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ABSTRACT

We present a class of algorithms for independent component anal-
ysis (ICA) which use contrast functions based on canonical cor-
relations in a reproducing kernel Hilbert space. On the one hand,
we show that our contrast functions are related to mutual infor-
mation and have desirable mathematical properties as measures of
statistical dependence. On the other hand, building on recent de-
velopments in kernel methods, we show that these criteria can be
computed efficiently. Minimizing these criteria leads to flexible
and robust algorithms for ICA. We illustrate with simulations in-
volving a wide variety of source distributions, showing that our
algorithms outperform many of the presently known algorithms.

1. INTRODUCTION

Recent research on kernel methods has yielded important new com-
putational tools for solving large-scale, nonparametric classifica-
tion and regression problems [10]. While some forays have also
been made into unsupervised learning, there is still much unex-
plored terrain in problems involving large collections of mutually
interacting variables, problems in which Markovian or general
graphical models have excelled. These latter models in fact have
several limitations that invite kernel-based initiatives; in particular,
they are almost entirely based on strong parametric assumptions,
and lack the nonparametric flexibility of the kernel approaches.

Independent component analysis (ICA) [8] is an interesting
unsupervised learning problem in which to explore these issues.
On the one hand, ICA is heavily based on structural assumptions—
viewed as a graphical model it is a directed bipartite graph linking
a set of “source nodes” to a set of “observation nodes,” in which
the lack of edges between the source nodes encodes an assumption
of mutual independence. On the other hand, the ICA problem is
also strongly nonparametric—the distribution of the source vari-
ables is left unspecified. This is difficult to accommodate within
the (current) graphical model formalism, in which all nodes must
be endowed with a probability distribution. It is here that we will
find kernel methods to be useful. We will show how kernel meth-
ods can be used to define a “contrast function” that can be used
to estimate the parametric part of the ICA model (the source-to-
observation edges), despite the absence of a specific distribution
on the source nodes. As we will see, compared to current ICA
algorithms, the new kernel-based approach is notable for its ro-
bustness.

We refer to our new approach to ICA as “KERNELICA.” It is
important to emphasize at the outset that KERNELICA is not the

“kernelization” of an extant ICA algorithm. Rather, it is a new
approach to ICA based on novel kernel-based measures of depen-
dence. We introduce two such measures. In Section 3, we define
a kernel-based contrast function in terms of the first eigenvalue
of a certain generalized eigenvector problem, and show how this
function relates to probabilistic independence. In Section 4.3, we
introduce an alternative kernel-based contrast function based on
the entire spectrum of the generalized eigenvector problem, and
show how this function can be related to mutual information.

2. BACKGROUND ON ICA

Independent component analysis (ICA) is the problem of recover-
ing a latent random vector x = (x1, . . . , xm)> from observations
of m unknown linear functions of that vector. The components of
x are assumed to be mutually independent. Thus, an observation
y = (y1, . . . , ym)> is modeled as y = Ax, where x is a latent
random vector with independent components, and where A is an
m×m matrix of parameters. Given N independently, identically
distributed observations of y, we hope to estimate A and thereby
to recover the latent vector x corresponding to any particular y by
solving a linear system.

By specifying distributions for the components xi, one ob-
tains a parametric model that can be estimated via maximum like-
lihood [5]. Working with W = A−1 as the parameterization, one
readily obtains a gradient or fixed-point algorithm that yields an
estimate Ŵ and provides estimates of the latent components via
x̂ = Ŵy [8].

In practical applications, however, one does not generally know
the distributions of the components xi, and it is preferable to view
the ICA model as a semiparametric model in which the distribu-
tions of the components of x are left unspecified [6]. Maximiz-
ing the likelihood in the semiparametric ICA model is essentially
equivalent to minimizing the mutual information between the com-
ponents of the estimate x̂ = Ŵy [7]. Thus it is natural to view
mutual information as a contrast function to be minimized in esti-
mating the ICA model.

