensional optimization program.

1.2. Contributions. Following a similar technique as in [37], we close the statistical/
computational gap for the problem of OT map estimation when the OT map T0 is assumed to
be C\alpha with \alpha > d+2. Our main result can be summarized in the following informal theorem.

Theorem 1.1. If \mu ,\nu have densities bounded from above and below on compact, convex
domains and T0 is C\alpha with \alpha > d+ 2 and such that Jac(T0) is nonsingular on the support of
\mu , then, given the empirical distributions \^\mu n, \^\nu n, there exists an estimator \^Tn of the transport
map T0 that can be computed in \~O(n5) time and that verifies for n sufficiently large

\BbbE [\| \^Tn  - T0\| 2L2(\mu )]\lesssim n
 - \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl( 
\alpha  - 1 - d

2d
, \alpha 

\alpha +d/2 - 1

\Bigr) 
\times \mathrm{m}\mathrm{i}\mathrm{n}(1, 2

1+3d/(2\alpha )
)
,(1.4)

where \~O and \lesssim hide constants and poly-log factors.

In particular, not only do we provide a statistically efficient estimator that can be com-
puted in polynomial time, but also, when \alpha is sufficiently large, our estimator is minimax up
to poly-log factors. We highlight the fact that even if we provide statistical and computa-
tional guarantees for our estimator, this work remains mainly theoretical as our upper-bounds
involve constants that are potentially exponential with the dimension. Combined with the
fact that our computational complexity scales in \~O(n5), we believe that our estimator is not
suited for modern big-data applications where n is typically of order \sim 106. Nevertheless,
we showcase at the end of the paper a Nystr\"om approximation of our estimator in medium
dimension with Gaussian densities where a small amount of samples are drawn n\sim 103.

1.3. Outline of the paper. In section 2, we begin by explaining the estimation strat-
egy developed in [37], and after an introduction to the theoretical background on the ker-
nel SoS method [25], we show how it allows us to model smooth, positive functions in a
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314 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

computationally tractable manner [31]. Finally, in order to better approximate the so-called
semidual formulation of OT, we propose an estimator that differs from the one introduced in
[37]. In section 3, we prove that our estimator does achieve the minimax rate n

 - \alpha 

\alpha +1+d/2 by
deriving a new stability result on the semidual formulation of OT and by applying localiza-
tion arguments through Gagliardo--Nirenberg inequalities [7]. In section 4, we prove that our
estimator \^Tn can be computed up to error \tau in O(n5 log(1/\tau )) time. Finally, in section 5, we
show how to improve the practicality of our estimator by incorporating a Nystr\"om sampling
strategy, for which we do not provide guarantees. Using this heuristic method, we compute
our improved map estimator in the case where \mu ,\nu are Gaussian distributions in medium
dimensions, e.g., d= 2,4,8.

2. Preliminaries and background. Throughout the rest of the paper, we shall assume
that the measures \mu ,\nu are supported on X,Y \subset \BbbR d and shall add additional assumptions on
\mu ,\nu throughout the section.

2.1. Estimation of the OT cost. The starting point of the estimation strategy employed
in [37] relies on the empirical dual formulation of OT with a quadratic cost. Given the
n-samples empirical distributions \^\mu n, \^\nu n, recall that the empirical OT cost is given by\widehat OT = sup

(\phi ,\psi )\in C(X)\times C(Y )
\langle \phi , \^\mu n\rangle + \langle \psi , \^\nu n\rangle 

s.t. \phi (x) +\psi (y)\leq \| x - y\| 2

2
\forall (x, y)\in X \times Y ,

(2.1)

where C(X) (resp., C(Y )) is the set of continuous functions over X (resp., Y ). In order to re-
cover estimation rates that scale well with the dimension, we need to restrict the search space
on the potentials to less complex spaces than C(X) and C(Y ), respectively. One straightfor-
ward way to reduce the complexity is to assume that (\phi 0,\psi 0), the solutions of original dual
OT problem (1.3), are both smooth. Using the regularity theory of OT, the smoothness of
the potentials can be inherited from the smoothness of the measures \mu ,\nu .

Theorem 2.1 (De Philippis and Figalli in [14]). If \mu and \nu have m-times differentiable
densities bounded from above and below over X (resp., Y ), bounded convex domain of \BbbR d,
then the solutions (\phi 0,\psi 0) of problem (1.3) are (m+2)-times differentiable over X (resp., Y ).

Yet, instead of making a smoothness assumption on the density of the measures, we shall
make the less restrictive assumption of the transport potential themselves being smooth.
Denoting Hs(\Omega ) the 2-Sobolev space of order s, for \Omega a Lipschitz bounded domain of \BbbR d
and s a positive real number [7], we shall assume that (\phi 0,\psi 0), the solutions of (1.3), belong
to Hs(X) and Hs(Y ), respectively. Under this assumption, the new empirical dual problem
becomes \widehat OT = sup

(\phi ,\psi )\in Hs(X)\times Hs(Y )
\langle \phi , \^\mu n\rangle + \langle \psi , \^\nu n\rangle 

s.t. \phi (x) +\psi (y)\leq \| x - y\| 2

2
\forall (x, y)\in X \times Y .

(2.2)

Statistically speaking, the convergence of the empirical problem (2.2) toward (1.3) is faster
as s grows than the convergence of (2.1) toward (1.3). Furthermore, when s > d/2, the space

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 315

Hs(\Omega ) becomes a reproducing kernel Hilbert space (RHKS) [3], which is a Hilbert space with
appealing computational properties.

Definition 2.2. A Hilbert space H of real valued functions defined over some space Z en-
dowed with a scalar product \langle \cdot , \cdot \rangle H is said to be an RKHS when for all z \in Z, the evaluation
\delta z : f \in H \mapsto \rightarrow f(z) is continuous for the \| \cdot \| H-norm. In this case, it has a unique kernel
k : Z \times Z \mapsto \rightarrow \BbbR such that for all z \in Z, k(z, \cdot ) \in H and for all f \in H, f(z) can be expressed as
f(z) = \langle f, k(z, \cdot )\rangle H .

When the kernel k(\cdot , \cdot ) is available in closed form, its associated RKHS has an appealing
computational property known as the ``kernel"" trick. For any Lipschitz loss L : H \rightarrow \BbbR 
depending on data points (x1, . . . , xn), the solution of the potentially infinite dimensional
problem

inf
f\in H

L(f ; (x1, . . . , xn))

is of the form f =
\sum n

i=1\alpha ik(xi, \cdot ); see, for instance, [34]. Hence, if we assume that the transport
potentials are in Hs(X) and Hs(Y ) with s > d/2, the kernel trick does apply and problem
(2.1) becomes

\widehat OT = sup
(\beta ,\omega )\in \BbbR n\times \BbbR n

1

n

n\sum 
i=1

n\sum 
j=1

\beta jkX(xi, xj) +
1

n

n\sum 
i=1

n\sum 
j=1

\omega jkY (yi, yj)

s.t.

n\sum 
j=1

\beta jkX(xj , x) +

n\sum 
j=1

\omega jkY (yj , y)\leq 
\| x - y\| 2

2
\forall (x, y)\in X \times Y ,

(2.3)

where we denoted \^\mu n = 1
n

\sum n
i=1 \delta xi

(resp., \^\nu n = 1
n

\sum n
i=1 \delta yi) and where kX is the kernel of

Hs(X) and kY is the kernel of Hs(Y ). Yet, even though kX and kY are available in closed
form as shown in [41], problem (2.3) remains intractable as the constraint

\sum n
j=1 \beta jkX(xj , x)+\sum n

j=1\omega jkY (yj , y) \leq \| x - y\| 2

2 must be enforced over the whole, potentially continuous, space
X \times Y .

A naive manner to overcome this problem is to simply discretize this inequality constraint
over the support of the empirical measures \^\mu n, \^\nu n and implement instead

n\sum 
j=1

\beta jkX(xj , xl) +

n\sum 
j=1

\omega jkY (yj , yl)\leq 
\| xl  - yl\| 2

2
\forall l \in \{ 1, . . . , n\} .

However, the authors of [37] showed that when one discretizes an inequality constraint, the

error | \widehat OT - OT| scales as n - 1/d with high probability no matter how smooth the potentials
(\phi 0, \phi 0) are assumed to be. To overcome this issue, they use a particular structure that they
proved for the optimal potentials: the inequality constraint in OT (at the optimizers) can be
reformulated as an equality constraint with a smooth positive function \gamma : X \times Y \rightarrow \BbbR and
proved that \gamma could be expressed as a finite SOS.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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316 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

Theorem 2.3 (Vacher et al. [37]). Under the assumption (\phi 0,\psi 0) \in H\alpha +1(X)\times H\alpha +1(Y ),
if \alpha > d+ 2, there exist functions (wi)

d
i=1 such that wi \in H\alpha  - 1(X \times Y ) and that verify

\| x - y\| 2

2
 - \phi 0(x) - \psi 0(y) =

d\sum 
i=1

wi(x, y)
2 ,(2.4)

where (\psi 0, \phi 0) are the OT potentials, solutions of (1.3).

Using this result, they proposed to discretize instead the equality constrained version of
the OT problem and used the following estimator:\widehat OTSoS = sup

(wi)di=1\in H\alpha  - 1(X\times Y )
(\phi ,\psi )\in H\alpha +1(X)\times H\alpha +1(Y )

\langle \phi , \^\mu n\rangle + \langle \psi , \^\nu n\rangle 

s.t.
\| xl  - yl\| 2

2
 - \phi (xl) - \psi (yl) =

d\sum 
i=1

wi(xl, yl)
2 \forall l \in \{ 1, . . . , n\} .

(2.5)

When the estimator above is properly regularized, the authors of [37] showed that with high

probability | \widehat OTSoS  - OT| \sim 1
\surd 
n when \alpha \rightarrow \infty . Yet, computationally speaking, even though

the kernel trick still applies to \phi and \psi , handling numerically the functions wi is a priori less
clear. In the next paragraph, we give some insight into the work of [25] and show how a
similar kernel trick can be applied to function \gamma =

\sum d
i=1w

2
i .

2.2. Kernel sum-of-squares. One simple way to model a positive function f : \BbbR \rightarrow \BbbR is
to take the vector of the n first monomials en(x) = (1, x, . . . , xn) and A a symmetric positive
definite matrix A \in \BbbS +(\BbbR n), the set of positive-semi-definite (p.s.d.) matrices of size n, and
to form f(x) = en(x)

\top Aen(x). Denoting (\lambda 1, . . . , \lambda n) the (positive) eigenvalues of A and
Q \in On(\BbbR ) an orthonormal diagonalizing basis, one has f(x) =

\sum n
i=1 \lambda iqi(x)

2 with qi(x) =
[Qen(x)]i; as it is a sum of squared polynomials f is indeed positive. The polynomial SoS
representation has been used in global optimization for over a decade now [22], yet the idea
of modeling a positive function as a quadratic form on the space of monomials was recently
generalized to the RKHS case by [25]. Given H an RKHS with kernel k and A a positive,
self-adjoint operator on H, one can model a positive function as

\gamma A(x) = \langle k(x, \cdot ),Ak(x, \cdot )\rangle H .(2.6)

Assuming thatA has finite rank p, it can be diagonalized in some orthonormal basis (ei)
p
i=1 \in H

and one recovers fA(x) =
\sum p

i=1 \lambda iei(x)
2, where the \lambda i are the positive eigenvalues of A;

similarly, any finite sum of squared functions belonging to H can be expressed in the form
x \mapsto \rightarrow \gamma A(x). These kernel SOS models also enjoy a kernel trick where one can reformulate
learning problems over the infinite set of positive, self-adjoints operators \scrS +(H) as finite
dimensional problems over the finite dimensional space of positive, symmetric matrices.

Theorem 2.4 (Marteau-Ferey, Bach, and Rudi [25]). Let L : \BbbR n \rightarrow \BbbR be a function which is
lower semicontinuous and bounded from below. Then the problem

inf
A\in \scrS +(H)

L(\gamma A(x1), . . . , \gamma A(xn)) + \lambda Tr(A),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 317

where \lambda > 0, has a solution A\ast that can be expressed as A\ast =
\sum 

ij bijk(xi\cdot ) \otimes k(xj , \cdot ) with
B = [bij ]\in \BbbS +(\BbbR n).

The authors of [37] applied this result to the (regularized) problem (2.5) to recover the
following finite reformulation of their estimator:

\widehat OTSoS = sup
(\beta ,\omega )\in \BbbR 2n

B\in \BbbS +(\BbbR n)

\Biggl\langle 
n\sum 
i=1

\beta ikX(xi, \cdot ), \^\mu n

\Biggr\rangle 
+

\Biggl\langle 
n\sum 
j=1

\omega jkY (yj , \cdot ), \^\nu n

\Biggr\rangle 
+ \lambda Tr(B)

s.t.
\| xl  - yl\| 2

2
 - 

n\sum 
i=1

\beta ik(xi, xl) - 
n\sum 
j=1

\omega jk(yj , yl) = [KBK]ll ,

(2.7)

where K is the matrix (kXY ((xi, yi), (xj , yj)))1\leq i,j\leq n with kXY the kernel of H\alpha  - 1(X \times Y ).
Using an interior point method, the problem above can be solved with a precision \delta in
O(n3.5 log(n\delta )) time. Hence they managed to recover an estimator of W 2

2 (\mu ,\nu ) with a fa-
vorable statistical behavior and that can be computed in polynomial time with respect to the
number of available samples.

