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Abstract

We consider the problem of optimizing the sum of a smooth convex function and
a non-smooth convex function using proximal-gradient methods, where an error
is present in the calculation of the gradient of the smooth term or in the proxim-
ity operator with respect to the non-smooth term. We show that both the basic
proximal-gradient method and the accelerated proximal-gradient method achieve
the same convergence rate as in the error-free case, provided that the errors de-
crease at appropriate rates. Using these rates, we perform as well as or better than
a carefully chosen fixed error level on a set of structured sparsity problems.

1 Introduction

In recent years the importance of taking advantage of the structure of convex optimization problems
has become a topic of intense research in the machine learning community. This is particularly
true of techniques for non-smooth optimization, where taking advantage of the structure of non-
smooth terms seems to be crucial to obtaining good performance. Proximal-gradient methods and
accelerated proximal-gradient methods [1, 2] are among the most important methods for taking
advantage of the structure of many of the non-smooth optimization problems that arise in practice.
In particular, these methods address composite optimization problems of the form

minimize
x∈Rd

f(x) := g(x) + h(x), (1)

where g and h are convex functions but only g is smooth. One of the most well-studied instances of
this type of problem is `1-regularized least squares [3, 4],

minimize
x∈Rd

1

2
‖Ax− b‖2 + λ‖x‖1,

where we use ‖ · ‖ to denote the standard `2-norm.

Proximal-gradient methods are an appealing approach for solving these types of non-smooth opti-
mization problems because of their fast theoretical convergence rates and strong practical perfor-
mance. While classical subgradient methods only achieve an error level on the objective function of
O(1/

√
k) after k iterations, proximal-gradient methods have an error of O(1/k) while accelerated

proximal-gradient methods futher reduce this to O(1/k2) [1, 2]. That is, accelerated proximal-
gradient methods for non-smooth convex optimization achieve the same optimal convergence rate
that accelerated gradient methods achieve for smooth optimization.

Each iteration of a proximal-gradient method requires the calculation of the proximity operator,

proxL(y) = arg min
x∈Rd

L

2
‖x− y‖2 + h(x), (2)
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where L is the Lipschitz constant of the gradient of g. We can efficiently compute an analytic solu-
tion to this problem for several notable choices of h, including the case of `1-regularization and dis-
joint group `1-regularization [5, 6]. However, in many scenarios the proximity operator may not have
an analytic solution, or it may be very expensive to compute this solution exactly. This includes im-
portant problems such as total-variation regularization and its generalizations like the graph-guided
fused-LASSO [7, 8], nuclear-norm regularization and other regularizers on the singular values of
matrices [9, 10], and different formulations of overlapping group `1-regularization with general
groups [11, 12]. Despite the difficulty in computing the exact proximity operator for these regular-
izers, efficient methods have been developed to compute approximate proximity operators in all of
these cases; accelerated projected gradient and Newton-like methods that work with a smooth dual
problem have been used to compute approximate proximity operators in the context of total-variation
regularization [7, 13], Krylov subspace methods and low-rank representations have been used to
compute approximate proximity operators in the context of nuclear-norm regularization [9, 10], and
variants of Dykstra’s algorithm (and related dual methods) have been used to compute approximate
proximity operators in the context of overlapping group `1-regularization [12, 14, 15].

It is known that proximal-gradient methods that use an approximate proximity operator converge un-
der only weak assumptions [16, 17]; we briefly review this and other related work in the next section.
However, despite the many recent works showing impressive empirical performance of (accelerated)
proximal-gradient methods that use an approximate proximity operator [7, 13, 9, 10, 14, 15], up until
recently there was no theoretical analysis on how the error in the calculation of the proximity op-
erator affects the convergence rate of proximal-gradient methods. In this work we show in several
contexts that, provided the error in the proximity operator calculation is controlled in an appropriate
way, inexact proximal-gradient strategies achieve the same convergence rates as the corresponding
exact methods. In particular, in Section 4 we first consider convex objectives and analyze the inexact
proximal-gradient (Proposition 1) and accelerated proximal-gradient (Proposition 2) methods. We
then analyze these two algorithms for strongly convex objectives (Proposition 3 and Proposition 4).
Note that in these analyses, we also consider the possibility that there is an error in the calculation of
the gradient of g. We then present an experimental comparison of various inexact proximal-gradient
strategies in the context of solving a structured sparsity problem (Section 5).

