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Abstract

This paper addresses the problem of automatic temporal

annotation of realistic human actions in video using mini-

mal manual supervision. To this end we consider two asso-

ciated problems: (a) weakly-supervised learning of action

models from readily available annotations, and (b) tempo-

ral localization of human actions in test videos. To avoid the

prohibitive cost of manual annotation for training, we use

movie scripts as a means of weak supervision. Scripts, how-

ever, provide only implicit, noisy, and imprecise information

about the type and location of actions in video. We address

this problem with a kernel-based discriminative clustering

algorithm that locates actions in the weakly-labeled train-

ing data. Using the obtained action samples, we train tem-

poral action detectors and apply them to locate actions in

the raw video data. Our experiments demonstrate that the

proposed method for weakly-supervised learning of action

models leads to significant improvement in action detection.

We present detection results for three action classes in four

feature length movies with challenging and realistic video

data.

1. Introduction

Identifying human actions in video is a challenging com-

puter vision problem and the key technology for many po-

tential video mining applications. Such applications be-

come increasingly important with the rapid growth of per-

sonal, educational, and professional video data.

Action recognition has a long history of research with

significant progress reported over the last few years. Most

of recent works, however, address the problem of action

classification, i.e., “what actions are present in the video?”

in contrast to “where?” and “when?” they occur. In this

paper, similar to [7, 14, 21, 24] we aim at identifying both

the classes and the temporal location of actions in video.

Recent papers on action recognition report impressive re-

sults for evaluations in controlled settings such as in Weiz-

man [1] and in KTH [19] datasets. At the same time, state-

of-the-art methods only achieve limited performance in real

Figure 1. Video clips with OpenDoor actions provided by auto-

matic script-based annotation. Selected frames illustrate both the

variability of action samples within a class as well as the imprecise

localization of actions in video clips.

scenarios such as movies and surveillance videos as demon-

strated in [13, 22]. This emphasises the importance of re-

alistic video data with human actions for the training and

evaluation of new methods.

In this work we use realistic video data with human ac-

tions from feature length movies. To avoid the prohibitive

cost of manual annotation, we propose an automatic and

scalable solution for training and use movie scripts as a

means of weak supervision. Scripts enable text based re-

trieval of many action samples but only provide imprecise

action intervals as illustrated in Figure 1. Our main tech-

nical contribution is to address this limitation with a new

weakly-supervised discriminative clustering method which

segments actions in video clips (Section 3). Using the re-

sulting segments with human actions for training, we next

turn to temporal action localization. We present action de-

tection results in highly challenging data from movies, and

demonstrate improvements achieved by our discriminative

clustering method in Sections 4 and 5.
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1.1. Related work

This paper is related to several recent research directions.

With respect to human action recognition, similar to [6, 13,

17, 19] and others, we adopt a bag-of-features framework,

represent actions by histograms of quantized local space-

time features and use an SVM to train action models. Our

automatic video annotation is based on video alignment of

scripts used in [5, 8, 13]. Similar to [13], we use scripts

to find coarse temporal locations of actions in the training

data. Unlike [13], however, we use clustering to discover

precise action boundaries from video.

Unsupervised action clustering and localization has been

addressed in [24] by means of normalized cuts [16].

Whereas this direct clustering approach works in simple

settings [24], we find it is not well suited for actions with

large intra-class variation and propose an alternative dis-

criminative clustering approach. [17] deals with unsuper-

vised learning of action classes but only considers actions

in simple settings and does not address temporal action lo-

calization as we do in this work. Recently and indepen-

dently of our work, Buehler et al. [2] considered learning

sign language from weak TV video annotations using mul-

tiple instance learning.

Our weakly supervised clustering is also related to the

work on learning object models from weakly annotated im-

ages [4, 15]. The temporal localization of training samples

in videos, addressed in this work, is also similar in spirit to

weakly supervised learning of object part locations in the

context of object detection [9].