2.3. Estimation of the transport map. Even though the problem of estimating efficiently
the squared Wasserstein distance was solved by [37], our problem is more delicate as we need
to estimate the transport map itself, a.k.a the (gradient of the) argmin of problem (1.3).
If problem (2.5) had strictly positive curvature around the minimum, we could deduce the

convergence of the minimizers (\^\phi , \^\psi ) toward (\phi 0,\psi 0) at the same rate as the convergence of \widehat OT
toward OT. However, the objective function in (2.5) is linear and in particular nonstrongly
convex. One way to remedy this is to use the so-called semidual formulation of OT. Making
the change of variable (f, g) = (\| \cdot \| 

2

2  - \phi , \| \cdot \| 
2

2  - \psi ), the dual formulation of OT can be written
up to moment terms as

OT=inf
f,g

\langle f,\mu \rangle + \langle g, \nu \rangle 

s.t. f(x) + g(y)\geq x\top y \forall (x, y)\in X \times Y,
(2.8)

which is also known as the Brenier formulation of OT. With this formulation, one has at the
optimum g=\scrL X(f) with \scrL X(f) the Legendre transform of f restricted to X defined as

\scrL X(f) : y \in Y \mapsto \rightarrow sup
x\in X

xy\top  - f(x) ,(2.9)

and the problem can be rewritten OT= inff JX(f) := \langle f,\mu \rangle + \langle \scrL X(f), \nu \rangle . If X =\BbbR d and f is
convex and globally M -smooth, that is, supx\in \BbbR d \| \nabla 2f(x)\| \leq M , it has been shown that this
new objective is strongly convex with respect to the L2(\mu ) norm [21] and verifies

\| \nabla f  - T0\| 2L2(\mu ) \leq 
M

2
(JX(f) - JX(f0)) ,

where f0 is the ground truth OT potential that verifies \nabla f0 = T0. We show in the next section
that a similar result holds when X is a Lipschitz domain and f is M -smooth over X but not
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318 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

necessarily convex. Hence, in order to estimate the transport map T0 we choose instead
to solve

inf
A\in \scrS +(H\alpha  - 1(X\times Y ))

(f,g)\in H\alpha +1(X)\times H\alpha +1(Y )

\langle f, \^\mu n\rangle + \langle g, \^\nu n\rangle + \lambda 

\biggl( 
\| A\| 2F + \| f\| 2H\alpha +1(X) + \| g\| 2H\alpha +1(Y )

\biggr) 

+ \zeta 
\sum 
l

\biggl( 
f(xl) + g(yl) - x\top l yl  - \gamma A(xl, yl)

\biggr) 2

,

(2.10)

where \lambda and \zeta are positive reals that we make explicit in the next section, \| \cdot \| 2F is the
Froebenius norm, and \gamma A corresponds to (2.6) for k = kXY the kernel of H\alpha  - 1(X \times Y ).
Note that our estimator is different than the one defined by [37] (see (2.7)) on two levels.
First, for computational purposes that will be made clearer in section 4, we replaced the
trace operator by the Froebenius norm and we used soft penalties instead of hard equality
constraints. Second, as mentioned above, we rely on the Brenier formulation of OT (2.8)
instead of the Kantorovitch formulation (1.3). The rational behind this slight variation is
that as n grows, denoting ( \^f, \^g) the minimizers of (2.10), we expect the empirical potentials
to be linked as \^g\approx \scrL X( \^f) and a fortiori that \scrE \^\mu ,\^\nu ( \^f, \^g)\approx \^JX( \^f) so we can leverage the strong
convexity of the semidual.

2.4. Assumptions. We formally state our assumptions in this paragraph and discuss their
impact. Our first assumption is our main smoothness assumption on the transport potentials.
As discussed above, it allows us to both temper the curse of dimensionality and design tractable
estimators.

Assumption 2.5. The OT potentials (\phi 0,\psi 0) belong to H\alpha (X)\times H\alpha (Y ) and with \alpha > d+2.

Note that our smoothness assumption slightly differs from [21] on two different levels.
First we impose that \alpha > d + 2 which is essentially to ensure that H\alpha  - 1(X \times Y ) is indeed
an RKHS so we can apply the SoS trick ; the extra order of regularity required is a small
technical requirement that is developed in [37]. The other difference is that we make the
weaker assumption that (\phi 0,\psi 0) are in a 2-Sobolev space of order s instead of an \infty -Sobolev
space of order s. Our second assumption is a set of technical hypotheses on the measures \mu ,\nu .

Assumption 2.6. The measures \mu ,\nu are supported over X and Y , Lipschitz domains of \BbbR d.
Furthermore, we assume that \mu ,\nu have continuous densities with respect to the Lebesgue
measure that are bounded from above and below.

The goal of Assumption 2.6 is threefold: (i) it ensures that one can apply the Br\'ezis--
Mironescu inequalities [7] to quantities of the form \| f\| Lp(\mu ), (ii) it ensures that the spaces
X and Y are ``well-covered"" by the empirical counterparts \^\mu , \^\nu and (iii) it ensures that the
measure of points that are r-close for the quadratic distance to the boundary of the supports
vanishes as r goes to zero. Equipped with these two assumptions, we prove in the next section
that for well-chosen scalars (\lambda , \zeta ), we have \| \nabla \^f  - T0\| 2L2(\mu ) \lesssim n

 - \alpha 

\alpha +d/2 - 1 .

3. Statistical rates. A standard way to derive optimal error bounds in nonparametric
statistics is to rely on two key ingredients: the strong convexity of the true risk and the
concentration of the empirical risk toward the true risk. The combination of these two ingre-
dients, also known as localization techniques [39], lead to optimal error bounds scaling as 1/n
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 319

instead of the classical 1/
\surd 
n error rate. However, as mentioned in the previous section, our

empirical risk, which is the linear part of objective (2.10) is not strongly convex. Hence, we
first show that at the optimum, our linear risk nearly upper-bounds the semidual. Then we
proceed as in standard nonparametric statistics: we extend the strong convexity properties of
the semidual when the Legendre transform is restricted to the support of the measures and
we prove the concentration of the empirical risk toward the true risk in a localized fashion
using Br\'ezis--Mironescu inequalities. Beforehand, we show that our estimators are indeed well
defined.

Proposition 3.1. If \alpha > d + 1, there exist minimizers ( \^f, \^g, \^A) \in H\alpha +1(X) \times H\alpha +1(Y ) \times 
H\alpha  - 1(X \times Y ) for problem (2.10).

The proof is left to the appendix and relies on the Kakutani theorem. Equipped with this
result, we can start to prove the results stated above.

3.1. Upper-bound of the semidual. For potentials (f, g), let us define \scrE \mu ,\nu (f, g) := \langle f,\mu \rangle +
\langle g, \nu \rangle , the (deterministic) linear part of objective (2.10). In the following proposition, we prove
that at the optimum of problem (2.10), \scrE \mu ,\nu nearly upper-bounds the semidual JX .

Proposition 3.2. Under Assumptions 2.5 and 2.6, it holds for any 0\leq \delta < 1 that the mini-
mizers ( \^f, \^g, \^A) of problem (2.10) verify with probability at least 1 - \delta 

JX( \^f) - \scrE \mu ,\nu ( \^f, \^g)\lesssim (n/ log(n/\delta )) - (\alpha  - 1 - d)/(2d) \^R+ (n/ log(n/\delta )) - 1/(2d)

\surd 
1 + \lambda \surd 
\zeta 

,

where \^R is defined as \^R := 1 + \| \^f\| H\alpha +1(X) + \| \^g\| H\alpha +1(Y ) + \| \^A\| F and \lesssim hides constants that
are independent of n, \delta , \zeta , and \lambda .

Proof. Using Theorem 2.3, there exist (wi)
d
i=1 \in H\alpha  - 1(X \times Y ) such that the optimal

potentials (f0, g0) verify for all (x, y)\in X \times Y

f0(x) + g0(y) - x\top y=

d\sum 
i=1

w2
i (x, y) .

Defining the operator

A :=

d\sum 
i=1

wi \otimes wi ,(3.1)

the equality above can be rewritten as f0(x) + g0(y)  - x\top y = \gamma A(x, y). Hence, using the
optimality conditions of (2.10), it holds that

\zeta 
\sum 
l

\biggl( 
\^f(xl) + \^g(yl) - x\top l yl  - \gamma \^A(xl, yl)

\biggr) 2

\leq \lambda (\| f0\| 2H\alpha +1(X) + \| g0\| 2H\alpha +1(Y ) + \| A\| 2F )

+ \scrE \mu ,\nu (f0, g0) .

Now, using the fact that \scrE \mu ,\nu (f0, g0)\leq \| f0\| W\infty 
0 (X) + \| g0\| W\infty 

0 (Y ), we recover that

\zeta 
\sum 
l

\biggl( 
\^f(xl) + \^g(yl) - x\top l yl  - \gamma \^A(xl, yl)

\biggr) 2

\lesssim 1 + \lambda .
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320 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

In particular, for all indexes l we have

\^f(xl) + \^g(yl) - x\top l yl  - \gamma \^A(xl, yl)\lesssim 

\surd 
1 + \lambda \surd 
\zeta 

.(3.2)

Let us define \^\theta (x, y) := \^f(x) + \^g(y) - x\top y  - \gamma \^A(x, y) for (x, y) \in X \times Y . As a combination of

functions in H\alpha  - 1(X \times Y ), \^\theta is indeed in H\alpha  - 1(X \times Y ) and its norm can be upper-bounded
as

\| \^\theta \| H\alpha  - 1(X\times Y ) \lesssim (1 + \| \^f\| H\alpha +1(X) + \| \^g\| H\alpha +1(Y ) + \| \^A\| F ) .(3.3)

Using the sampling inequalities [42, Proposition 2.4] together with (3.2) and (3.3), we obtain

\| \^\theta \| W\infty 
\alpha  - 1(X\times Y ) \lesssim h\alpha  - 1 - d \^R+ h

\surd 
1 + \lambda \surd 
\zeta 

,

where h is the filling distance defined as h := sup(x,y)\in X\times Y minl \| (x, y) - (xl, yl)\| 2 and \^R :=

(1 + \| \^f\| H\alpha +1(X) + \| \^g\| H\alpha +1(Y ) + \| \^A\| F ). Now, as shown in [37, Lemma 12], for all 1 > \delta > 0
we have under Assumption 2.6 that with probability at least 1 - \delta , if n \geq n0, where n0 is a
constant independent of n, \delta , we have h\lesssim (n/ log(n/\delta )) - 1/(2d), and hence with probability at
least 1 - \delta for all (x, y)\in X \times Y ,

\^g(y) - (x\top y - \^f(x))\gtrsim  - (n/ log(n/\delta )) - (\alpha  - 1 - d)/(2d) \^R - (n/ log(n/\delta )) - 1/(2d)

\surd 
1 + \lambda \surd 
\zeta 

.

Taking the maximum of the right-hand side with respect to x and integrating y over \nu , we
recover that with probability at least 1 - \delta 

\scrE \mu ,\nu ( \^f, \^g) - JX( \^f)\gtrsim  - (n/ log(n/\delta )) - (\alpha  - 1 - d)/(2d) \^R - (n/ log(n/\delta )) - 1/(2d)

\surd 
1 + \lambda \surd 
\zeta 

.

3.2. Strong convexity of the semidual. We prove in this paragraph that the semidual is
strongly convex around its optimum in our setting. Indeed this result is already known when
the following assumptions hold:

1. Either the semidual is evaluated on convex, smooth potentials [21, Proposition 10]
or the semidual is evaluated on convex potentials (nonnecessarily smooth) with a
continuous target measure [15, Theorem 2.1].

2. The Legendre transform is taken globally over \BbbR d and is defined as f\ast (y) : y \mapsto \rightarrow 
supx\in \BbbR d x\top y - f(x).

Yet none of these two requirements holds in our setting as (1) our estimators ( \^f, \^g) are not
guaranteed to be convex and (2) the Legendre transform is taken only locally over X. Instead,
we prove that [21, Proposition 10] nearly holds when the Legendre transform is taken locally
at the price of restricting the measure \mu to points that are ``not too close"" to the boundary.
In what follows, we shall denote for some compact set \Omega and some point x \in \BbbR d the distance
from x to \Omega as d(x,\Omega ) := infy\in \Omega \| x - y\| 2.
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 321

Proposition 3.3. If \mu is a probability measure supported on a bounded open set X and \nu is
a probability measure such that the OT map T0 =\nabla f0 from \mu to \nu exists, then for a potential
f with an M -Lipschitz gradient over X and strictly positive distance r > 0, we have

\| \nabla f  - T0\| 2L2(\mu r)
\leq 2Mf

r (JX(f) - JX(f0)) ,

where \mu r is the measure \mu restricted to Ar = \{ x\in X| d(x,\partial X)> r\} the set of points the are at

least at distance r from the boundary and Mf
r =max(M,

\| \nabla f - T0\| W\infty 
0

(X)

r ).