2 Related Work

The algorithm we shall focus on in this paper is the proximal-gradient method

xk = proxL [yk−1 − (1/L)(g′(yk−1) + ek)] , (3)

where ek is the error in the calculation of the gradient and the proximity problem (2) is solved
inexactly so that xk has an error of εk in terms of the proximal objective function (2). In the basic
proximal-gradient method we choose yk = xk, while in the accelerated proximal-gradient method
we choose yk = xk + βk(xk − xk−1), where the sequence (βk) is chosen appropriately.

There is a substantial amount of work on methods that use an exact proximity operator but have an
error in the gradient calculation, corresponding to the special case where εk = 0 but ek is non-zero.
For example, when the ek are independent, zero-mean, and finite-variance random variables, then
proximal-gradient methods achieve the (optimal) error level of O(1/

√
k) [18, 19]. This is different

than the scenario we analyze in this paper since we do not assume unbiased nor independent errors,
but instead consider a sequence of errors converging to 0. This leads to faster convergence rates, and
makes our analysis applicable to the case of deterministic (and even adversarial) errors.

Several authors have recently analyzed the case of a fixed deterministic error in the gradient, and
shown that accelerated gradient methods achieve the optimal convergence rate up to some accuracy
that depends on the fixed error level [20, 21, 22], while the earlier work of [23] analyzes the gradient
method in the context of a fixed error level. This contrasts with our analysis, where by allowing
the error to change at every iteration we can achieve convergence to the optimal solution. Also, we
can tolerate a large error in early iterations when we are far from the solution, which may lead to
substantial computational gains. Other authors have analyzed the convergence rate of the gradient
and projected-gradient methods with a decreasing sequence of errors [24, 25], but this analysis does
not consider the important class of accelerated gradient methods. In contrast, the analysis of [22]
allows a decreasing sequence of errors (though convergence rates in this context are not explicitly
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mentioned) and considers the accelerated projected-gradient method. However, the authors of this
work only consider the case of an exact projection step, and they assume the availability of an oracle
that yields global lower and upper bounds on the function. This non-intuitive oracle leads to a
novel analysis of smoothing methods, but leads to slower convergence rates than proximal-gradient
methods. The analysis of [21] considers errors in both the gradient and projection operators for
accelerated projected-gradient methods, but this analysis requires that the domain of the function is
compact. None of these works consider proximal-gradient methods.

In the context of proximal-point algorithms, there is a substantial literature on using inexact prox-
imity operators with a decreasing sequence of errors, dating back to the seminal work of Rock-
afeller [26]. Accelerated proximal-point methods with a decreasing sequence of errors have also
been examined, beginning with [27]. However, unlike proximal-gradient methods where the prox-
imity operator is only computed with respect to the non-smooth function h, proximal-point methods
require the calculation of the proximity operator with respect to the full objective function. In the
context of composite optimization problems of the form (1), this requires the calculation of the
proximity operator with respect to g + h. Since it ignores the structure of the problem, this prox-
imity operator may be as difficult to compute (even approximately) as the minimizer of the original
problem.

Convergence of inexact proximal-gradient methods can be established with only weak assumptions
on the method used to approximately solve (2). For example, we can establish that inexact proximal-
gradient methods converge under some closedness assumptions on the mapping induced by the ap-
proximate proximity operator, and the assumption that the algorithm used to compute the inexact
proximity operator achieves sufficient descent on problem (2) compared to the previous iteration
xk−1 [16]. Convergence of inexact proximal-gradient methods can also be established under the
assumption that the norms of the errors are summable [17]. However, these prior works did not
consider the rate of convergence of inexact proximal-gradient methods, nor did they consider accel-
erated proximal-gradient methods. Indeed, the authors of [7] chose to use the non-accelerated vari-
ant of the proximal-gradient algorithm since even convergence of the accelerated proximal-gradient
method had not been established under an inexact proximity operator.

While preparing the final version of this work, [28] independently gave an analysis of the accelerated
proximal-gradient method with an inexact proximity operator and a decreasing sequence of errors
(assuming an exact gradient). Further, their analysis leads to a weaker dependence on the errors than
in our Proposition 2. However, while we only assume that the proximal problem can be solved up
to a certain accuracy, they make the much stronger assumption that the inexact proximity operator
yields an εk-subdifferential of h [28, Definition 2.1]. Our analysis can be modified to give an
improved dependence on the errors under this stronger assumption. In particular, the terms in

√
εi

disappear from the expressions of Ak, Ãk and Âk appearing in the propositions, leading to the
optimal convergence rate with a slower decay of εi. More details may be found in [29].