Several previous methods address temporal localization

of actions in video. Whereas most of them evaluate re-

sults in simple settings [7, 21, 24], our work is more re-

lated to [14] that detects actions in a real movie. Differently

to [14] our method is weakly supervised and enables the

learning of actions with minimal manual supervision.

2. Automatic supervision for action recognition

Manual annotation of many classes and many samples

of human actions in video is a time-consuming process. For

example, common actions such as hand shaking or kissing

occur only a few times per movie on average, thus collecting

a fair-sized number of action samples for training requires

annotation of tens or hundreds of hours of video. In this

situation, the automatic annotation of training data is an in-

teresting and scalable alternative which will be addressed in

this paper.

Script-based retrieval of action samples. In this work,

we follow [13] and automatically collect training samples

with human actions using video scripts.1 Whereas [13] uses

1Note that we use scripts as a means of weak supervision at the training

stage only. Scripts are not available at the test stage of visual action anno-

supervised text classification for localizing human actions

in scripts, here we avoid manual text annotation altogether.

We use the OpenNLP toolbox [18] for natural language pro-

cessing and apply part of speech (POS) tagging to identify

instances of nouns, verbs and particles. We also use named

entity recognition (NER) to identify people’s names. Given

results of POS and NER we search for patterns correspond-

ing to particular classes of human actions such as (*/PER-

SON .* opens/VERB .* door/NOUN). This procedure automat-

ically locates instances of human actions in text:

... Jane jumps up and opens the door ...

... Carolyn opens the front door ...

... Jane opens her bedroom door ...

Temporal localization of actions in video. Scripts de-

scribe events and their order in video but usually do not

provide time information. Following [5, 8, 13] we find tem-

poral localization of dialogues in scripts by matching script

text with the corresponding subtitles using dynamic pro-

gramming. The temporal localization of human actions and

scene descriptions is then estimated from the time intervals

of surrounding speech as illustrated below:

Subtitles Script

00:24:22 –> 00:24:25

– Yes, Monsieur Laszlo.

Right this way.

-
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00:24:51 –> 00:24:53

Two Cointreaux, please. -
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Monsieur Laszlo. Right this way.

Speech

As the headwaiter takes them to a

table they pass by the piano, and

the woman looks at Sam. Sam,

with a conscious effort, keeps his

eyes on the keyboard as they go

past. The headwaiter seats Ilsa...

Scene description

Two cointreaux, please.

Speech

Automatic script alignment only provides coarse tempo-

ral localization of human actions, especially for episodes

with rare dialogues. In addition, incorrect ordering of ac-

tions and speech in scripts and the errors of script/subtitle

alignment often result in unknown temporal offsets. To

overcome temporal misalignment, we increase the esti-

mated time boundaries of scene descriptions. In this work

we denote parts of the video corresponding to scene descrip-

tions as video clips. Table 1 illustrates manually evaluated

accuracy of automatic script-based annotation in video clips

with increasing temporal extents.

Training an accurate action classifier requires video clips

with both accurate labels and precise temporal boundaries.

The high labelling accuracy in Table 1, however, is bound to

the imprecise temporal localization of action samples. This

trade-off between accuracies in labels and temporal local-

ization of action samples comes from the aforementioned

tation. We use movie scripts publicly available from www.dailyscript.com,

www.movie-page.com and www.weeklyscript.com



Figure 2. Space-time interst points detected for multiple video resolutions and three frames of a StandUp action. The circles indicate spatial

locations and scales of space-time patches used to construct bag-of-features video representaion (see text for more details).

Clip length (frames) 100 200 400 800 1600

Label accuracy 19% 43% 60% 75% 83%

Localization accuracy 74% 37% 18% 9% 5%

Table 1. Accuracy of automatic script-based action annotation in

video clips. Label accuracy indicates the proportion of clips con-

taining labeled actions. Localization accuracy indicates the pro-

portion of frames corresponding to labeled actions. The evalua-

tion is based on the annotation of three actions classes: StandUp,

SitDown and OpenDoor in fifteen movies selected based on their

availability.

problems with imprecise script alignment. In this paper we

target this problem and address visual learning of human

actions in a weakly supervised setting given imprecise tem-

poral localization of training samples. Next, we present a

weakly supervised clustering algorithm to automatically lo-

calize actions in training samples.