Before starting the proof, note that as X expands toward the whole space \BbbR d, we can take
r arbitrary large and recover the result \| \nabla f  - T0\| 2L2(\mu ) \leq 2M(J(f)  - J(f0)). Even though

this result is standard in OT literature [21, 24, 38], we manage to obtain it without assuming
the convexity of the potential f . Unfortunately, we did not manage to prove the tightness of
the upper-bound, and in particular, we do not know if a similar result holds when r = 0; we
postpone this open question for future work.

Proof. We begin by noting that, since T0 is a bijection between X and the support of \nu ,
the term \langle \scrL X(f0), \nu \rangle can be rewritten as \langle f\ast 0 \circ T0, \mu \rangle , where f\ast 0 is the Legendre transform of
f0 taken globally. Similarly, the term \langle \scrL X(f), \nu \rangle can be rewritten as \langle \scrL X(f) \circ T0, \mu \rangle . Hence
the difference JX(f) - JX(f0) reads

JX(f) - JX(f0) =

\int 
f(x) +\scrL X(f)(T0(x)) - f0(x) - f\ast 0 (T0(x))d\mu (x) .(3.4)

The Fenchel--Young equality gives for all x in \BbbR d that f\ast 0 (T0(x)) = x\top T0(x) - f0(x), and hence
the f0 terms cancel in the formula above and we obtain

JX(f) - JX(f0) =

\int 
f(x) +\scrL X(f)(T0(x)) - x\top T0(x)d\mu (x) .(3.5)

Now, by definition of the Legendre transform, the integrand reads pointwise for all u\in X

f(x) +\scrL X(f)(T0(x)) - x\top T0(x)\geq f(x) + u\top T0(x) - f(u) - x\top T0(x) .(3.6)

In particular, for u = x, the right-hand side is zero, and hence it proves that the integrand
is pointwise positive. Hence, for r > 0, we can lower-bound the difference JX(f) - JX(f0) by
the integrand integrated over the restricted measure \mu r

JX(f) - JX(f0)\geq 
\int 
f(x) +\scrL X(f)(T0(x)) - x\top T0(x)d\mu r(x) .(3.7)

Let us now use again (3.6) with u\alpha (x) := x+ \alpha (T0(x) - \nabla f(x)), where \alpha > 0 is to be chosen
later. First, we need to chose \alpha such that u belongs to X. Let us define \alpha \ast as

\alpha \ast = inf Bx := \{ \alpha > 0 | u\alpha (x) /\in X\} .

SinceX is open, \alpha \ast is indeed strictly positive. For arbitrarily small \epsilon > 0, one has u\alpha \ast  - \epsilon (x)\in X
and hence u\alpha \ast (x) \in X. Furthermore, as X is opened, we can guarantee that u\alpha \ast (x) /\in X.
Hence, u\alpha \ast (x)\in X \cap (\BbbR d \setminus X) = \partial X. Now recall that x\in Ar, so in particular, \| x - u\ast \alpha (x)\| > r,
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322 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

i.e., \alpha \ast \| \nabla f(x) - T0(x)\| > r. Hence by definition, \alpha \ast > r/\| \nabla f  - T0\| W\infty 
0 (X), and as a conse-

quence, it suffices to take \alpha \leq r/\| \nabla f - T0\| W\infty 
0 (X) to guarantee that u\alpha (x)\in X. Noting that for

all t\in [0,1], we have tx+(1 - t)u\alpha (x) = u(1 - t)\alpha (x)\in X, we can apply the Taylor inequality to

the integrand at order 2 with respect to \alpha . Denoting \Delta (x) = f(x)+\scrL X(f)(T0(x)) - x\top T0(x),
we recover for all x in the support of \mu r

\Delta (x)\geq f(x) + u\alpha (x)
\top T0(x) - f(u\alpha (x)) - x\top T0(x)

\geq f(x) + \alpha (T0(x) - \nabla f(x))\top T0(x) - f(x) - \alpha \nabla f(x)\top (T0(x) - \nabla f(x))

 - M\alpha 2

2
\| \nabla f(x) - T0(x)\| 2

= \alpha \| T0(x) - \nabla f(x)\| 2  - M\alpha 2

2
\| \nabla f(x) - T0(x)\| 2 .

Taking the maximum with respect to 0\leq \alpha \leq r/\| \nabla f  - T0\| W\infty 
0 (X) is separated into two cases:

either 1
M < r/\| \nabla f  - T0\| W\infty 

0 (X) and we get that the maximum of the right-hand side above is
1

2M \| \nabla f(x) - T0\| 2 or 1
M \geq r/\| \nabla f  - T0\| W\infty 

0 (X) and we obtain the following lower-bound:

\Delta (x)\geq 
\biggl( 
r - M

2

r2

\| \nabla f  - T0\| W\infty 
0 (X)

\biggr) 
\| \nabla f(x) - T0(x)\| 2

\| \nabla f  - T0\| W\infty 
0 (X)

(3.8)

\geq r\| \nabla f(x) - T0(x)\| 2

2\| \nabla f  - T0\| W\infty 
0 (X)

.(3.9)

Hence we have

JX(f) - JX(f0)\geq min

\biggl( 
1

2M
,

r

2\| \nabla f  - T0\| W\infty 
0 (X)

\biggr) 
\| \nabla f  - T0\| 2L2(\mu r)

,(3.10)

which gives the desired result.

Now, it remains to control the gap between \| \nabla f  - T0\| L2(\mu r) and \| \nabla f  - T0\| L2(\mu ). To this

end, the lemma below guarantees, for X a Lipschitz domain, \mu (\BbbR d \setminus Ar) is O(r). It allows us
to bound the gap as

\| \nabla f  - T0\| 2L2(\mu ) \lesssim 
\| \nabla f  - T0\| 2L2(\mu r)

r
+ r\| \nabla f  - T0\| 2W\infty 

0 (X) ;

in particular, as \nabla \^f converges toward T0, the gap can be tighten.

Lemma 3.4. Let \mu be a probability measure supported by X a Lispchitz domain of \BbbR d. If \mu 
is continuous with respect to the Lesbegue measure with a density bounded from above by \rho 0,
then there exists r0 such that for all r\leq r0, it holds that \mu (\BbbR d \setminus Ar)\lesssim \rho 0r.

The proof is left to the appendix.

3.3. Localized concentration. In this paragraph, we collect the last technical result to
derive our statistical rates. We derive a concentration bound for the empirical process \langle g,\mu  - \^\mu \rangle 
when \mu is supported overX a compact subset of \BbbR d with a Lipschitz boundary and g is assumed
to belong to some Sobolev space H\beta (X) with \beta > d/2. We highlight the fact that while
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 323

standard concentration results rely on (localized) metric entropy bounds, we use instead the
Pinelis inequality combined with Br\'ezis--Mironescu inequalities. Had we relied on the former,
we would not have matched the minimax upper-bounds in [21] in the highly smooth regime.

Proposition 3.5. Let \mu be a continuous probability measure bounded from below, supported
over X a connected bounded subset of \BbbR d with Lipschitz boundary, and let \^\mu be its n-samples
empirical counterpart. Let g be a potential belonging to H\beta (X) with \beta >max(1, d/2). For any
0< \delta < 1 and \epsilon > 0 such that d/2 + \epsilon \leq \beta , it holds with probabilty at least 1 - \delta that

\langle g,\mu  - \^\mu \rangle \lesssim log(2/\delta )

\epsilon 
\surd 
n

\| \nabla g\| 
\beta  - d/2 - \epsilon 

\beta  - 1

L2(\mu ) \| g\| 
d/2+\epsilon  - 1

\beta  - 1

H\beta (X) .(3.11)

Proof. Defining the mean of g over X as m=
\int 
x g(x)dx, we first observe that \langle g,\mu  - \^\mu \rangle =

\langle g  - m,\mu  - \^\mu \rangle . Then, we define the kernel mean-embedding as w\mu = \BbbE Z\sim \mu [k(Z, \cdot )], where k
is the reproducing kernel of Hd/2+\epsilon (X). Using this definition and reproducing property, we
have

\langle g,\mu  - \^\mu \rangle =
\int 
x
(g(x) - m) d(\mu (x) - \^\mu (x))(3.12)

=

\int 
x
\langle g - m,k(x, \cdot )\rangle Hd/2+\epsilon (X) d(\mu (x) - \^\mu (x))(3.13)

= \langle g - m,w\mu  - w\^\mu \rangle Hd/2+\epsilon (X)(3.14)

\leq \| g - m\| Hd/2+\epsilon (X)\| w\mu  - w\^\mu \| Hd/2+\epsilon (X) ,(3.15)

where the last inequality is obtained using Cauchy--Schwartz. For any 0 < \delta < 1, we can
upper-bound the second term of the right-hand side: the Pinelis inequality [9] yields that
with probability at least 1 - \delta ,

\| w\mu  - w\^\mu \| Hd/2+\epsilon (X) \lesssim 
log(2/\delta )

\epsilon 
\surd 
n

.

The first term is upper-bounded using [7, Theorem 1] with p= p1 = p2 = 2, s= d/2+\epsilon , s1 = 1,
and s2 = \beta , and we obtain

\| g - m\| Hd/2+\epsilon (X) \lesssim \| g - m\| 
\beta  - d/2 - \epsilon 

\beta  - 1

H1(X) \| g - m\| 
d/2+\epsilon  - 1

\beta  - 1

H\beta (X) .

The term \| g  - m\| H1(X) is decomposed as \| g  - m\| H1(X) = \| \nabla g\| L2(X) + \| g  - m\| L2(X). Since\int 
X g(x) - m dx = 0 and X is a bounded connected subset of \BbbR d with Lipschitz, we can use
the Poincar\'e--Wirtinger inequality [26] to recover \| g  - m\| L2(X) \lesssim \| \nabla g\| L2(X). Using the fact
that \mu has a density over X bounded from below, we get \| \nabla g\| L2(X) \lesssim \| \nabla g\| L2(\mu ) and hence
with probability at least 1 - \delta 

\langle g,\mu  - \^\mu \rangle \lesssim log(2/\delta )

\epsilon 
\surd 
n

\| g - m\| 
d/2+\epsilon  - 1

\beta  - 1

H\beta (X) \| \nabla g\| 
\beta  - d/2 - \epsilon 

\beta  - 1

L2(\mu ) .(3.16)

We conclude using the fact that \| g - m\| H\beta (X) \leq 2\| g\| H\beta (X).

Equipped with this result, we now have all the ingredients to derive the statistical rates
of our estimator of the potentials.
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324 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

3.4. Proof of the main result. This paragraph is dedicated to the analysis of the conver-
gence of our empirical estimator \nabla \^f toward the OT map T0 from \mu to \nu using the results from
the three subsections above. Equivalently, we shall study at the same time the convergence
of \nabla \^g toward the inverse transport map T - 1

0 , i.e., the OT map from \nu to \nu .

Theorem 3.6. Under Assumptions 2.5 and 2.6 and the additional assumption d\geq 2, if we

set \lambda n = n
 - \mathrm{m}\mathrm{i}\mathrm{n}(\alpha  - 1 - d

2d
, - \alpha 

\alpha +d/2 - 1
)
and \zeta = \lambda  - 2

n n - 1/d, then, denoting T0 the OT map from \mu to \nu ,
the minimizers ( \^f, \^g) of the empirical problem 2.10 verify

\BbbE [\| \nabla \^f  - T0\| 2L2(\mu ) + \| \nabla \^g - T - 1
0 \| 2L2(\nu )]\lesssim \lambda 

\mathrm{m}\mathrm{i}\mathrm{n}(1, 2

1+3d/(2\alpha )
)

n ,(3.17)

where \lesssim hides poly-log factors in n and constants that do not depend on n.

Hence, as claimed in the introduction, when the smoothness parameter \alpha is sufficiently
large, we have \lambda n \sim n

 - \alpha 

\alpha +d/2 - 1 and we match exactly the minimax rate found in [21]. While

the slow rate n - 
\alpha  - 1 - d

2d could indeed be expected in the less smooth regime as it quantifies
how much the constraint f(x) + g(y)\geq xy\top is violated, the extra 2

1+3d/(2\alpha ) exponent may be
an artifact of our proof. It comes from the fact in Proposition 3.2 that we only managed to
prove strong convexity of the semidual with respect to the L2(\mu r) seminorm, where \mu r is the
measure \mu restricted to the points that are at least at distance r from the boundary of its
support, instead of the L2(\mu ) seminorm, with an upper-bound degrading as r\rightarrow 0. However,
this extra exponent can be removed by slightly tweaking our estimator. The idea is to sample
the cost SoS constraint on a domain larger than X \times Y : instead of imposing the (soft) cost
constraint over the pairs (xi, yi) one can inject noise and impose the cost constraint as

f(xi + \epsilon 1i ) + g(yi + \epsilon 2i ) - (xi + \epsilon 1i )(yi + \epsilon 2i )
\top  - \gamma A(xi + \epsilon 1i , yi + \epsilon 2i )<< 1 ,

where the \epsilon 1i , \epsilon 
2
i are uniformly drawn in the ball B(0, \epsilon 0) with \epsilon 0 fixed; this simple ``oversam-

pling"" strategy allows us to get rid of the edge effect introduced by Proposition 3.2.