3 Notation and Assumptions

In this work, we assume that the smooth function g in (1) is convex and differentiable, and that its
gradient g′ is Lipschitz-continuous with constant L, meaning that for all x and y in Rd we have

‖g′(x)− g′(y)‖ 6 L‖x− y‖ .

This is a standard assumption in differentiable optimization, see [30, §2.1.1]. If g is twice-
differentiable, this corresponds to the assumption that the eigenvalues of its Hessian are bounded
above by L. In Propositions 3 and 4 only, we will also assume that g is µ-strongly convex (see [30,
§2.1.3]), meaning that for all x and y in Rd we have

g(y) > g(x) + 〈g′(x), y − x〉+
µ

2
||y − x||2.

In contrast to these assumptions on g, we will only assume that h in (1) is a lower semi-continuous
proper convex function (see [31, §1.2]), but will not assume that h is differentiable or Lipschitz-
continuous. This allows h to be any real-valued convex function, but also allows for the possibility
that h is an extended real-valued convex function. For example, h could be the indicator function of
a convex set, and in this case the proximity operator becomes the projection operator.
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We will use xk to denote the parameter vector at iteration k, and x∗ to denote a minimizer of f . We
assume that such an x∗ exists, but do not assume that it is unique. We use ek to denote the error
in the calculation of the gradient at iteration k, and we use εk to denote the error in the proximal
objective function achieved by xk, meaning that

L

2
‖xk − y‖2 + h(xk) 6 εk + min

x∈Rd

{
L

2
‖x− y‖2 + h(x)

}
, (4)

where y = yk−1 − (1/L)(g′(yk−1) + ek)). Note that the proximal optimization problem (2) is
strongly convex and in practice we are often able to obtain such bounds via a duality gap (e.g.,
see [12] for the case of overlapping group `1-regularization).

4 Convergence Rates of Inexact Proximal-Gradient Methods

In this section we present the analysis of the convergence rates of inexact proximal-gradient meth-
ods as a function of the sequences of solution accuracies to the proximal problems (εk), and the
sequences of magnitudes of the errors in the gradient calculations (‖ek‖). We shall use (H) to
denote the set of four assumptions which will be made for each proposition:

• g is convex and has L-Lipschitz-continuous gradient;
• h is a lower semi-continuous proper convex function;
• The function f = g + h attains its minimum at a certain x∗ ∈ Rn;
• xk is an εk-optimal solution to the proximal problem (2) in the sense of (4).

We first consider the basic proximal-gradient method in the convex case:

Proposition 1 (Basic proximal-gradient method - Convexity) Assume (H) and that we iterate re-
cursion (3) with yk = xk. Then, for all k > 1, we have

f

(
1

k

k∑
i=1

xi

)
− f(x∗) 6

L

2k

(
‖x0 − x∗‖+ 2Ak +

√
2Bk

)2
, (5)

with Ak =

k∑
i=1

(
‖ei‖
L

+

√
2εi
L

)
, Bk =

k∑
i=1

εi
L

.

The proof may be found in [29]. Note that while we have stated the proposition in terms of the
function value achieved by the average of the iterates, it trivially also holds for the iteration that
achieves the lowest function value. This result implies that the well-known O(1/k) convergence
rate for the gradient method without errors still holds when both (‖ek‖) and (

√
εk) are summable.

A sufficient condition to achieve this is that ‖ek‖ decreases as O(1/k1+δ) while εk decreases as
O(1/k2+δ

′
) for any δ, δ′ > 0. Note that a faster convergence of these two errors will not improve

the convergence rate, but will yield a better constant factor.

It is interesting to consider what happens if (‖ek‖) or (
√
εk) is not summable. For instance, if ‖ek‖

and
√
εk decrease as O(1/k), then Ak grows as O(log k) (note that Bk is always smaller than Ak)

and the convergence of the function values is in O
(

log2 k
k

)
. Finally, a necessary condition to obtain

convergence is that the partial sums Ak and Bk need to be in o(
√
k).