3. Human action clustering in video

To train accurate action models we aim at localizing

human actions inside video clips provided by automatic

video annotation. We assume most of the clips contain at

least one instance of a target action and exploit this redun-

dancy by clustering clip segments with consistent motion

and shape. In Section 3.1 we describe our video representa-

tion. Sections 3.2 and 3.3, respectively, formalize the clus-

tering problem and describe the discriminative clustering

procedure. Finally, Section 3.4 details the baseline k-means

like algorithm and Section 3.5 experimentally evaluates and

compares the two clustering algorithms.

3.1. Video representation

We use a bag-of-features representation motivated by

its recent success for object, scene and action classifica-

tion [6, 13, 17, 19]. We detect local space-time features

using an extended Harris operator [12, 13] applied at mul-

tiple spatial and temporal video resolutions.2 The resulting

patches correspond to local events with characteristic mo-

tion and shape in video as illustrated in Figure 2. For each

2We use publicly available implementation of feature detector and de-

scriptor from http://www.irisa.fr/vista/actions

detected patch, we compute the corresponding local motion

and shape descriptors represented by histograms of spatial

gradient orientations and optical flow respectively. Both de-

scriptors are concatenated into a single feature vector and

quantised using k-means vector quantisation and a visual

vocabulary of size N=1000. We represent a video segment

by its ℓ1-normalized histogram of visual words.

3.2. Joint clustering of video clips

Our goal is to jointly segment video clips containing

a particular action—that is, we aim at separating what is

common within the video clips (i.e., the particular action)

from what is different among these (i.e, the background

frames). Our setting is however simpler than general co-

segmentation in the image domain since we only perform

temporal segmentation. That is, we look for segments that

are composed of contiguous frames.

For simplicity, we further reduce the problem to separat-

ing one segment per video clip (the action segment) from

a set of background video segments, taken from the same

movie or other movies, and which are unlikely to contain

the specific action. We thus have the following learning

problem: We are given M video clips c1, . . . , cM contain-

ing the action of interest but at unknown position within the

clip as illustrated in Figure 3. Each clip ci is represented

by ni temporally overlapping segments centered at frames

1, . . . , ni represented by histograms hi[1], . . . , hi[ni] in

R
N . Each histogram captures the ℓ1-normalized frequency

counts of quantized space-time interest points, as described

in section 3.1, i.e. it is a positive vector in R
N whose com-

ponents sum to 1. We are also given P background video

segments represented by histograms hb
1, . . . , h

b
P ∈ R

N .

Our goal is to find in each of the M clips i one specific

video segment centered at frame fi ∈ {1, . . . , ni} so that

the set of M histograms hi[fi], i = 1, . . . ,M form one

cluster while the P background histograms form another

cluster as illustrated in figure 4.

3.3. Discriminative clustering

In this section, we formulate the above clustering prob-

lem as a minimization of a discriminative cost function [23].

First, let us assume that correct segment locations fi, i ∈



Figure 3. Illustration of the temporal action clustering problem.

Given a set of M video clips c1, . . . , cM containing the action of

interest at unknown position, the goal is to temporally localize a

video segment in each clip containing the action.
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temporal 
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Figure 4. In feature space, positive samples are constrained to be

located on temporal feature tracks corresponding to consequent

temporal windows in video clips. Background (non-action) sam-

ples provide further constrains on the clustering.