Proof. The proof is decomposed into the following main steps: (1) we use the results of
section 3.2 on the strong convexity of the semidual to upper-bound the error \| \nabla \^f - T0\| L2(\mu ) by

JX( \^f) - JX(f0) and a residual term, (2) we use the upper-bound of Proposition 3.2 to replace
the difference of the semiduals by the difference of the nonstochastic objectives \scrE \mu ,\nu and use
the concentration result of Proposition 3.5 to concentrate the empirical objective toward the
nonstochastic objective; we obtain an upper-bound on the error that depends on the RHKS
norms of the empirical potentials, (3) we use the same type of arguments to bound the RKHS
norm of the empirical potentials, (4) we obtain two coupled upper-bounds that relate the error
and the RKHS norm of the empirical potentials, and we conclude. Note that the main difficulty
of the proof comes from the fact that we softly penalize the norms \| \^f\| H\alpha +1(X),\| \^g\| H\alpha +1(Y ) and

\| \^A\| 2F instead of imposing a hard constraint that would require a priori knowledge of these
objects and lead to a less adaptive estimator. To ease the understanding of the proof, we
advise the reader to treat these quantities as O(1) in the first place.
(1) For a Lipschitz function h and r > 0, we define the error e2,\mu (h) := (\| \nabla h\| 2L2(\mu ))

1/2. For

any probability measure \mu , the error e2,\mu ( \^f  - f0) can be upper-bounded as

e22,\mu (
\^f  - f0)\leq e22,\mu r

( \^f  - f0) + \| \nabla \^f  - T0\| 2W\infty 
0 (X)\mu (\BbbR 

d \setminus Ar) ,
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 325

where Ar is defined as Ar = \{ x \in X | d(x,\partial X)> r\} and where \mu r is the measure \mu restricted
to Ar that is such that for all Borel sets B, \mu r(B) = \mu (B\cap Ar). Using Proposition 3.3, if r > 0
is sufficiently small, the first term is upper-bounded as

e22,\mu r
( \^f  - f0)\leq 2

\biggl( 
\| \^f\| W\infty 

2 (X) +
\| \nabla \^f  - T0\| W\infty 

0 (X)

r

\biggr) 
(JX( \^f) - JX(f0)) ,

and using Lemma 3.4 we have \mu (\BbbR d \setminus Ar) \lesssim r. Hence, denoting for some Lipschitz function
h and some measure \mu the supremum norm of the gradient over the support of \mu , e\infty ,\mu (h) =
\| \nabla h\| L\infty (\mu ), we get with this notation

e22,\mu (
\^f  - f0)\lesssim 2

\biggl( 
\| \^f\| W\infty 

2 (X) +
e\infty ,\mu ( \^f  - f0)

r

\biggr) 
(JX( \^f) - JX(f0)) + re2\infty ,\mu (

\^f  - f0) .(3.18)

We now upper-bound the term e\infty ,\mu ( \^f - f0) by e2,\mu ( \^f - f0) using Gagliardo--Niremberg inequal-

ities [27, Theorem 1]. Since both \nabla \^f and \nabla f0 belong to the RKHS H\alpha (X) componentwise,
it holds that

e\infty ,\mu ( \^f  - f0)\lesssim \| \^f  - f0\| 
d

2\alpha 

H\alpha +1(X)\| \nabla \^f  - T0\| 
1 - d

2\alpha 

L2(X) + \| \nabla \^f  - T0\| 
1 - d

2\alpha 

L2(X) .(3.19)

Since \mu has a bounded density with respect to Lebesgue over X, we can upper-bound \| \nabla \^f  - 
T0\| L2(X) by \| \nabla \^f  - T0\| L2(\mu ) and we recover

e\infty ,\mu ( \^f  - f0)\lesssim e2,\mu ( \^f  - f0)
1 - d

2\alpha (\| \^f\| 
d

2\alpha 

H\alpha +1(X) + 1) ,(3.20)

which eventually yields

e22,\mu (
\^f  - f0)\lesssim 

\biggl( 
\| \^f\| W\infty 

2 (X) +
e2,\mu ( \^f  - f0)

1 - d

2\alpha (\| \^f\| 
d

2\alpha 

H\alpha +1(X) + 1)

r

\biggr) 
(JX( \^f) - JX(f0))

+ re2,\mu ( \^f  - f0)
2 - d

\alpha (\| \^f\| 
d

2\alpha 

H\alpha +1(X) + 1)2 .

(3.21)

Conversely, a similar result holds for the empirical potential \^g

e22,\nu (\^g - f\ast 0 )\lesssim 

\biggl( 
\| \^g\| W\infty 

2 (Y ) +
e2,\nu (\^g - f\ast 0 )

1 - d

2\alpha (\| \^g\| 
d

2\alpha 

H\alpha +1(Y ) + 1)

r

\biggr) 
(JY (\^g) - JY (f

\ast 
0 ))

+ re2,\nu (\^g - f\ast 0 )
2 - d

\alpha (\| \^g\| 
d

2\alpha 

H\alpha +1(Y ) + 1)2 .

(3.22)

(2) Now let us upper-bound the term JX( \^f) - JX(f0) with high probability. This term can
be rewritten as

JX( \^f) - JX(f0) = (JX( \^f) - \scrE \mu ,\nu ( \^f, \^g)) + (\scrE \mu ,\nu ( \^f, \^g) - \scrE \mu ,\nu (f0, f\ast 0 )) ,(3.23)

where we recall the notation \scrE \mu ,\nu (f, g) = \langle f,\mu \rangle + \langle g, \nu \rangle . Using Proposition 3.2, we have for all
0< \delta < 1 with probability at least 1 - \delta 

JX( \^f) - \scrE \mu ,\nu ( \^f, \^g)\lesssim (n/ log(n/\delta )) - (\alpha  - 1 - d)/(2d) \^R+ (n/ log(n/\delta )) - 1/(2d)

\surd 
1 + \lambda \surd 
\zeta 

,(3.24)
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326 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

where \^R is defined as \^R := 1 + \| \^f\| H\alpha +1(X) + \| \^g\| H\alpha +1(Y ) + \| \^A\| F . Now, let us introduce the

empirical risk \scrE \^\mu ,\^\nu ( \^f, \^g) in the second term as

\scrE \mu ,\nu ( \^f, \^g) - \scrE \mu ,\nu (f0, f\ast 0 ) = \scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) - \scrE \^\mu ,\^\nu ( \^f, \^g) + \scrE \mu ,\nu ( \^f, \^g) - \scrE \mu ,\nu (f0, f\ast 0 )

+ \scrE \^\mu ,\^\nu ( \^f, \^g) - \scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) .

We upper-bound the last term difference \scrE \^\mu ,\^\nu ( \^f, \^g) - \scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) using the optimality of the

empirical potentials ( \^f, \^g) as

\scrE \^\mu ,\^\nu ( \^f, \^g)\leq \scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) + \lambda (\| f0\| 2H\alpha +1(X) + \| f\ast 0 \| 2H\alpha +1(Y ) + \| A\| 2F ) ,(3.25)

where the operator A is defined in (3.1). The first terms can be rewritten as

\scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) - \scrE \^\mu ,\^\nu ( \^f, \^g) + \scrE \mu ,\nu ( \^f, \^g) - \scrE \mu ,\nu (f0, f\ast 0 ) = \langle f0  - \^f, \^\mu  - \mu \rangle + \langle f\ast 0  - \^g, \^\nu  - \nu \rangle .

Let us now denote \Delta ( \^f, \^g) := \langle f0  - \^f, \^\mu  - \mu \rangle + \langle f\ast 0  - \^g, \^\nu  - \nu \rangle and let us use Proposition 3.5
with \beta = \alpha + 1 to upper-bound with probability at least 1 - 2\delta the right-hand side as

\Delta ( \^f, \^g)\lesssim 
log(2/\delta )

\epsilon 
\surd 
n

\biggl[ 
e2,\mu ( \^f  - f0)

\alpha +1 - d/2 - \epsilon 

\alpha \| \^f  - f0\| 
d/2+\epsilon  - 1

\alpha 

H\alpha +1(X)

+ e2,\nu (\^g - f\ast 0 )
\alpha +1 - d/2 - \epsilon 

\alpha \| \^g - f\ast 0 \| 
d/2+\epsilon  - 1

\alpha 

H\alpha +1(Y )

\biggr] 
.

(3.26)

Assuming that \lambda \leq 1, we have with probability at least 1 - 2\delta 

JX( \^f) - JX(f0)\lesssim \lambda + \^R(n/ log(n/\delta )) - 
\alpha  - 1 - d

2d + (n/ log(n/\delta )) - 1/(2d)\zeta  - 1/2

+
log(2/\delta )

\epsilon 
\surd 
n

e2,\mu ( \^f  - f0)
\alpha +1 - d/2 - \epsilon 

\alpha \| \^f  - f0\| 
d/2+\epsilon  - 1

\alpha 

H\alpha +1(X)

+
log(2/\delta )

\epsilon 
\surd 
n

e2,\nu (\^g - f\ast 0 )
\alpha +1 - d/2 - \epsilon 

\alpha \| \^g - f\ast 0 \| 
d/2+\epsilon  - 1

\alpha 

H\alpha +1(Y ) ,

(3.27)

and a similar result holds for JY (\^g) - JY (f\ast 0 ). Let us now merge together the results from the
two previous paragraphs. Denoting \^Z = e22,\mu (

\^f  - f0) + e22,\nu (\^g  - f\ast 0 ) and picking \zeta such that

n - 1/(2d)\zeta  - 1/2 = \lambda yields that with probability at least 1 - 4\delta that for r\leq r0, we have

\^Z \lesssim 

\biggl( 
\^R+

\^R
d

2\alpha \^Z1/2 - d

4\alpha 

r

\biggr) \biggl( 
\lambda log(n/\delta )

1

2d + \^R(n/ log(n/\delta )) - 
\alpha  - 1 - d

2d

+
log(2/\delta )

\epsilon 
\surd 
n

\^Z
\alpha +1 - d/2 - \epsilon 

2\alpha \^R
d/2+\epsilon  - 1

\alpha 

\biggr) 
+ r \^Z1 - d

2\alpha \^R
d

2\alpha .

(3.28)

Hence, provided that the quantity \^R remains bounded as n\rightarrow \infty , we can obtain the conver-
gence of \^Z as n grows.
(3) To ensure that \^R is bounded, recall that the optimality conditions of estimator (2.10)
imply that

\lambda \^R2 \leq \lambda (\| f0\| 2H\alpha +1(X) + \| f\ast 0 \| 2H\alpha +1(Y ) + \| A\| 2F ) + \scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) - \scrE \^\mu ,\^\nu ( \^f, \^g).(3.29)
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Then, we handle the term \scrE \^\mu ,\^\nu (f0, f
\ast 
0 )  - \scrE \^\mu ,\^\nu ( \^f, \^g) in a similar fashion as in the previous

paragraph. We decompose as

\scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) - \scrE \^\mu ,\^\nu ( \^f, \^g) = \scrE \mu ,\nu (f0, f\ast 0 ) - \scrE \mu ,\nu ( \^f, \^g) +\Delta ( \^f, \^g) ,(3.30)

where we defined \Delta ( \^f, \^g) := \scrE \^\mu ,\^\nu (f0, f
\ast 
0 ) - \scrE \^\mu ,\^\nu ( \^f, \^g) - (\scrE \mu ,\nu (f0, f\ast 0 ) - \scrE \mu ,\nu ( \^f, \^g)). The first term

can be rewritten as

\scrE \mu ,\nu (f0, f\ast 0 ) - \scrE \mu ,\nu ( \^f, \^g) = JX(f0) - JX( \^f) + (JX( \^f) - \scrE \mu ,\nu ( \^f, \^g)) .(3.31)

The term JX(f0)  - JX( \^f) is negative as f0 is the minimizer of JX and the term JX( \^f)  - 
\scrE \mu ,\nu ( \^f, \^g) is upper-bounded with probability 1 - \delta using again Proposition 3.2 as

JX( \^f) - \scrE \mu ,\nu ( \^f, \^g)\leq (n/ log(n/\delta )) - (\alpha  - 1 - d)/(2d) \^R+ \lambda log(n/\delta )
1

2d .(3.32)

Conversely, remark that \Delta ( \^f, \^g) = \langle f0 - \^f, \^\mu  - \mu \rangle + \langle f\ast 0  - \^g, \^\nu  - \nu \rangle and hence we can use again
Proposition 3.5 to recover with probability at least 1 - 2\delta 

\Delta ( \^f, \^g)\leq log(2/\delta )

\epsilon 
\surd 
n

\biggl[ 
\| \nabla \^f  - T0\| 

\alpha +1 - d/2 - \epsilon 

\alpha 

L2(\mu ) \| \^f  - f0\| 
d/2+\epsilon  - 1

\alpha 

H\alpha +1(X)

+ \| \nabla \^g - T - 1
0 \| 

\alpha +1 - d/2 - \epsilon 

\alpha 

L2(\nu ) \| \^g - f\ast 0 \| 
d/2+\epsilon  - 1

\alpha 

H\alpha +1(Y )

\biggr] 
.