We now turn to the case of an accelerated proximal-gradient method. We focus on a basic variant of
the algorithm where βk is set to (k − 1)/(k + 2) [32, Eq. (19) and (27)]:

Proposition 2 (Accelerated proximal-gradient method - Convexity) Assume (H) and that we it-
erate recursion (3) with yk = xk + k−1

k+2 (xk − xk−1). Then, for all k > 1, we have

f(xk)− f(x∗) 6
2L

(k + 1)2

(
‖x0 − x∗‖+ 2Ãk +

√
2B̃k

)2

, (6)

with Ãk =

k∑
i=1

i

(
‖ei‖
L

+

√
2εi
L

)
, B̃k =

k∑
i=1

i2εi
L

.
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In this case, we require the series (k‖ek‖) and (k
√
εk) to be summable to achieve the optimal

O(1/k2) rate, which is an (unsurprisingly) stronger constraint than in the basic case. A sufficient
condition is for ‖ek‖ and

√
εk to decrease as O(1/k2+δ) for any δ > 0. Note that, as opposed to

Proposition 1 that is stated for the average iterate, this bound is for the last iterate xk.

Again, it is interesting to see what happens when the summability assumption is not met. First,
if ‖ek‖ or

√
εk decreases at a rate of O(1/k2), then k(‖ek‖ +

√
ek) decreases as O(1/k) and

Ãk grows as O(log k) (note that B̃k is always smaller than Ãk), yielding a convergence rate of
O
(

log2 k
k2

)
for f(xk) − f(x∗). Also, and perhaps more interestingly, if ‖ek‖ or

√
εk decreases at

a rate of O(1/k), Eq. (6) does not guarantee convergence of the function values. More generally,
the form of Ãk and B̃k indicates that errors have a greater effect on the accelerated method than
on the basic method. Hence, as also discussed in [22], unlike in the error-free case the accelerated
method may not necessarily be better than the basic method because it is more sensitive to errors in
the computation.

In the case where g is strongly convex it is possible to obtain linear convergence rates that depend
on the ratio γ = µ/L as opposed to the sublinear convergence rates discussed above. In particular,
we obtain the following convergence rate on the iterates of the basic proximal-gradient method:

Proposition 3 (Basic proximal-gradient method - Strong convexity) Assume (H), that g is µ-
strongly convex, and that we iterate recursion (3) with yk = xk. Then, for all k > 1, we have:

‖xk − x∗‖ 6 (1− γ)
k

(‖x0 − x∗‖+ Āk) , (7)

with Āk =

k∑
i=1

(1− γ)
−i

(
‖ei‖
L

+

√
2εi
L

)
.

A consequence of this proposition is that we obtain a linear rate of convergence even in the presence
of errors, provided that ‖ek‖ and

√
εk decrease linearly to 0. If they do so at a rate of Q′ < (1− γ),

then the convergence rate of ‖xk−x∗‖ is linear with constant (1− γ), as in the error-free algorithm.
If we have Q′ > (1− γ), then the convergence of ‖xk − x∗‖ is linear with constant Q′. If we have
Q′ = (1− γ), then ‖xk−x∗‖ converges to 0 asO(k (1− γ)

k
) = o

(
[(1− γ) + δ′]

k
)

for all δ′ > 0.

Finally, we consider the accelerated proximal-gradient algorithm when g is strongly convex. We
focus on a basic variant of the algorithm where βk is set to (1−√γ)/(1 +

√
γ) [30, §2.2.1]:

Proposition 4 (Accelerated proximal-gradient method - Strong convexity) Assume (H), that g
is µ-strongly convex, and that we iterate recursion (3) with yk = xk +

1−√γ
1+
√
γ (xk −xk−1). Then, for

all k > 1, we have

f(xk)− f(x∗) 6 (1−√γ)
k

(√
2(f(x0)− f(x∗)) + Âk

√
2

µ
+

√
B̂k

)2

, (8)

with Âk =

k∑
i=1

(
‖ei‖+

√
2Lεi

)
(1−√γ)

−i/2
, B̂k =

k∑
i=1

εi (1−√γ)
−i .

Note that while we have stated the result in terms of function values, we obtain an analogous result
on the iterates because by strong convexity of f we have

µ

2
||xk − x∗||2 ≤ f(xk)− f(x∗).