{1, . . . ,M}, are known (i.e., we have identified the loca-

tions of the actions in video). We can now consider a sup-

port vector machine (SVM) [20] classifier aiming at sepa-

rating the identified action video segments from the given

background video segments, which leads to the following

cost function

J(f, w, b) = C+

M
∑

i=1

max{0, 1 − w⊤Φ(hi[fi]) − b}

+ C−

P
∑

i=1

max{0, 1 + w⊤Φ(hb
i ) + b} + ‖w‖2, (1)

where w ∈ F and b ∈ R are parameters of the classi-

fier and Φ is the implicit feature map from R
N to feature

space F , corresponding to the intersection kernel between

histograms, defined as [10]

k(x, x′) =

N
∑

j=1

min (xj , x
′
j). (2)

Note that the first two terms in cost function (1) repre-

sent the hinge loss on positive and negative training data

weighted by factors C+ and C− respectively, and the last

term is the regularizer of the classifier. Note that training

the SVM with locations fi known and fixed corresponds to

minimizing J(f, w, b) with respect to classifier parameters

w, b.

However, in the clustering setup considered in this work,

where the locations fi of action video segments within clips

are unknown, the goal is to minimize the cost function (1)

both with respect to the locations fi and the classifier pa-

rameters w, b, so as to separate positive action segments

from (fixed) negative background video segments. Denot-

ing by H(f) = minw∈F,b∈R J(f, w, b) the associated opti-

mal values of J(f, w, b), the cost function H(f) now char-

acterizes the separability of a particular selection of action

video segments f from the (fixed) background videos. Fol-

lowing [11, 23], we can now optimize H(f) with respect to

the assignment f .

We consider a coordinate descent algorithm, where we

iteratively optimize H(f) with respect to position fi of the

action segment in each clip, while leaving all other compo-

nents (positions of other positive video segments) fixed. In

our implementation, which uses the LibSVM [3] software,

in order to save computing time, we re-train the SVM (up-

dating w and b) only once after an optimal fi is found in

each clip.

Note that the position fi of an action segment within clip

ci can be parametrized using a binary indicator vector zi,

with 1 at position fi and zero otherwise. This representation

naturally leads to a continuous relaxation of the clustering

problem by allowing zi to have any (i.e. non-binary) posi-

tive values, which sum to one. We use the idea of contin-

uous relaxation for initialization of the coordinate descent

algorithm. Initial histogram h0
i for each video clip ci is set

to the average of all segment histograms hi[fi] within the

clip. Using the relaxed indicator notation, this corresponds

to initializing zi with a small fixed value for all segments,

equal to one over the number of segments in the clip.

3.4. Clustering baseline: modified kmeans

To illustrate the difficulty of the clustering task addressed

in this paper, we consider a baseline method in terms of a

modified k-means algorithm. This type of algorithm has

been used previously for weakly-supervised spatial object

category localization in image sets [4].

We consider the joint distortion measure of assigning

some of the candidate segments to a mean µ ∈ F , while as-

signing all other segments (and the background) to a mean

ν ∈ F . Using the indicator vector notation, we minimize

the following function with respect to z and µ, ν:

M
∑

i=1

ni
∑

j=1

[

zij‖Φ(hi[j]) − µ‖2 + (1 − zij)‖Φ(hi[j]) − ν‖2
]

+

P
∑

i=1

‖Φ(hb
i ) − ν‖2. (3)
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Figure 5. Visualization of temporal segmentation results. Ground

truth action locations are shown by thick blue bars and locations

automatically obtained by temporal clustering are shown as red-

yellow bars. The action is approximately localized in 19 out 21

cases. See text for details.

This cost function can be (locally) minimized alternatively

with respect to all zi, i ∈ {1, . . . ,M} and to µ and ν. In

our experiments, as shown in Section 3.5, it does not lead

to good solutions. Our interpretation is that this type of

algorithm, like regular k-means, relies heavily on the metric

‖Φ(x)−Φ(x′)‖ without the possibility of adapting it to the

data, which discriminative clustering can do.

3.5. Evaluation of clustering performance

In this section we apply the discriminative clustering

algorithm described above to temporal segmentation of

“drinking” actions in the movie “Coffee and Cigarettes”.

The quality of the segmentation is evaluated in terms of lo-

calization accuracy. Section 4 then evaluates the benefit of

automatic action segmentation for the supervised temporal

action detection.