Hence we recover the upper-bound with probability at least 1 - 3\delta ,

\lambda \^R2 \lesssim \lambda log(n/\delta )
1

2d + (n/ log(n/\delta )) - 
\alpha  - 1 - d

2d \^R+
log(2/\delta )

\epsilon 
\surd 
n

\^Z
\alpha +1 - d/2 - \epsilon 

2\alpha \^R
d/2+\epsilon  - 1

\alpha .(3.33)

In particular, if \^Z converges to zero sufficiently fast, we can ensure that \^R is bounded up to
log factors.
(4) If we combine the conclusions of the paragraphs (2) and (3), we come up with the following
coupled upper-bounds on \^Z and \^R:\left\{           

\^Z \lesssim 

\biggl( 
\^R+

\^R
d
2\alpha \^Z1/2 - d

4\alpha 

r

\biggr) \biggl( 
\lambda log(n/\delta )

1

2d + \^R(n/ log(n/\delta )) - 
\alpha  - 1 - d

2d

+ \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n

\^Z
\alpha +1 - d/2 - \epsilon 

2\alpha \^R
d/2+\epsilon  - 1

\alpha 

\biggr) 
+ r \^Z1 - d

2\alpha \^R
d

2\alpha ,

\lambda \^R2 \lesssim \lambda log(n/\delta )
1

2d + (n/ log(n/\delta )) - 
\alpha  - 1 - d

2d \^R+ \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n

\^Z
\alpha +1 - d/2 - \epsilon 

2\alpha \^R
d/2+\epsilon  - 1

\alpha .

Recovering the parameters \lambda , \epsilon , and r such that \^R is bounded and such that \^Z converges as
fast as possible is now a purely algebraic problem and does not present much interest on its
own. Hence we conclude with the following lemma, whose proof is left to the appendix.

Lemma 3.7. Let (an) and (bn) be two positive sequences such that bn \geq 1 for all n that
verify \left\{             

an \lesssim 

\biggl( 
bn +

b
d
2\alpha 
n a

1/2 - d
4\alpha 

n

r

\biggr) \biggl( 
\lambda log(n/\delta )

1

2d + bn(n/ log(n/\delta ))
 - \alpha  - 1 - d

2d

+ \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n

\biggr) 
+ ra

1 - d

2\alpha 
n b

d

2\alpha 
n ,

\lambda b2n \lesssim \lambda log(n/\delta )
1

2d + (n/ log(n/\delta )) - 
\alpha  - 1 - d

2d bn +
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n
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328 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

for any \epsilon , \lambda \leq 1 and r \leq r0. Choosing \lambda n = n
 - \mathrm{m}\mathrm{i}\mathrm{n}( \alpha 

\alpha +d/2 - 1
, - \alpha  - 1 - d

2d
)
, r = r0\lambda 

3d

2\alpha +3d
n , and

\epsilon n = 1/ log(n), then one recovers

an \lesssim \lambda 
\mathrm{m}\mathrm{i}\mathrm{n}(1, 2

1+3d/(2\alpha )
)

n

\biggl( 
log(n) log(2/\delta )

\biggr) \mathrm{m}\mathrm{a}\mathrm{x}(6, 2\alpha +d

d - 1
)

:= cn .(3.34)

Applying the previous lemma to an = \^Z and bn = \^R with the appropriate parameters
yields that with probability at least 1  - 4\delta we have \^Z \lesssim cn, where cn is defined in (3.34).
There remains to obtain this result in expectation. Recall the optimality conditions that hold
with probability 1:

\lambda n \^R
2 \leq \scrE \mu ,\nu (f0, f\ast 0 ) + \lambda n(\| f0\| 2H\alpha +1(X)\| f

\ast 
0 \| 2H\alpha +1(Y ) + \| A\| 2F ) .(3.35)

In particular \^R2 \lesssim \lambda  - 1
n and, recalling that \^Z = e\mu ( \^f  - f0)

2 + e\mu (\^g  - f\ast 0 )
2 \lesssim \| \^f\| 2H\alpha +1(X) +

\| \^g\| 2H\alpha +1(Y ) + 1, we have a fortiori \^Z \lesssim \lambda  - 1
n . Let us now upper-bound \^Z in expectation: for

any 0< \delta < 1, it holds that

\BbbE [ \^Z]\lesssim \BbbE [ \^Z| \^Z \lesssim cn]\BbbP ( \^Z \lesssim cn) +\BbbE [ \^Z| \^Z \gtrsim cn]\BbbP ( \^Z \gtrsim cn) .

Using the results above, we have that \BbbE [ \^Z| \^Z \gtrsim cn]\BbbP ( \^Z \gtrsim cn) \lesssim 4\delta \lambda  - 1
n . Hence, it suffices to

take \delta n = 1/n to recover up to poly-log factors

\BbbE [ \^Z]\lesssim \lambda 
\mathrm{m}\mathrm{i}\mathrm{n}(1, 2

1+3d/(2\alpha )
)

n .(3.36)

4. Finite reformulation and associated complexity. We proved in the previous section
that our estimator (2.10) was statistically optimal for well-chosen regularizers (\lambda , \zeta ) yet it
remains to prove that our estimator is indeed tractable. At first glimpse, as problem (2.10)
optimizes over infinite dimensional objects, it is not clear that our estimator can be computed
numerically. Yet as detailed in the introduction and section 2, standard and SoS kernel tricks
apply; the following proposition shows that the objects involved in problem (2.10) admit a
finite reparametrization at the optimum.

Proposition 4.1. Denoting ( \^f, \^g, \^A) solutions of (2.10), there exist coefficients (fi)1\leq i\leq n,
(gj)1\leq j\leq n and a positive symmetric matrix (aij)1\leq i,j\leq n such that\left\{     

\^f(\cdot ) =
\sum n

i=1 fikX(xi, \cdot ),
\^g(\cdot ) =

\sum n
j=1 gjkY (yj , \cdot ),

\^A=
\sum n

i,j=1 aijkXY ((xi, yi), \cdot )\otimes kXY ((xj , yj), \cdot ) ,
(4.1)

where kX (resp., kY ) is the kernel of H\alpha +1(X) (resp., H\alpha +1(Y )), kXY is the kernel of
H\alpha  - 1(X \times Y ) whose explicit forms can be found in [37, Proposition 4], and where

kXY ((xi, yi), \cdot )\otimes kXY ((xj , yj), \cdot ) : h\in H\alpha  - 1(X \times Y ) \mapsto \rightarrow h((xj , yj))kXY ((xi, yi), \cdot ) .
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 329

Proof. Fixing the potentials (f, g), our problem (2.10) becomes

inf
A\in \scrS +(H\alpha  - 1(X\times Y ))

\langle f, \^\mu n\rangle + \langle g, \^\nu n\rangle + \lambda 

\biggl( 
\| A\| 2F + \| f\| 2H\alpha +1(X) + \| g\| 2H\alpha +1(Y )

\biggr) 
+ \zeta 

\sum 
l

\biggl( 
f(xl) + g(yl) - x\top l yl  - \gamma A(xl, yl)

\biggr) 2

.

Using [25, Theorem 1] immediately yields that at the optimum,

\^A=

n\sum 
i,j=1

aijkXY ((xi, yi), \cdot )\otimes kXY ((xj , yj), \cdot )

with (aij) a positive symmetric matrix. The finite reparametrization on \^f and \^g simply follows
from the standard kernel trick.

When we plug this finite reparametrization into our estimator (2.10), we obtain a finite
convex problem that we can provably solve in polynomial time. However, left under this form,
the problem is ill-suited to practical resolution as it is constrained over the cone of p.s.d. ma-
trices. Instead, we derive the dual formulation of the problem, which is unconstrained.

Proposition 4.2. Problem (2.10) is equivalent to

 - inf
u\in \BbbR n

1

4\lambda 
uTQu+

1

4\lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(   - 

n\sum 
j=1

ui\Phi j\Phi 
T
j

\right)  
+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

+
1

4\zeta 
\| u\| 2  - 1

2\lambda 

n\sum 
j=1

ujzj +
q2

4\lambda 
,(4.2)

where (\cdot )+ is the projection operator on the p.s.d. cone, Q = (kX(xi, xj) + kY (yi, yj))1\leq i,j\leq n,

zj = 2\lambda x\top j yj +
1
n [Q\bfone ]j, q

2 = 1
n2\bfone \top Q\bfone , and \Phi j is the jth column of K

1/2
XY with KXY given by

(kXY ((xi, yi), (xj , yj)))1\leq i,j\leq n. Furthermore, the following primal-dual relations holds (at the
optimum): \Biggl\{ 

\^f = 1
2\lambda 

\sum n
i=1(ui  - 

1
n)kX(xi, \cdot ) ,

\^g = 1
2\lambda 

\sum n
i=1(ui  - 

1
n)kY (yi, \cdot ) .

(4.3)

Proof. We start by plugging the finite dimensional reparametrization into problem (2.10),
which becomes

inf
(f,g)\in \BbbR n

A\in \BbbS +(\BbbR n)

1

n
\bfone \top KXf +

1

n
\bfone \top KY g+ \lambda 

\biggl( 
\| AKXY \| 2F + f\top KXf + g\top KY g

\biggr) 
+ \zeta \| KXf +KY g - Diag(XY \top ) - Diag(KXYAKXY )\| 2 ,

(4.4)

where KXY = (kXY ((xi, yi), (xj , yj)))i,j , KX = (kX(xi, xj))i,j , KY = (kY (yi, yj))i,j , X = (xi)i \in 
\BbbR n\times d, and Y = (yi)i \in \BbbR n\times d and where Diag(\cdot ) stands for the diagonal of the matrix and \bfone 

stands for the vector of ones. Making the change of variable B =K
1/2
XYAK

1/2
XY yields

inf
(f,g)\in \BbbR n

B\in \BbbS +(\BbbR n)

1

n
\bfone \top KXf +

1

n
\bfone \top KY g+ \lambda 

\biggl( 
\| B\| 2F + f\top KXf + g\top KY g

\biggr) 
+ \zeta \| KXf +KY g - Diag(XY \top ) - Diag(K

1/2
XYBK

1/2
XY )\| 

2 .

(4.5)
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330 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

Defining the function \Theta : u \in \BbbR n \mapsto \rightarrow \zeta \| u - Diag(XY \top )\| 2, the operator O : (f, g,B) \mapsto \rightarrow KXf +

KY g - Diag(K
1/2
XYBK

1/2
XY ), and

\Omega : (f, g,B) \mapsto \rightarrow 1

n
\bfone \top KXf +

1

n
\bfone \top KY g+ \lambda 

\biggl( 
\| B\| 2F + f\top KXf + g\top KY g

\biggr) 
+ \iota (B \in \BbbS +(\BbbR n)) ,

the previous formulation reads with this notation:

inf
(f,g)\in \BbbR n

B\in \BbbR n\times n

\Omega ((f, g,B)) +\Theta (O(f, g,B)) = sup
u\in \BbbR n

 - \Omega \ast (O\ast u) - \Theta \ast ( - u) ,(4.6)

where the equality comes from the Fenchel--Rockafellar theorem [30] and \Omega \ast and \Theta \ast are the
convex conjugate of \Omega and \Theta , respectively, and O\ast is the adjoint of O. Furthermore, at the
optimum we have O\ast u \in \partial \Omega ((f, g,B)), where \partial \Omega is the subgradient of \Omega . Let us compute
explicitly the convex conjugates and the adjoint: as a quadratic function, the conjugate of \Theta 
reads \Theta \ast (u) = \| u\| 2

4\zeta +u\top Diag(XY \top ). Let us compute the conjugate of \eta :B \mapsto \rightarrow \lambda \| B\| 2F + \iota (B \in 
\BbbS +(\BbbR n)),

\eta \ast (B) = sup
A\in \BbbS +(\BbbR n)

\langle A,B\rangle F  - \lambda \| A\| 2F

= - \lambda inf
A\in \BbbS +(\BbbR n)

 - 
\biggl\langle 
A,
B

\lambda 

\biggr\rangle 
F

+ \| A\| 2F

= - \lambda inf
A\in \BbbS +(\BbbR n)

\bigm\| \bigm\| \bigm\| \bigm\| A - B

2\lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

 - 
\| B\| 2F
4\lambda 2

=
\| B\| 2F
4\lambda 

 - 1

4\lambda 
inf

A\in \BbbS +(\BbbR n)
\| 2\lambda A - B\| 2F =

1

4\lambda 
(\| B\| 2F  - \| B+  - B\| 2F ) ,

where (\cdot )+ is the projection on the p.s.d. cone with respect to the Froebenius norm. Now recall
that for any A\in \BbbS +(\BbbR n), we have \langle A - B+,B - B+\rangle F [8, Lemma 3.1]; in particular, for A= 0
and A= 2B+, we recover that \langle B+,B - B+\rangle F = 0 and as a consequence \| B\| 2F  - \| B+ - B\| 2F =
\| B+\| 2F . Being the independent sum of \eta (\cdot ) and two quadratic functions, we deduce that

\Omega \ast ((f, g,B)) =
f\top K - 1

X f

4\lambda 
 - \bfone \top f

2n\lambda 
+

\bfone \top KX\bfone 

4n2\lambda 
+
g\top K - 1

Y g

4\lambda 
 - \bfone \top g

2n\lambda 
+

\bfone \top KY \bfone 

4n2\lambda 
+

1

4\lambda 
\| B+\| 2F .