This proposition implies that we obtain a linear rate of convergence in the presence of errors pro-
vided that ||ek||2 and εk decrease linearly to 0. If they do so at a rate Q′ < (1 − √γ), then the
constant is (1 − √γ), while if Q′ > (1 − √γ) then the constant will be Q′. Thus, the accelerated
inexact proximal-gradient method will have a faster convergence rate than the exact basic proximal-
gradient method provided that Q′ < (1 − γ). Oddly, in our analysis of the strongly convex case,
the accelerated method is less sensitive to errors than the basic method. However, unlike the basic
method, the accelerated method requires knowing µ in addition to L. If µ is misspecified, then the
convergence rate of the accelerated method may be slower than the basic method.
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5 Experiments

We tested the basic inexact proximal-gradient and accelerated proximal-gradient methods on the
CUR-like factorization optimization problem introduced in [33] to approximate a given matrix W ,

min
X

1
2‖W −WXW‖2F + λrow

nr∑
i=1

||Xi||p + λcol

nc∑
j=1

||Xj ||p .

Under an appropriate choice of p, this optimization problem yields a matrix X with sparse rows
and sparse columns, meaning that entire rows and columns of the matrix X are set to exactly zero.
In [33], the authors used an accelerated proximal-gradient method and chose p = ∞ since under
this choice the proximity operator can be computed exactly. However, this has the undesirable effect
that it also encourages all values in the same row (or column) to have the same magnitude. The more
natural choice of p = 2 was not explored since in this case there is no known algorithm to exactly
compute the proximity operator.

Our experiments focused on the case of p = 2. In this case, it is possible to very quickly compute
an approximate proximity operator using the block coordinate descent (BCD) algorithm presented
in [12], which is equivalent to the proximal variant of Dykstra’s algorithm introduced by [34]. In our
implementation of the BCD method, we alternate between computing the proximity operator with
respect to the rows and to the columns. Since the BCD method allows us to compute a duality gap
when solving the proximal problem, we can run the method until the duality gap is below a given
error threshold εk to find an xk+1 satisfying (4).

In our experiments, we used the four data sets examined by [33]1 and we choose λrow = .01 and
λcol = .01, which yielded approximately 25–40% non-zero entries in X (depending on the data
set). Rather than assuming we are given the Lipschitz constant L, on the first iteration we set L to
1 and following [2] we double our estimate anytime g(xk) > g(yk−1) + 〈g′(yk−1), xk − yk−1〉 +
(L/2)||xk−yk−1||2. We tested three different ways to terminate the approximate proximal problem,
each parameterized by a parameter α:

• εk = 1/kα: Running the BCD algorithm until the duality gap is below 1/kα.
• εk = α: Running the BCD algorithm until the duality gap is below α.
• n = α: Running the BCD algorithm for a fixed number of iterations α.

Note that all three strategies lead to global convergence in the case of the basic proximal-gradient
method, the first two give a convergence rate up to some fixed optimality tolerance, and in this paper
we have shown that the first one (for large enough α) yields a convergence rate for an arbitrary op-
timality tolerance. Note that the iterates produced by the BCD iterations are sparse, so we expected
the algorithms to spend the majority of their time solving the proximity problem. Thus, we used
the function value against the number of BCD iterations as a measure of performance. We plot the
results after 500 BCD iterations for the first two data sets for the proximal-gradient method in Fig-
ure 1, and the accelerated proximal-gradient method in Figure 2. The results for the other two data
sets are similar, and are included in [29]. In these plots, the first column varies α using the choice
εk = 1/kα, the second column varies α using the choice εk = α, and the third column varies α
using the choice n = α. We also include one of the best methods from the first column in the second
and third columns as a reference.

In the context of proximal-gradient methods the choice of εk = 1/k3, which is one choice that
achieves the fastest convergence rate according to our analysis, gives the best performance across
all four data sets. However, in these plots we also see that reasonable performance can be achieved
by any of the three strategies above provided that α is chosen carefully. For example, choosing
n = 3 or choosing εk = 10−6 both give reasonable performance. However, these are only empirical
observations for these data sets and they may be ineffective for other data sets or if we change the
number of iterations, while we have given theoretical justification for the choice εk = 1/k3.

Similar trends are observed for the case of accelerated proximal-gradient methods, though the choice
of εk = 1/k3 (which no longer achieves the fastest convergence rate according to our analysis) no
longer dominates the other methods in the accelerated setting. For the SRBCT data set the choice

1The datasets are freely available at http://www.gems-system.org.
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Figure 1: Objective function against number of proximal iterations for the proximal-gradient method
with different strategies for terminating the approximate proximity calculation. The top row is for
the 9 Tumors data, the bottom row is for the Brain Tumor1 data.
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Figure 2: Objective function against number of proximal iterations for the accelerated proximal-
gradient method with different strategies for terminating the approximate proximity calculation.
The top row is for the 9 Tumors data, the bottom row is for the Brain Tumor1 data.