Unfortunately, the mutual information for real-valued variables
is difficult to approximate and optimize on the basis of a finite sam-
ple, and much research on ICA has focused on alternative contrast
functions [8, 7, 1]. These have either been derived as expansion-
based approximations to the mutual information, or have had a
looser relationship to the mutual information, essentially borrow-
ing its key property of being equal to zero if and only if the ar-
guments to the function are independent. In this paper, we define



two novel contrast functions. Minimizing them will lead to two
KERNELICA algorithms.

3. MEASURING STATISTICAL DEPENDENCE WITH
KERNELS

In this section, we define the F-correlation, a measure of statistical
dependence among random variables x1, . . . , xm. For simplicity,
we restrict ourselves initially to the case of two real random vari-
ables, x1 and x2, treating the general case of m variables in Sec-
tion 3.4. (It is also worth noting that the restriction to real random
variables is again for simplicity; a similar measure of dependence
can be defined for any type of data for which Mercer kernels can
be defined).

We assume that we are given a reproducing-kernel Hilbert
space (RKHS) F on R, with kernel K(x, y) and feature map Φ(x).
In this paper, our focus is the Gaussian kernel, K(x, y) =
exp(−(x−y)2/2σ2), which corresponds to an infinite-dimensional
RKHS of smooth functions [10].

3.1. The F-correlation

Given an RKHS F , we define the F-correlation as the maximal
correlation between the random variables f1(x1) and f2(x2), where
f1 and f2 range over F :

ρF = max
f1,f2∈F

corr(f1(x1), f2(x2)) (1)

= max
f1,f2∈F

cov(f1(x1), f2(x2))

(var f1(x1))1/2(var f2(x2))1/2
. (2)

Clearly, if the variables x1 and x2 are independent, then the
F-correlation is equal to zero. Moreover, if the set F is large
enough, the converse is also true. For example, it is well known
that if F contains the Fourier basis (all functions of the form x 7→
eiωx where ω ∈ R), then ρF = 0 implies that x1 and x2 are
independent. In [3], we show that the converse is also true for the
reproducing kernel Hilbert spaces based on Gaussian kernels.

For reasons that will become clear in Section 4.3, it is useful
to work on a logarithmic scale; in particular, we define our first
contrast function as IρF = − 1

2
log(1 − ρF ). Our converse result

implies that IρF is a valid contrast function; a function that is al-
ways nonnegative and equal to zero if and only if the variables x1

and x2 are independent.
The ability to restrict the maximization in Eq. (1) to an RKHS

has an important computational consequence. In particular, we
can exploit the reproducing property, f(x) = 〈Φ(x), f〉, to ob-
tain an interpretation of ρF in terms of linear projections. Indeed,
the reproducing property implies that corr(f1(x1), f2(x2)) =
corr (〈Φ(x1), f1〉, 〈Φ(x2), f2〉) . Consequently, the F-correlation
is the maximal possible correlation between one-dimensional lin-
ear projections of Φ(x1) and Φ(x2). This is exactly the definition
of the first canonical correlation [2] between Φ(x1) and Φ(x2).
This interpretation will enable us to derive a computationally effi-
cient algorithm.

3.2. Canonical correlation analysis

Canonical correlation analysis (CCA) is a multivariate statistical
technique similar in spirit to principal component analysis (PCA).
While PCA works with a single random vector and maximizes the
variance of projections of the data, CCA works with a pair of ran-
dom vectors (or in general with a set of m random vectors) and

maximizes correlation between sets of projections. While PCA
leads to an eigenvector problem, CCA leads to a generalized eigen-
vector problem. More precisely, given two random vectors, x1

and x2, the first canonical correlation between x1 and x2 can be
defined as the maximum possible correlation between the two pro-
jections ξ>1 x1 and ξ>2 x2 of x1 and x2:

ρ(x1, x2) = max
ξ1,ξ2

corr(ξ>1 x1, ξ
>

2 x2) (3)

= max
ξ1,ξ2

ξ>1 C12ξ2(
ξ>
1

C11ξ1

)
1/2

(
ξ>
2

C22ξ2

)
1/2

, (4)

where Cij denotes the covariance matrix cov(xi, xj). By taking
derivatives with respect to ξ1 and ξ2, this problem is easily seen to
reduce to the following generalized eigenvalue problem [2]:

(
0 C12

C21 0

) (
ξ1

ξ2

)
= ρ

(
C11 0
0 C22

) (
ξ1

ξ2

)
. (5)

We need to be able to solve this problem in feature space, and thus
we need to consider a “kernelized” version of CCA.