Finally, one can check that O\ast u = (KXu,KY u, - 
\sum n

j=1 uj\Phi j\Phi 
\top 
j ), where the \Phi j are the j

column of K
1/2
XY . Plugging this formula into the conjugates yields

 - \Omega \ast (O\ast u) - \Theta \ast ( - u) = - u\top (KX +KY )u

4\lambda 
 - 

\| ( - 
\sum n

j=1 uj\Phi j\Phi 
\top 
j )+\| 2F

4\lambda 
 - \| u\| 2

4\zeta 

+
\bfone \top (KX +KY )u

2n\lambda 
+ u\top Diag(XY \top ) - \bfone \top (KX +KY )\bfone 

n2
.

Finally, the optimality condition O\ast u \in \partial \Omega ((f, g,B)) on the first two variables yields KXu=
1
n\bfone 

\top KX +2\lambda f\top KX and KY u=
1
n\bfone 

\top KY +2\lambda g\top KY , which is equivalent to f = 1
2\lambda 

\sum n
i=1 ui - 

1
n

and g= 1
2\lambda 

\sum n
i=1 ui - 

1
n , which eventually yields on the potentials themselves \^f = 1

2\lambda 

\sum n
i=1(ui - 

1
n)kX(xi, \cdot ) and \^g= 1

2\lambda 

\sum n
i=1(ui  - 

1
n)kY (yi, \cdot ).
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 331

Now that we have a finite unconstrained convex reformulation of our estimator, we can
derive its associated computational complexity. We chose an accelerated gradient descent
scheme to solve (4.2), which is known to be the most efficient first order method for convex
problems [8]. To recover its associated complexity, we simply need to compute the condition
number of the problem, which is given by the ratio of the smoothness of the objective divided
by its strong convexity constant.

Proposition 4.3. The condition number of problem (4.2) is given by \kappa := 1 + \zeta 
\lambda (\xi max(Q) +

\| Diag(KXY )\| 22), where \xi max(Q) is the squared largest singular value of Q. As a consequence,
solving problem (4.2) with an accelerated gradient method for a \tau precision can be done in
O(log(1/\tau )

\surd 
\kappa ) steps, where each step costs O(n3).

Proof. As a sum of convex terms and of u \mapsto \rightarrow 1
4\zeta \| u\| 

2, we immediately have that the

objective is at least 1
2\zeta -strongly convex. In order to compute the smoothness, we need to

compute the smoothness of h : u \mapsto \rightarrow \| ( - 
\sum n

j=1 uj\Phi j\Phi 
\top 
j )+\| 2F . Note that h can be decomposed

as h=\psi \circ \phi , where \phi (u) = - 
\sum n

j=1 uj\Phi j\Phi 
\top 
j and where \psi (B) = \| B+\| 2F , the squared Froebenius

norm of the projection on the p.s.d. cone with respect to the Froebenius norm. By the chain
rule, for any (u, v) in \BbbR n it holds that

\| \nabla h(u) - \nabla h(v)\| 22 = \| Jac(\phi )(u)\nabla \psi (\phi (u)) - Jac(\phi )(v)\nabla \psi (\phi (v))\| 22

=

n\sum 
j=1

\langle \Phi j\Phi \top 
j ,\nabla \psi (\phi (u)) - \nabla \psi (\phi (v))\rangle 2F

\leq 
n\sum 
j=1

\xi \mathrm{m}\mathrm{a}\mathrm{x}(\nabla \psi (\phi (u)) - \nabla \psi (\phi (v)))2\| \Phi j\| 42

\leq 

\left(  n\sum 
j=1

\| \Phi j\| 42

\right)  \| \nabla \psi (\phi (u)) - \nabla \psi (\phi (v))\| 2F .

Now recall that \psi is 2-smooth with respect to the Froebenius norm [20, equation (1.2)], so we
can deduce

\| \nabla h(u) - \nabla h(v)\| 2 \leq 2

\left(  n\sum 
j=1

\| \Phi j\| 42

\right)  1/2

\| \phi (u) - \phi (v)\| F

= 2

\left(  n\sum 
j=1

\| \Phi j\| 42

\right)  1/2

\| 
n\sum 
j=1

(uj  - vj)\Phi j\Phi 
\top 
j \| F

\leq 2

\left(  n\sum 
j=1

\| \Phi j\| 42

\right)  1/2
n\sum 
j=1

| uj  - vj | \| \Phi j\Phi \top 
j \| F

\leq 2\| u - v\| 2

\left(  n\sum 
j=1

\| \Phi j\| 42

\right)  1/2\left(  n\sum 
j=1

\| \Phi j\Phi \top 
j \| 2F

\right)  1/2

= 2\| u - v\| 2

\left(  n\sum 
j=1

\| \Phi j\| 42

\right)  .
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332 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

By the definition of \Phi j as the jth column of K
1/2
XY , it reads \| \Phi j\| 42 = (KXY )

2
jj , and hence

we recover that h is 2\| Diag(KXY )\| 22-smooth and by extension that the objective of (4.2) is
( 1
2\zeta +

1
2\lambda (\xi \mathrm{m}\mathrm{a}\mathrm{x}(Q)+\| Diag(KXY )\| 22))-smooth. In particular, the condition number of objective

(4.2) is given by \kappa = 1 + \zeta 
\lambda (\xi \mathrm{m}\mathrm{a}\mathrm{x}(Q) + \| Diag(KXY )\| 22). Using [8, Theorem 3.18], we deduce

that O(
\surd 
\kappa log(1/\tau )) steps of accelerated gradient descent are required to solve (4.2) with a

\tau precision. Finally, each step of the accelerated gradient descent only involves computing
the gradient of the objective (4.2) whose complexity is dominated by the computation of the
gradient of the function h defined above. By the chain rule, recall that the gradient of h
is given by \nabla h(u) = Jac(\phi )(u)\nabla \psi (\phi (u)), where \psi and \phi are also defined above. Using the
previous computations, recall that

Jac(\phi )(u)\nabla \psi (\phi (u)) = (\langle \Phi j\Phi \top 
j ,\nabla \psi (\phi (u))\rangle F )1\leq j\leq n

= (\Phi \top 
j \nabla \psi (\phi (u))\Phi j)1\leq j\leq n .

The complexity of evaluating \nabla \psi (\phi (u))\Phi j scales as O(n2) and has to be done n-times, which
leads to an overall complexity of O(n3) plus the complexity to compute \nabla \psi (\phi (u)). Using [20,
equation (1.2)], the gradient of \psi at some matrix B is given by \nabla \psi (B) = 2B+, where B+ is
the projection of B with respect to the Froebenius norm on the p.s.d. cone. If B is symmetric,
this projection is obtained by computing the spectral decomposition of B as B =

\sum n
j=1 \lambda juju

\top 
j

and by cropping the negative eigenvalues B+ =
\sum n

j=1max(0, \lambda j)uju
\top 
j [5, section 8.1.1]. Since

the spectral decomposition of an \BbbR n\times n matrix scales as O(n3), we recover a total complexity
of O(n3) per gradient step.

Let us give a worst case bound on \kappa so we have a fully explicit complexity with re-
spect to the number of samples n. First, since kXY ((x, y), (x, y)) = 1 [41], we exactly have
\| Diag(KXY )\| 22 = n. Furthermore, since \xi \mathrm{m}\mathrm{a}\mathrm{x}(Q)\leq Tr(Q), we have \xi \mathrm{m}\mathrm{a}\mathrm{x}(Q)+\| Diag(KXY )\| 22 \leq 
3n. It remains to bound the ratio \zeta 

\lambda : if one picks the values of \lambda and \zeta indicated in Theo-

rem 3.6, this ratio depends on the smoothness parameter \alpha . If \alpha \rightarrow d+2, we have \lambda \sim n - 1/2d

and \zeta \sim 1, which give a total complexity of O(n3.5+1/(4d) log(1/\tau )) to reach a \tau -precision. On
the other hand, in the highly smooth regime \alpha \rightarrow \infty , we have \lambda \sim 1/n and \zeta \sim n2, which give a
total complexity of O(n5 log(1/\tau )) to reach a \tau -precision; in particular, we do reach a polyno-
mial dimension-free worst case complexity. However, while the statistical rates improve with
the smoothness, the computational complexity on the contrary degrades with the smoothness.
We believe we could have avoided this poor dependence on the smoothness by resorting to
Newton-like methods, as done in [37]. However, we chose to use a first order method as it is
easier to implement and scales slightly better in practice.

5. Nystr\"om approximation and numerical simulations. In this section, we present nu-
merical simulations of our estimator when applied to simple examples of smooth OT problems
in medium dimensions. Yet beforehand, we used a Nystr\"om approximation strategy in order
to reduce the O(n3) per step complexity previously found. We highlight that we do not pro-
vide any theoretical guarantees for this heuristic, whose main goal was to allow for simulations
to run with n\sim 103 samples; without this heuristic, we hardly were able to run the accelerated
gradient for n\sim 102.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

2/
24

 to
 1

28
.9

3.
83

.3
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 333

5.1. Nystr\"om approximation. As showcased in the proof of Proposition 4.3, the main
computational bottleneck of the gradient descent is the computation of the SVD of the matrix
 - 
\sum n

j=1 uj\Phi j\Phi 
\top 
j followed by the computation of the scalars \Phi \top 

j ( - 
\sum n

j=1 uj\Phi j\Phi 
\top 
j )+\Phi j for a

given u \in \BbbR n. This complexity can be reduced by replacing the kernel matrix KXY that
appears in (4.5) by its Nystr\"om approximation [43] \~K =Kn,r

XY (K
r,r
XY )

 - 1(Kn,r
XY )

\top , where r << n
and Kr,r

XY is an r\times r matrix randomly extracted from KXY and Kn,r
XY is its corresponding n\times r

matrix. A square root of \~K is given by Kn,r
XY (K

r,r
XY )

 - 1/2 \in \BbbR n\times r, which amounts to replacing
the (\Phi j)1\leq j\leq n in problem (4.2) by the (\~\Phi j)1\leq j\leq n, the n rows of the matrix Kn,r

XY (K
r,r
XY )

 - 1/2.
Hence the approximated problem to solve is now given by

 - inf
u\in \BbbR n

1

4\lambda 
uTQu+

1

4\lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(   - 

n\sum 
j=1

ui \~\Phi j \~\Phi 
T
j

\right)  
+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

+
1

4\zeta 
\| u\| 2  - 1

2\lambda 

n\sum 
j=1

ujzj +
q2

4\lambda 
.(5.1)

The cost of forming the matrix  - 
\sum n

j=1 uj
\~\Phi j \~\Phi 

\top 
j is now given by O(nr2), the cost to compute

its SVD is O(r3), and the cost to compute the scalars \~\Phi \top 
j ( - 

\sum n
j=1 uj

\~\Phi j \~\Phi 
\top 
j )+

\~\Phi j is O(nr2).

Hence the total cost per gradient step is reduced to O(n2 + nr2), where the n2 term comes
from the computation of the vector Qu.

5.2. Synthetic experiments. We describe in this paragraph the setting of our numerical
experiments. We chose \mu and \nu to be centered Gaussians distributions whose covariance
matrices C\mu ,C\nu were drawn from a Wishart distribution with parameters Id, d, where Id is
the identity matrix of size d; for this choice of distributions \mu ,\nu the OT map T0 has a closed
form [36]. Then we drew n\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}, n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}, n\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{d} samples from \mu and \nu , respectively, and we solved
problem (5.1) with parameters \zeta = 103, r = 100 and Sobolev kernels Hs with s = 20. The
parameter \lambda was taken in \{ 10 - 7,10 - 6,10 - 5,10 - 4,10 - 3,10 - 2\} and for each value of \lambda , we solved
problem (5.1) on the training samples and recovered transport maps \^T \lambda 1 ,

\^T \lambda 2 from \mu to \nu and \nu 
to \mu , respectively. Then the parameter \lambda was chosen according to the following heuristic: we
picked the value of \lambda that minimized the sum MMD( \^T \lambda 1 (\^\mu \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}), \^\nu \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t})

2+MMD( \^T \lambda 2 (\^\nu \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}), \^\mu \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t})
2,

where MMD(\cdot ) is the maximum mean discrepancy [18] with respect to the RKHS Hs. Finally,
after selecting \lambda , we reported the empirical error MSE= \| \^T \lambda 1  - T0\| 2L2(\^\mu \mathrm{v}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{d})

+\| \^T \lambda 2  - T
 - 1
0 \| 2L2(\^\nu \mathrm{v}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{d})

.
The values of n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}, n\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{d} were both fixed to 1000, while the value of n\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n} ranged from 200 to
1000. This experiment was carried out in dimensions d= 2,4,8.

The results of the experiments are reported in Figure 1. In all cases, the error does decrease
with the number of samples yet it is unclear how the dimension affects the convergence rate

0 200 400 600 800 1000
# samples

10 1

10 2

MSE(T, T)

0 200 400 600 800 1000
# samples

10 1

10 2

MSE(T, T)

0 200 400 600 800 1000
# samples

10 1

10 2

MSE(T, T)

Figure 1. Transportation map mean square error (log scale) in dimensions 2, 4, and 8, respectively. Shaded
areas correspond to the standard deviation.
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334 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

a.k.a. the slope of the curves displayed in Figure 1. One possible explanation is that the rates
of convergence only hold for n sufficiently large (see Proposition 3.2). We plan to investigate an
implementation that could run at scale for future works and hopefully observe more accurately
the theoretical convergence rates stated in Theorem 3.6 as well as the effect of the dimension.