εk = 1/k4, which is a choice that achieves the fastest convergence rate up to a poly-logarithmic
factor, yields better performance than εk = 1/k3. Interestingly, the only choice that yields the
fastest possible convergence rate (εk = 1/k5) had reasonable performance but did not give the best
performance on any data set. This seems to reflect the trade-off between performing inner BCD
iterations to achieve a small duality gap and performing outer gradient iterations to decrease the
value of f . Also, the constant terms which were not taken into account in the analysis do play an
important role here, due to the relatively small number of outer iterations performed.
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6 Discussion

An alternative to inexact proximal methods for solving structured sparsity problems are smoothing
methods [35] and alternating direction methods [36]. However, a major disadvantage of both these
approaches is that the iterates are not sparse, so they can not take advantage of the sparsity of the
problem when running the algorithm. In contrast, the method proposed in this paper has the ap-
pealing property that it tends to generate sparse iterates. Further, the accelerated smoothing method
only has a convergence rate of O(1/k), and the performance of alternating direction methods is
often sensitive to the exact choice of their penalty parameter. On the other hand, while our analysis
suggests using a sequence of errors like O(1/kα) for α large enough, the practical performance of
inexact proximal-gradients methods will be sensitive to the exact choice of this sequence.

Although we have illustrated the use of our results in the context of a structured sparsity problem,
inexact proximal-gradient methods are also used in other applications such as total-variation [7, 8]
and nuclear-norm [9, 10] regularization. This work provides a theoretical justification for using
inexact proximal-gradient methods in these and other applications, and suggests some guidelines
for practioners that do not want to lose the appealing convergence rates of these methods. Further,
although our experiments and much of our discussion focus on errors in the calculation of the prox-
imity operator, our analysis also allows for an error in the calculation of the gradient. This may also
be useful in a variety of contexts. For example, errors in the calculation of the gradient arise when
fitting undirected graphical models and using an iterative method to approximate the gradient of the
log-partition function [37]. Other examples include using a reduced set of training examples within
kernel methods [38] or subsampling to solve semidefinite programming problems [39].

In our analysis, we assume that the smoothness constant L is known, but it would be interesting to
extend methods for estimating L in the exact case [2] to the case of inexact algorithms. In the context
of accelerated methods for strongly convex optimization, our analysis also assumes that µ is known,
and it would be interesting to explore variants that do not make this assumption. We also note that
if the basic proximal-gradient method is given knowledge of µ, then our analysis can be modified
to obtain a faster linear convergence rate of (1− γ)/(1 + γ) instead of (1− γ) for strongly-convex
optimization using a step size of 2/(µ+ L), see Theorem 2.1.15 of [30]. Finally, we note that there
has been recent interest in inexact proximal Newton-like methods [40], and it would be interesting
to analyze the effect of errors on the convergence rates of these methods.
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[7] J. Fadili and G. Peyré. Total variation projection with first order schemes. IEEE Transactions on Image

Processing, 20(3):657–669, 2011.
[8] X. Chen, S. Kim, Q. Lin, J.G. Carbonell, and E.P. Xing. Graph-structured multi-task regression and an

efficient optimization method for general fused Lasso. arXiv:1005.3579v1, 2010.
[9] J.-F. Cai, E.J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM

Journal on Optimization, 20(4), 2010.
[10] S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank minimiza-

tion. Mathematical Programming, 128(1):321–353, 2011.

8



[11] L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlap and graph Lasso. ICML, 2009.

[12] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary
learning. JMLR, 12:2297–2334, 2011.

[13] A. Barbero and S. Sra. Fast Newton-type methods for total variation regularization. ICML, 2011.

[14] J. Liu and J. Ye. Fast overlapping group Lasso. arXiv:1009.0306v1, 2010.

[15] M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond pairwise potentials.
AISTATS, 2010.

[16] M. Patriksson. A unified framework of descent algorithms for nonlinear programs and variational in-
equalities. PhD thesis, Department of Mathematics, Linköping University, Sweden, 1995.
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