3.3. Estimating the F-correlation

Let {x1

1, . . . , x
N
1 } and {x1

2, . . . , x
N
2 } denote sets of N empirical

observations of x1 and x2. The observations generate Gram ma-
trices L1 and L2, defined as (Li)ab = K(xa

i , xb
i ). The centered

Gram matrices [10] K1 and K2 are defined as the Gram matri-
ces of the centered (in feature space) data points and are equal to
Ki = PLiP where P = I − 1

N
1 is a constant singular matrix (1

is the N×N matrix composed of ones).
Following the spirit of the derivation of kernel PCA [10], it

is straightforward to derive a “kernelization” of CCA, which turns
out to involve substituting products of Gram matrices for the co-
variance matrices in Eq. (3), and maximizing

α>
1 K1K2α2

(α>
1

(K1 + NκI/2)2α1)1/2(α>
2

(K2 + NκI/2)2α2)1/2
,

where κ is a small positive regularization parameter. As for CCA
in. Eq. (3), the solution is obtained by solving the following gen-
eralized eigenvalue problem (cf. Eq. (3) and (5)):

(
0 K1K2

K2K1 0

)(
α1

α2

)
=ρ

(
(K1+

Nκ
2

I)2 0
0 (K2+

Nκ
2

I)2

)(
α1

α2

)
(6)

Since (Ki + κI)2 is necessarily invertible, classical methods can
be invoked to solve the generalized eigenvalue problem in Eq. (6).
Thus kernel CCA reduces to finding the largest eigenvalue of K̃κ =(

0 rκ(K1)rκ(K2)
rκ(K2)rκ(K1) 0

)
, with rκ(Ki) = Ki(Ki+κI)−1.

3.4. Generalization to more than two variables

It is straightforward to extend CCA, and its kernelized counter-
part, to the case of m variables [3]. The problem becomes that
of finding the smallest eigenvalue of the generalized eigenvalue
problem Kα = λDα, where K is defined by blocks Kij = KiKj

for i 6= j and Kii = (Ki + κI)2, and D is block diagonal with
blocks Dii = (Ki + κI)2. We still refer to this eigenvalue as the
F-correlation.1

1See [3] for a detailed explanation of why we use the smallest gener-
alized eigenvalue in our general definition, and how this accords with our
earlier definition. In brief, the definitions are equivalent because of a sym-
metry property of the eigenvalues for the CCA problem.



It is worth noting that the general version of the F-correlation
that we have defined does not characterize mutual dependence
among m variables, but only characterizes pairwise independence.
Empirically, this does not appear to be a limitation in the ICA set-
ting, as we show in Section 5. However, in situations in which a
measure of mutual independence is required, one can form such a
measure by exploiting the general fact that mutual independence
can be expressed in terms of pairwise mutual information terms in-
volving sets of variables. (Thus, for example, in the three-variable
case we have the expansion I(x, y, z) = I((x, y), z) + I(x, y)).

4. KERNEL INDEPENDENT COMPONENT ANALYSIS

Having defined a contrast function in terms of the solution of a
generalized eigenvalue problem, we now obtain a KERNELICA
algorithm by minimizing this contrast function with respect to the
parameter matrix W .

4.1. Outline of algorithm

Given a set of data vectors y1, y2, . . . , yN , and given a parame-
ter matrix W , we set xi = Wyi, for each i, and thereby form a
set of estimated source vectors {x1, x2, . . . , xN}. The m compo-
nents of these vectors yield a set of m centered Gram matrices,
K1, K2, . . . , Km. These Gram matrices (which depend on W )
define the contrast function, C(W ) = ÎρF (K1, . . . , Km), as the
solution to a generalized eigenvalue problem, Kα = λDα, where
K and D are block matrices constructed from the Gram matrices
Ki. The KERNELICA-KCCA algorithm involves minimizing this
function C(W ) with respect to W .