Appendix A. Additional results.

A.1. Proof of Proposition 3.1. The existence of \^A is ensured by [25, Proposition 7].
Let ( \^fk, \^gk) be a minimizing sequence of problem (2.10). Denoting (f, g) the minimizers of
problem (1.3), the OT potentials from \mu to \nu and from \nu to \mu , respectively, and A defined in
Theorem 2.3, we have for k sufficiently large that

\lambda \^R2
k \leq 2(\langle f,\mu \rangle + \langle g, \nu \rangle + \lambda R2) ,

where R2 = \| f\| 2H\alpha +1(X) + \| g\| 2H\alpha +1(Y ) + \| A\| 2F and \^R2
k = \| \^fk\| 2H\alpha +1(X) + \| \^gk\| 2H\alpha +1(Y ) + \| \^A\| 2F .

Using the Kakutani theorem, we can extract from ( \^fk) and (\^gk) weakly convergent sequences
such that \^fk \rightharpoonup \^f \in H\alpha +1(X) and \^gk \rightharpoonup \^g \in H\alpha +1(Y ). Since the integrations with respect
to \mu and \nu are continuous linear forms, we have in particular limk\langle \^fk, \mu \rangle \rightarrow \langle \^f,\mu \rangle (resp.,
limk\langle \^gk, \mu \rangle \rightarrow \langle \^g,\mu \rangle ). This implies

\langle \^f,\mu \rangle + \langle \^g, \nu \rangle + \lambda \^R2 \leq lim
k
\langle \^fk, \mu \rangle + \langle \^gk, \nu \rangle + \lambda \^R2

k ,(A.1)

where \^R2 = \| \^f\| 2H\alpha +1(X) + \| \^g\| 2H\alpha +1(Y ) + \| \^A\| 2F .

A.2. Proof of Lemma 3.4.
Proof. By the definition of a Lipschitz domain, there exists a radius r0 > 0, centers

(pi)
k
i=1, radii (ri)

k
i=1, and bi-Lipschitz bijective functions (hi) from Bri(pi) to B1(0) that verify

hi(X \cap Bri(pi)) =Q+ and hi(\partial X \cap Bri(pi)) =Q0 such that

\BbbR d \setminus Ar0 \subset \cup ki=1Bri/3(pi) .

In particular, for all r \leq r0, we have \BbbR d \setminus Ar \subset \cup ki=1Bri(pi). In the rest of the proof we
shall denote by Gr the set \BbbR d \setminus Ar. Let us assume that r \leq min0\leq i\leq k ri and let x \in Gr.
Since the boundary is compact, there exists p \in \partial X that realizes the infimum and such that
d(x,\partial X) = \| x - p\| \leq r. Furthermore there exists an index i such that x \in Bri/3(pi) and in
particular, \| pi  - p\| \leq \| pi  - x\| + \| x - pi\| < (2ri)/3, which proves that p also lies in Bri(pi).
Hence, we can apply the surjectivity of hi to recover z(x) \in Q+ and z(p) \in Q0 such that
\| x - p\| = \| h - 1

i (z(x)) - h - 1
i (z(p))\| . Since h - 1

i is also bi-Lipschitz, there exists Li independent
of r such that \| z(x) - z(p)\| \leq rLi. This proves that x\in h - 1

i ( \~GLir), where \~Gr is defined as

\~Gr = \{ z \in Q+ | d(z,Q0)\leq r\} .(A.2)
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ESTIMATION OF TRANSPORT MAPS WITH KERNEL SOS 335

Using this result, we can now upper-bound \mu (Gr) using a union bound and the change of
variable theorem.

\mu (Gr) =

\int 
Gr

d\mu (x)

\leq \rho 0

k\sum 
i=1

\int 
h - 1
i ( \~GLir

)
dx

\leq \rho 0

k\sum 
i=1

\int 
\~GLir

\| det(Dhi)\| W\infty 
0 (Bri

(pi))dx .

It remains to upper-bound
\int 
\~GLir

dx = Vol( \~GLir). The volume of \~GLir can be computed ex-

plicitly: it is the volume of the northern hemisphere of a ball of radius 1 minus the volume of
the northern hemisphere of a ball of radius 1 - Lir. Hence we get

Vol( \~GLir)\lesssim 1 - (1 - Lir)
d(A.3)

\lesssim Lidr ,(A.4)

and we recover \mu (Gr)\lesssim r.

A.3. Proof of Lemma 3.7.
Proof. Recall our two coupled upper-bounds:\left\{             

an \lesssim 

\biggl( 
bn +

b
d
2\alpha 
n a

1/2 - d
4\alpha 

n

r

\biggr) \biggl( 
\lambda log(n/\delta )

1

2d + bn(n/ log(n/\delta ))
 - \alpha  - 1 - d

2d

+ \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n

\biggr) 
+ ra

1 - d

2\alpha 
n b

d

2\alpha 
n ,

\lambda b2n \lesssim \lambda log(n/\delta )
1

2d + (n/ log(n/\delta )) - 
\alpha  - 1 - d

2d bn +
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n .

Defining cn := \lambda log(n/\delta )
1

2d +(n/ log(n/\delta )) - 
\alpha  - 1 - d

2d bn+
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n , we notice that

our upper-bounds can be rewritten as\Biggl\{ 
an \lesssim cnbn + cn

b
d
2\alpha 
n a

1/2 - d
4\alpha 

n

r + ra
1 - d

2\alpha 
n b

d

2\alpha 
n ,

\lambda b2n \lesssim cn .
(A.5)

We observe that the upper-bound on an is composed of three terms. Hence we shall split our

analysis in three cases: the case where the term cnbn dominates, the case where cn
b

d
2\alpha 
n a

1/2 - d
4\alpha 

n

r

dominates, and the case where ra
1 - d

2\alpha 
n b

d

2\alpha 
n dominates. We shall make a similar analysis on cn:

in the rest of our proof we shall assume that \lambda is of the form \lambda n = n - \beta , where \beta \leq \alpha  - 1 - d
2d . As

a result, using the fact that bn \geq 1, we can upper-bound cn as

cn \lesssim \lambda n(log(n/\delta ))
\alpha  - 1 - d

2d bn +
log(2/\delta )

\epsilon 
\surd 
n

a
\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n .(A.6)
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336 VACHER, MUZELLEC, BACH, VIALARD, AND RUDI

Again we must split the analysis in two cases: the case where \lambda n(log(n/\delta ))
\alpha  - 1 - d

2d bn dominates

and the case where \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n dominates. In total, we have six distinct regimes:

the regime an \lesssim cnbn and cn \lesssim \lambda n(log(n/\delta ))
\alpha  - 1 - d

2d bn, which yields\Biggl\{ 
an \lesssim \lambda n(log(n/\delta ))

\alpha  - 1 - d

2d b2n ,

\lambda nb
2
n \lesssim \lambda n(log(n/\delta ))

\alpha  - 1 - d

2d bn ,
(Case 1)

the regime an \lesssim cn
b

d
2\alpha 
n a

1/2 - d
4\alpha 

n

r and cn \lesssim \lambda n(log(n/\delta ))
\alpha  - 1 - d

2d bn, which yields\left\{   an \lesssim \lambda n(log(n/\delta ))
\alpha  - 1 - d

2d
b
2\alpha +d
2\alpha 

n a
1/2 - d

4\alpha 
n

r ,

\lambda nb
2
n \lesssim \lambda n(log(n/\delta ))

\alpha  - 1 - d

2d bn ,
(Case 2)

the regime an \lesssim ra
1 - d

2\alpha 
n b

d

2\alpha 
n and cn \lesssim \lambda n(log(n/\delta ))

\alpha  - 1 - d

2d bn, which yields\Biggl\{ 
an \lesssim ra

1 - d

2\alpha 
n b

d

2\alpha 
n ,

\lambda nb
2
n \lesssim \lambda n(log(n/\delta ))

\alpha  - 1 - d

2d bn ,
(Case 3)

the regime an \lesssim cnbn and cn \lesssim 
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n , which yields

\left\{   an \lesssim 
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

\alpha +d/2+\epsilon  - 1

\alpha 
n ,

\lambda nb
2
n \lesssim 

\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n ,

(Case 4)

the regime where an \lesssim cn
b

d
2\alpha 
n a

1/2 - d
4\alpha 

n

r and cn \lesssim 
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n , which yields

\left\{   an \lesssim 
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n

b
d
2\alpha 
n a

1/2 - d
4\alpha 

n

r ,

\lambda nb
2
n \lesssim 

\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n ,

(Case 5)

and finally the regime where an \lesssim ra
1 - d

2\alpha 
n b

d

2\alpha 
n and cn \lesssim 

\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n , which yields

\left\{   an \lesssim ra
1 - d

2\alpha 
n b

d

2\alpha 
n ,

\lambda nb
2
n \lesssim 

\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n .

(Case 6)

Our purpose is to show that for well-chosen \lambda n, r, \epsilon , we have in any cases an \lesssim \lambda n. We shall
start with Cases 1, 2, 3, which are easier to work with as we almost have bn =O(1). Then we
shall move on to the remaining cases.
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Cases 1, 2, 3. In these cases, we have \lambda nb
2
n \lesssim \lambda n(log(n/\delta ))

\alpha  - 1 - d

2d bn, which implies bn \lesssim 
(log(n/\delta ))

\alpha  - 1 - d

2d . In Case 1, we thus obtain

an \lesssim \lambda n(log(n/\delta ))
3(\alpha  - 1 - d)

2d .(Case 1)

In Case 2 we obtain an \lesssim \lambda n

r (log(n/\delta ))
\alpha +d - 1

2d
+ d

2\alpha a
1/2 - d

4\alpha 
n , which yields a

2\alpha +d

4\alpha 
n \lesssim \lambda n

r (log(n/

\delta ))
\alpha +d - 1

2d
+ d

2\alpha , so we obtain

an \lesssim 

\biggl( 
\lambda n
r

\biggr) 4\alpha 

2\alpha +d

(log(n/\delta ))
4\alpha (\alpha +d - 1)

2d(2\alpha +d)
+ 2d

2\alpha +d .

In Case 3, we have an \lesssim r
2\alpha 

d (log(n/\delta ))
(\alpha  - 1 - d)

2d . Hence we must pick r such that the two previous
upper-bounds match up to the poly-log factors, i.e., r must satisfy

r
2\alpha 

d =

\biggl( 
\lambda n
r

\biggr) 4\alpha 

2\alpha +d

\Leftarrow \Rightarrow r
2\alpha (2\alpha +d)+4\alpha d

d(2\alpha +d) = \lambda 
4\alpha 

2\alpha +d
n

\Leftarrow \Rightarrow r= \lambda 
4\alpha d

2\alpha (2\alpha +d)+4\alpha d

n ,

and hence we obtain rn = \lambda 
2d

2\alpha +3d
n ; recalling that r must verify r\leq r0, we shall thus set instead

rn = r0\lambda 
2d

2\alpha +3d
n , which yields

an \lesssim \lambda 
4\alpha 

2\alpha +3d
n (log(n/\delta ))

4\alpha (\alpha +d - 1)

2d(2\alpha +d)
+ 2d

2\alpha +d(Case 2)

and

an \lesssim \lambda 
4\alpha 

2\alpha +3d
n (log(n/\delta ))

(\alpha  - 1 - d)

2d .(Case 3)

Cases 4, 5, 6. The main difficulty of these cases is that bn is not a priori O(1) if \lambda n <<

1/
\surd 
n. Indeed, recall that bn now verifies \lambda nb

2
n \lesssim 

\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

d/2+\epsilon  - 1

\alpha 
n , which yields

bn \lesssim 

\biggl( 
log(2/\delta )

\epsilon \lambda n
\surd 
n

\biggr) \alpha 

2\alpha +1 - d/2 - \epsilon 

a
\alpha +1 - d/2 - \epsilon 

2(2\alpha +1 - d/2 - \epsilon )

n .(A.7)

Using this upper-bound, let us move on to each case separately.