The clustering algorithm is evaluated on a set of 21

drinking actions. The remaining 38 actions are left out for

testing detection performance. Our test and training videos

do not share the same scenes or actors. For both the train-

ing and test set the ground truth action boundaries were ob-

tained manually. To evaluate the algorithm in controlled set-

tings, we simulate script-based weak supervision by extend-

ing the ground truth action segments by random amounts of

between 0 and 800 frames on each side. The negative data

is obtained by randomly sampling segments of a fixed size

from the entire movie. The size of positive segments is kept

fixed at 60 frames.

Our clustering algorithm converges in a few (3-5) itera-

tions both in terms of the cost given in (1) and the localiza-

tion accuracy (discussed below). Automatically localized

segments are shown in Figure 5 and example frames from

several clips are shown in Figure 6. Note the significant

variation of appearance between the different actions.

The temporal localization accuracy is measured by the

percentage of clips with relative temporal overlap to ground

truth action segments greater than 0.2. The best overlap

score of 1 is achieved when the automatically found action

video segment aligns perfectly with the ground truth action,

and 0 in the case of no temporal overlap. This relatively

loose threshold of 0.2 is used in order to compensate for

the fact that temporal boundaries of actions are somewhat

ambiguous and not always accurately defined. Using this

performance measure discriminative clustering correctly lo-

calizes 19 out of 21 clips, which corresponds to an accuracy

of 90%. There are two missed actions (6 and 18 in fig-

ure 5). Clip 6 contains a significant simultaneous motion

of another person not performing the target action. In clip

18 drinking is mismatched for smoking (the two actions are

visually quite similar).

The 90% accuracy achieved by discriminative clustering

is a significant improvement over the k-means algorithm de-

scribed in section 3.4, which fails completely on this data

and achieves accuracy of only 5%. We have also imple-

mented a variation of the k-means method minimizing the

sum of distances between all positive examples [4] instead

of sum of distances to the mean, but obtained similarly low

performance. This could be attributed to the fact that dis-

criminative clustering selects relevant features within the

histograms. This is important in our setting where his-

tograms can be polluted by background motion or other ac-

tions happening within the same frame.

4. Temporal action detection in video

In this section we experimentally evaluate, in a con-

trolled setting, whether the action classifier trained on auto-

matically clustered action segments can be used to improve

the performance of temporal action detection in new unseen

test videos with no textual annotation.

Temporal sliding window detection Similar to object

detection in image domain, we train a SVM classifier to

classify a short video segment as to whether it contains the

action of interest, and apply the classifier in a sliding win-

dow manner over the entire video. The classifier output is

then processed using a standard non-maximum suppression

algorithm.

Evaluation We use the same test data as in [14] formed

by 35,973 frames of the movie Coffee and Cigarettes con-

taining 38 drinking actions. In all cases we consider sliding

windows with temporal scales of 60, 80 and 100 frames,

and the negative training data is formed by 5,000 video seg-

ments randomly sampled from the training portion of the

movie. Similar to object detection, performance is mea-

sured using precision-recall curve and average precision

(AP).



Figure 6. Examples of temporally localized “drinking” actions in the movie “Coffee and Cigarettes” by the proposed discriminative clus-

tering algorithm. Each row shows example frames from the entire video clip. Example frames of automatically localized actions within

the clips are shown in red. Note the appearance variation between the different instances of the action.

We investigate, how the detection performance changes

with the increasing size of the training video segments con-

taining the positive training examples. The goal of this ex-

periment is to simulate inaccurate temporal localization of

actions in clips obtained from text annotation. Figure 7 (top)

shows precision-recall curves for training clip sizes vary-

ing between 800 frames and the precise ground truth (GT)