4.2. Computational issues

In order to turn this sketch into a practical ICA algorithm, several
computational issues have to be addressed, as we now discuss.

Numerical linear algebra. The F-correlation involves com-
puting the smallest generalized eigenvalue of matrices of size mN .
Thus a naive implementation would scale as O(N 3), a computa-
tional complexity whose cubic growth in the number of data points
would be a serious liability in applications to large data sets. How-
ever, Gram matrices have a spectrum that tends to show rapid de-
cay, and low-rank approximations of Gram matrices can therefore
often provide sufficient fidelity for the needs of kernel-based al-
gorithms [10]. In [3], we show theoretically that for a regular-
ization parameter κ that is linear in N , we require low-rank ap-
proximations of size M , where M is a constant that is indepen-
dent of the number N of samples. Since the Gram matrix Ki is
positive semidefinite, the low-rank approximation can be found
through incomplete Cholesky decomposition in time O(M 2N),
which gives a M × N matrix Gi such that Ki ≈ GiG

>
i . We

perform a singular value decomposition of Gi, in time O(M2N),
to obtain an N×M matrix Ui with orthogonal columns (i.e., such
that U>

i Ui = I), and an M ×M diagonal matrix Λi such that
Ki ≈ GiG

>
i = UiΛiU

>
i .

We then have rκ(Ki) = (Ki + κI)−1Ki = UiDiU
>
i , where

Di is the diagonal matrix obtained from the diagonal matrix Λi by
applying the function λ 7→ λ/(λ + κ) to its elements. Finally,
in the two-dimensional case, our problem reduces to finding the

largest eigenvalue of R̃κ =

(
0 D1U

>
1 U2D2

D2U
>
2 U1D1 0

)
, with

the obvious extension to the m-dimensional case. This problem
can be solved in time linear in N .

Gradient descent on the Stiefel manifold. Since decorrela-
tion implies independence, it is common to enforce decorrelation
of the estimated sources. This is done by whitening the data and
subsequently restricting the minimization to orthogonal matrices
W [8]. The set of orthogonal matrices, which is commonly re-
ferred to as the Stiefel manifold, can be equipped with a natural
Riemannian metric, which implies that gradient algorithms can be
used. In our simulations we used steepest descent with line search
along geodesics. The algorithm necessarily converges to a local
minimum of C(W ), from any starting point.

The ICA contrast functions have multiple local minima, how-
ever, and restarts are generally necessary if we are to find the global
optimum. Empirically, the number of restarts that were needed
was found to be small when the number of samples is sufficiently
large so as to make the problem well-defined. We have also de-
veloped two initialization heuristics that have been found to be
particularly useful in practice for large-scale problems,“one-unit
contrast functions”, and Hermite polynomial kernels. These are
detailed in [3].

4.3. Kernel generalized variance

The F-correlation is defined as the first eigenvalue of the kernel-
ized CCA problem. It is obviously of interest to consider the other
eigenvalues as well. Indeed, there is a classical relationship be-
tween the full CCA spectrum and the mutual information of Gaus-
sian variables x1 and x2 [2]: the mutual information I(x1, x2) is
equal to − 1

2
log

∏
i(1 − ρ2

i ). The product
∏

i(1 − ρ2

i ) is usually
referred to as the generalized variance.

This suggests defining a corresponding quantity for kernelized
CCA. In the case of two variables, we define the kernel general-
ized variance (KGV) as the product δ̂F =

∏
i(1 − ρ2

i ), where
ρi are the (positive) kernel canonical correlations. In the general
case of m variables, we define δ̂F = detK/ detD. Finally, by
analogy with the mutual information for the Gaussian case, we
also define a contrast function ÎδF = − 1

2
log δ̂F . It turns out

that ÎδF (K1, . . . , Km) has as its population counterpart a func-
tion IδF (x1, . . . , xm) that is an approximation of the mutual in-
formation between the original non-Gaussian variables in the input
space [3].