Case 4. Recall we have an \lesssim 
\mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n
a

\alpha +1 - d/2 - \epsilon 

2\alpha 
n b

\alpha +d/2+\epsilon  - 1

\alpha 
n , and hence we recover

an \lesssim 
log(2/\delta )

\epsilon 
\surd 
n

a
\alpha +1 - d/2 - \epsilon 

2\alpha 
n

\biggl[ \biggl( 
log(2/\delta )

\epsilon \lambda n
\surd 
n

\biggr) \alpha 

2\alpha +1 - d/2 - \epsilon 

a
\alpha +1 - d/2 - \epsilon 

2(2\alpha +1 - d/2 - \epsilon )

n

\biggr] \alpha +d/2+\epsilon  - 1

\alpha 

= a
\alpha +1 - d/2 - \epsilon 

2\alpha 
(1+ \alpha +d/2+\epsilon  - 1

2\alpha +1 - d/2 - \epsilon 
)

n

\biggl( 
log(2/\delta )

\epsilon 
\surd 
n

\biggr) 1+ \alpha +d/2+\epsilon  - 1

2\alpha +1 - d/2 - \epsilon 

\lambda 
 - \alpha +d/2+\epsilon  - 1

2\alpha +1 - d/2 - \epsilon 

n

= a
3(\alpha +1 - d/2 - \epsilon )

2(2\alpha +1 - d/2 - \epsilon )

n

\biggl( 
log(2/\delta )

\epsilon 
\surd 
n

\biggr) 3\alpha 

2\alpha +1 - d/2 - \epsilon 

\lambda 
 - \alpha +d/2+\epsilon  - 1

2\alpha +1 - d/2 - \epsilon 

n ,
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which yields a
\alpha +d/2+\epsilon  - 1

2(2\alpha +1 - d/2 - \epsilon )

n \lesssim ( \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n

)
3\alpha 

2\alpha +1 - d/2 - \epsilon \lambda 
 - \alpha +d/2+\epsilon  - 1

2\alpha +1 - d/2 - \epsilon 

n , so we eventually get

an \lesssim 

\biggl( 
log(2/\delta )

\epsilon 
\surd 
n

\biggr) 6\alpha 

\alpha +d/2+\epsilon  - 1

\lambda  - 2
n .(A.8)

Unlike the three previous cases, the rate of convergence of an degrades as \lambda n accelerates toward
zero. Hence, we see that there appears to be a trade-off on how to pick \lambda n: the upper-bound
above must match the weakest upper-bound of Cases 1, 2, 3. When \alpha \rightarrow \infty , the weakest
upper-bound is \lambda n, and hence, up to poly-log factors and the \epsilon term in the exponent, we have

n
 - 3\alpha 

\alpha +d/2 - 1\lambda  - 2
n = \lambda n, which yields \lambda n = n

 - \alpha 

\alpha +d/2 - 1 . Hence in the rest of the proof, we shall
assume that \lambda n = n - \beta with \beta =min(\alpha  - 1 - d

2d , \alpha 
\alpha +d/2 - 1).

Case 5. Recall that we have in this case an \lesssim \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
rn\epsilon 

\surd 
n
a

2\alpha +1 - d - \epsilon 

2\alpha 
n b

d+\epsilon  - 1

\alpha 
n , so we obtain an \lesssim 

( \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
rn\epsilon 

\surd 
n
)

2\alpha 

d+\epsilon  - 1 b2n. Combining this upper-bound with (A.7) yields

an \lesssim 

\biggl( 
log(2/\delta )

rn\epsilon 
\surd 
n

\biggr) 2\alpha 

d+\epsilon  - 1
\biggl[ \biggl( 

log(2/\delta )

\epsilon \lambda n
\surd 
n

\biggr) \alpha 

2\alpha +1 - d/2 - \epsilon 

a
\alpha +1 - d/2 - \epsilon 

2(2\alpha +1 - d/2 - \epsilon )

n

\biggr] 2
(A.9)

\Leftarrow \Rightarrow a
\alpha 

2\alpha +1 - d/2 - \epsilon 

n \lesssim 

\biggl( 
log(2/\delta )

rn\epsilon 
\surd 
n

\biggr) 2\alpha 

d+\epsilon  - 1
\biggl( 
log(2/\delta )

\epsilon \lambda n
\surd 
n

\biggr) 2\alpha 

2\alpha +1 - d/2 - \epsilon 

(A.10)

\Leftarrow \Rightarrow an \lesssim 

\biggl( 
log(2/\delta )

rn\epsilon 
\surd 
n

\biggr) 2(2\alpha +1 - d/2 - \epsilon )

d+\epsilon  - 1
\biggl( 
log(2/\delta )

\epsilon \lambda n
\surd 
n

\biggr) 2

,(A.11)

which eventually yields an \lesssim ( \mathrm{l}\mathrm{o}\mathrm{g}(2/\delta )
\epsilon 
\surd 
n

)
4\alpha +d

d+\epsilon  - 1\lambda  - 2
n r

d+2\epsilon  - 4\alpha  - 2

d+\epsilon  - 1
n . Recalling that we set rn = r0\lambda 

2d

2\alpha +3d
n ,

we have \lambda  - 2
n r

d+2\epsilon  - 4\alpha  - 2

d+\epsilon  - 1
n \sim \lambda  - 2

n \lambda 
2d(d+2\epsilon  - 4\alpha  - 2)

(2\alpha +3d)(d+\epsilon  - 1)

n . In what follows, we shall pick \epsilon = \epsilon n = 1/ log(n);
since we assumed d\geq 2, we can then neglect the \epsilon terms in the exponents and recover

an \lesssim n
 - 4\alpha +d

2(d - 1)\lambda 
 - 2 - 2d

2\alpha +3d

4\alpha +2 - d

d - 1
n

\biggl( 
log(n) log(2/\delta )

\biggr) 2\alpha +d

d - 1

.

Note that the exponent h(\alpha ) = 2+ 2d
2\alpha +3d

4\alpha +2 - d
d - 1 = 2+ 2d

1+3d/(2\alpha )
2+(2 - d)/(2\alpha )

d - 1 increases with \alpha .

Hence, as \alpha grows, we have a trade-off on our upper-bound: while the term n
 - 4\alpha +d

2(d - 1) accel-

erates the convergence toward 0, the term \lambda 
 - 2 - 2d

2\alpha +3d

4\alpha +2 - d

d - 1
n degrades the convergence with a

doubly negative effect. First, as mentioned above, the magnitude exponent increases, and
furthermore, recalling that \lambda n = n - \beta (\alpha ) with \beta (\alpha ) = min(\alpha  - 1 - d

2d , \alpha 
\alpha +d/2 - 1), \lambda n accelerates its

convergence toward 0 as \alpha grows, and hence the term \lambda 
 - 2 - 2d

2\alpha +3d

4\alpha +2 - d

d - 1
n diverges more quickly.
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With the goal of showing that we always have in fact an \lesssim \lambda n up to poly-log factors, we
propose to quantify this trade-off and split the analysis into four smoothness regimes: (a) the
regime d < \alpha \leq 2d, (b) the regime 2d < \alpha \leq 8d/3, (c) the regime 8d/3 < \alpha \leq 13d/4, and the
regime (d) 13d/4<\alpha .

In regime (a), we have \beta (\alpha ) \leq 1/2 and a fortiori \lambda 
 - h(\alpha )
n \lesssim n

1

2
h(2d), where h(2d) reads

h(2d) = 2 + 2d
4d+3d

8d - d+2
d - 1 = 2 + 2

7
7d+2
d - 1 . Conversely, since \alpha > d, the term n

 - 4\alpha +d

2(d - 1) is upper-

bounded by n
 - 5d

2(d - 1) , which yields the following upper-bound on an (up to poly-log factors):

an \lesssim n
 - 5d

2(d - 1)
+1+ 1

7

7d+2

d - 1

\lesssim n - 
d

d - 1
(5/2 - (d - 1)/d - 1 - 2/(7d))

= n - 
d

d - 1
(1/2+5/(7d))

\lesssim \lambda n .

In regime (b), since 8d/3 - d - 1
2d < 5/6 we have \beta (\alpha ) < 5/6 and a fortiori \lambda 

 - h(\alpha )
n \lesssim n

5

6
h(8d/3),

where h(8d/3) reads h(8d/3) = 2 + 2d
16d/3+3d

32d/3+2 - d
d - 1 = 2 + 6

25
29d/3+2
d - 1 . Conversely, the term

n
 - 4\alpha +d

2(d - 1) is upper-bounded by n
 - 9d

2(d - 1) , which yields the following upper-bound on an (up to
poly-log factors):

an \lesssim n
 - 9d

2(d - 1)
+10/6+ 29d/3+2

5(d - 1)

\lesssim n - 
d

d - 1
(9/2 - 10(d - 1)/(6d) - 29/15 - 2/(5d))

= n - 
d

d - 1
(9/2 - 10/6 - 29/15+10/(6d) - 2/(5d))

\lesssim \lambda n .

In regime (c), we coarsely upper-bound \beta (\alpha ) by one and we evaluate the exponent h(\alpha ) in
\alpha = 13d/4. We have h(13d/4) = 2+ 2d

13d/2+3d
13d+2 - d
d - 1 , which yields

an \lesssim n
 - 35d

6(d - 1)
+2+ 2d

13d/2+3d

13d - d+2

d - 1(A.12)

\lesssim n - 
d

d - 1
(35/6 - 2(d - 1)/d - 48/19 - 8/(19d))(A.13)

\lesssim 1/n\lesssim \lambda n .(A.14)

In regime (d), we coarsely upper-bound \beta (\alpha ) by one and the exponent h(\alpha ) by lim\alpha \rightarrow \infty h(\alpha ) =
2+ 4 d

d - 1 , which yields the upper-bound

an \lesssim n
 - 14d

2(d - 1)n2+4 d

d - 1

\lesssim 1/n\lesssim \lambda n .

Case 6. Recall that in this case

an \lesssim rna
1 - d

2\alpha 
n b

d

2\alpha 
n ,
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which implies an \lesssim r
2\alpha 

d
n bn. Using the upper-bound (A.7), we get

an \lesssim r
2\alpha 

d
n

\biggl( 
log(2/\delta ) log(n)

\lambda n
\surd 
n

\biggr) \alpha 

2\alpha +1 - d/2

a
\alpha +1 - d/2

2(2\alpha +1 - d/2)

n

\Leftarrow \Rightarrow a
3\alpha +1 - d/2

2(2\alpha +1 - d/2)

n \lesssim r
2\alpha 

d
n

\biggl( 
log(2/\delta ) log(n)

\lambda n
\surd 
n

\biggr) \alpha 

2\alpha +1 - d/2

\Leftarrow \Rightarrow an \lesssim r
4\alpha (2\alpha +1 - d/2)

d(3\alpha +1 - d/2)

n

\biggl( 
log(2/\delta ) log(n)

\lambda n
\surd 
n

\biggr) 2\alpha 

3\alpha +1 - d/2

\Leftarrow \Rightarrow an \lesssim \lambda 

2\alpha 

3\alpha +1 - d/2

\biggl[ 
4(2\alpha +1 - d/2)

3d+2\alpha 
 - 1

\biggr] 
n n

 - \alpha 

3\alpha +1 - d/2

\biggl( 
log(2/\delta ) log(n)

\biggr) 2\alpha 

3\alpha +1 - d/2

.

If we further develop the exponent on \lambda n and we neglect the 1 - d/2 (negative) terms in the
denominators, we recover the slightly weaker upper-bound

an \lesssim \lambda 
2(6\alpha +4 - 5d)

3(3d+2\alpha )

n n - 1/3

\biggl( 
log(2/\delta ) log(n)

\biggr) 2\alpha 

3\alpha +1 - d/2

;

let us prove that for any \alpha , this upper-bound is lower than \lambda n up to the poly-log terms. The
idea is the following: when the smoothness \alpha is low, we have \lambda n >>n

 - 1/3, so we indeed have
that our upper-bound is lower than \lambda n thanks to the fact that the n - 1/3 term alone as the
exponent on \lambda n is positive whenever \alpha \geq d. When the smoothness is high, the exponent on \lambda n
is greater than one, and hence we get to the same conclusion; there remains the in-between
cases.

We shall split the analysis into three regimes: (a) the regime where \alpha \geq 2d, (b) the regime
where 3d/2 \leq \alpha \leq 2d, and (c) the regime where \alpha \leq 3d/2. First note that the exponent

h(\alpha ) = 2(6\alpha +4 - 5d)
3(3d+2\alpha ) increases with \alpha : indeed, the sign of h\prime is given by 6(3d + 2\alpha ) - 2(6\alpha + 4  - 

5d) = 28d  - 8 > 0. Hence for case (a), we have in particular that h(\alpha ) \geq 2(7d+4)
3(7d) \geq 2/3,

which gives an \lesssim \lambda 
2/3
n n - 1/3. Since we always have \lambda n \gtrsim 1/n, we recover an \lesssim \lambda n. In

the regime (b), the exponent h verifies h(\alpha ) \geq 2(4d+4)
3(3d+3d) \geq 4/9. Furthermore, recall that

\lambda n = n
 - \mathrm{m}\mathrm{i}\mathrm{n}(\alpha  - 1 - d

2d
, \alpha 

\alpha +d/2 - 1
)
, and hence in regime (b) \lambda n \gtrsim 1/

\surd 
n. Reinjecting this fact into

our upper-bound yields an \lesssim \lambda 
4/9
n \lambda 

2/3
n \lesssim \lambda n. Finally, in regime (c), one can check that

min(\alpha  - 1 - d
2d , \alpha 

\alpha +d/2 - 1) =
\alpha  - 1 - d

2d \leq 1/4 and in particular \lambda n \gtrsim n - 1/3 so we recover in particular

an \lesssim \lambda n.

Conclusion. If we pick \lambda n = n
 - \mathrm{m}\mathrm{i}\mathrm{n}(\alpha  - d - 1

2d
, \alpha 

\alpha +d/2 - 1
)
, rn = r0\lambda 

2d

3d+2\alpha 
n and \epsilon n = 1/ log(n), we

recover at worst

an \lesssim \lambda 
4\alpha 

2\alpha +3d
n

\biggl( 
log(n) log(2/\delta )

\biggr) \mathrm{m}\mathrm{a}\mathrm{x}(6, 2\alpha +d

d - 1
)

.(A.15)
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