boundaries of the positive actions. The decreasing perfor-

mance with increasing training clip size clearly illustrates

the importance of temporal action localization in the train-

ing data. The performance is also compared to the ap-

proach of Laptev and Pérez [14] which in addition spatially

localizes actions in video frames. For comparison, how-

ever, we here only consider temporal localization perfor-

mance of [14]. Measured by average precision, the spatio-

temporal sliding window classifier of Laptev and Perez per-

forms slightly better (AP of 0.49) compared to the tempo-

ral sliding window classifier considered in this work (AP

of 0.40). It should be noted, however, that [14] requires

much stronger supervision in the form of spatio-temporal

localization of training actions in the video. Finally, Fig-

ure 7 (bottom) shows the precision-recall curve for training

from localized action segments obtained automatically us-

ing our discriminative clustering method (Section 3) com-

pared with training on entire video clips. Note the clear

improvement in detection performance when using tempo-

rally localized training samples obtained with the clustering

algorithm.

5. Experiments

In this section we test our full framework for automatic

learning of action detectors including (i) automatic retrieval

of training action clips by means of script mining (Sec-

tion 2), (ii) temporal localization of actions inside clips us-

ing discriminative clustering (Section 3) and (iii) Super-

vised temporal detection of actions in test videos (Sec-

tion 4). To train an action classifier we use fifteen movies3

aligned with the scripts and choose two test action classes

OpenDoor and SitDown based on their high frequency in

our data. Our only manual supervision provided to the

3Our fifteen training movies were selected based on their availability

as well as the quality of script alignment. The titles of the movies are:

American Beauty; Being John Malkovich; Casablanca; Forrest Gump; Get

Shorty; Its a Wonderful Life; Jackie Brown; Jay and Silent Bob Strike

Back; Light Sleeper; Men in Black; Mumford; Ninotchka; The Hustler;

The Naked City and The Night of the Hunter.
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Figure 7. Action detection performance on ”Coffee and

Cigarettes” test set for (top) increasing training clip sizes and (bot-

tom) automatically segmented training data compared with train-

ing from unsegmented clips.

system consists of text patterns for the actions defined as

(*/PERSON .* opens/VERB .* door/NOUN) and (*/PERSON .*

sits/VERB .* down/PARTICLE). Matching these text patterns

with scripts results in 31 and 44 clips with OpenDoor and

SitDown actions respectively. We use these clips as input to

the discriminative clustering algorithm and obtain segments

with temporally localized action boundaries. The segments

are passed as positive training samples to train an SVM ac-

tion classifier. To compare performance of the method we

also train two action classifiers using positive training sam-

ples corresponding to (a) entire clips and (b) ground truth

action intervals.

To test detection performance we manually annotated all

93 OpenDoor and 86 SitDown actions in three movies: Liv-

ing in oblivion, The crying game and The graduate. Detec-

tion results for the three different methods and two action

classes are illustrated in terms of precision-recall curves

in Figure 9. The comparison of detectors trained on clips

and on action segments provided by the clustering clearly

indicates the improvement achieved by the discriminative

clustering algorithm for both actions. Moreover, the perfor-

mance of automatically trained action detectors is compa-

rable to the detectors trained on the ground truth data. We

emphasize the large amount (450.000 frames in total) and

high complexity of our test data illustrated with a few de-

tected action samples in Figure 9.

6. Conclusions

We described a method for training temporal action de-

tectors using minimal manual supervision. In particular, we

addressed the problem of weak action supervision and pro-

posed a discriminative clustering method that overcomes

localization errors of actions in script-based video annota-

tion. We presented results of action detection in challeng-

ing video data and demonstrated a clear improvement of

our clustering scheme compared to action detectors trained

from imprecisely localized action samples. Our approach is

generic and can be applied to training of a large variety and

number of action classes in an unsupervised manner.
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Figure 8. Precision-recall curves corresponding to detection results for two action classes in three movies. The three compared methods

correspond to detectors trained on ground truth intervals (GT), clustering output (Cluster) and clips obtained from script mining (Clip).

Note that the axes are scaled between 0 and 0.5 for better clarity.

Examples of detected SitDown action Examples of detected OpenDoor action

Figure 9. Examples of action samples detected with the automatically trained action detector in three test movies.
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