5. SIMULATION RESULTS

We have conducted an extensive set of simulation experiments
using data obtained from a variety of source distributions. The
sources that we used (Figure 1, Top) included subgaussian and su-
pergaussian distributions, as well as distributions that are nearly
Gaussian. We studied unimodal, multimodal, symmetric, and non-
symmetric distributions. We also varied the number of compo-
nents, from 2 to 16, the number of training samples, from 250 to
4000, and studied the robustness of the algorithms to varying num-
bers of outliers (see [3] for details).

Comparisons were made with three existing ICA algorithms:
the FastICA algorithm [8], the Jade algorithm [7], and the extended
Infomax algorithm [9]. All simulations were performed in the sit-
uation when the true demixing matrix W0 is known. We measure
the performance of the algorithm in terms of the difference be-
tween W and W0, via the standard ICA metric introduced by [1].
This measure is invariant to permutation and scaling of its argu-
ments, lies between 0 and 100(m − 1), and is equal to zero for
perfect demixing.



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

pdfs F-ica Jade Imax Kcca Kgv
a 4.4 3.7 1.8 3.7 3.0
b 5.8 4.1 3.4 3.7 2.9
c 2.3 1.9 2.0 2.7 2.4
d 6.4 6.1 6.9 7.1 5.7
e 4.9 3.9 3.2 1.7 1.5
f 3.6 2.7 1.0 1.7 1.5
g 1.7 1.4 0.5 1.4 1.3
h 5.5 3.9 3.2 4.3 3.6
i 8.7 7.2 6.8 7.8 6.5
j 6.7 4.6 57.6 1.4 1.3
k 5.7 4.0 3.5 3.2 2.6
l 12.1 7.2 10.4 4.8 4.2

m 3.6 2.9 4.2 6.3 4.6
n 5.4 3.5 30.6 7.6 3.0
o 4.7 3.3 4.4 5.1 4.3
p 4.1 3.1 7.4 3.8 3.0
q 22.9 15.8 40.9 5.1 3.9
r 6.6 4.4 4.9 4.3 3.6

mean 6.4 4.6 10.7 4.2 3.3

Fig. 1. (Top) Source density functions. (Bottom) Performance of
ICA algorithms for m = 2. The best performance in each row is
indicated in bold font.

The results in Figure 1 (Bottom) show that the KERNELICA
algorithms are competitive with current algorithms, and are par-
ticularly successful at handling asymmetric sources (see, e.g., the
performance for sources j, l and q). In Figure 2 (Top), which re-
ports results for random choices of source distributions, we see
that the KERNELICA algorithms perform well for larger numbers
of components. Finally, in Figure 2 (Bottom), we report the re-
sults of an experiment in which we added random outliers to the
source data. We see that our algorithms are particularly resistant
to outliers.

6. CONCLUSIONS

We have presented two novel, kernel-based measures of statisti-
cal dependence. These measures can be optimized with respect
to a parameter matrix, yielding new algorithms for ICA. These
algorithms are competitive with current algorithms, and are partic-
ularly notable for their resistance to outliers.

Our approach to ICA is more flexible and more demanding
computationally than current algorithms, involving a search in a
reproducing kernel Hilbert space—an inner loop which is not present
in other algorithms. But the problem of measuring (and minimiz-
ing) departure from independence over all possible non-Gaussian
source distributions is a difficult one, and we feel that the flexibil-
ity provided by our approach is appropriately targeted.

Many other problems at the intersection of graphical models
and nonparametric estimation can also be addressed using these
tools. In particular, in recent work [4], we have generalized ICA

m N F-ica Jade Imax Kcca Kgv
2 250 11 9 30 7 5

1000 5 4 7 3 2
4 1000 18 13 25 12 11

4000 8 7 11 6 4
8 2000 26 22 123 30 20

4000 18 16 41 16 8
16 4000 42 38 130 31 19

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Jade
F−ica
Imax
Kcca
Kgv

number 
of outliers 

Fig. 2. (Top) Performance for larger number of components m.
(Bottom) Performance as a function of the number of outliers.

to a model that no longer requires the sources to be independent,
but requires them only to factorize according to a tree. The depar-
ture from a tree distribution can be measured in terms of a sum of
mutual information terms, and approximated using the KGV.
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