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Summary

e Machine learning and regularization

e Group Lasso

— Consistent estimation of groups?
e Multiple kernel learning as non parametric group Lasso

e Extension to trace norm minimization



Supervised learning and regularization

e Data: v; € X, y; €V, 1=1,...,n

e Minimize with respect to function f € F:
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Error on data + Regularization

Loss & function space ? Norm 7?7

e | wo iIssues:

— Loss
— Function space / norm



Usual losses

e Regression: y € R, prediction § = f(z), quadratic cost {(y, f) =
2y =9 =30 — /)

e Classification : y € {—1,1} prediction § = sign(f(x))

— loss of the form /(y, f) = {(y f) o
— “True” cost: £(yf) =1,r<0 © o
— Usual convex costs: o
5 ‘
— 0-1
4 — hinge
square
logistic




Regularizations

e Main goal: control the “capacity” of the learning problem

e [wo main lines of work

1. Use Hilbertian (RKHS) norms
— Non parametric supervised learning and kernel methods
— Well developped theory
2. Use “sparsity inducing’ norms
— main example: ¢1 norm
— Perform model selection as well as regularization
— Often used heuristically

e Group lasso / MKL : two types of regularizations



Group lasso - linear predictors
e Assume x;,w € RP where p=p1+ -+ + py, 1.€., M groups
r; = (Ti1, -y Tim) w = (W, ..., Wn)

e Goal: achieve sparsity at the levels of groups: J(w) = {7, w; # 0}

e Main application:

— Group selection vs. variable selection (Zhao et al., 2006)
— Multi-task learning (Argyriou et al., 2006, Obozinsky et al., 2007)

e Regularization by block /;-norm (Yuan & Lin, 2006, Zhao et al.,
2006, Bach et al., 2004):
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Group lasso - Main questions

min —Z€ yz,w X; +)‘ZdewJH

wERP N

1. Analysis of sparsity inducing property:

e where do w and J(w) = {i, w; # 0} converge to?

e letting the problem grow
— sizes of the groups p;,2 =1,...,m = “kernelization”
— number of groups m = 7

o Influence of the weights d;

2. Algorithms

e very efficient and elegant for the Lasso (Efron et al., 2004)



Group lasso - Asymptotic analysis
Groups of finite sizes - Square loss

e Assumptions:

1. Data (X;,Y;) sampled i.i.d.

2. w € RP denotes the (unique) minimizer of E(Y — X "w)? (best
linear predictor). Assume E((Y —w'X)?|X) > 02. >0 a.s.

3. Finite fourth order moments: E|| X ||* < co and E||Y||* < oc.

4. Invertible covariance: Yy x = EXX ' € RPXP js invertible.

e Denote J = {j,w; # 0} the sparsity pattern of w

e Goal: estimate consistently both w and J when n tends to infinity

— Ve > 0, P(||w — w|| > ¢€) tends to zero
— P({j,w; # 0} # J) tends to zero
— Rates of convergence



Group lasso - Consistency conditions

e Strict condition:

1
max —
’LEJC .

DX, Ding(ds / [wj|ywal| < 1

e Weak condition:

1
max —
’LEJC .

S X, Diag(dy/||w; ) wal| < 1

e Theorem 1: Strict condition is sufficient for joint regular and sparsity

consistency of the group lasso (A, — 0 and A\,n'/? — 400)

e Theorem 2: \Weak condition is necessary for joint regular and sparsity
consistency of the group lasso (for any \,).



Group lasso - Consistency conditions

e Condition:

3y, Diag(d;/ | w) WJH < or <1

1eJ¢

e Extension of the Lasso consistency conditions (Zhao and Yu, 2006,
Yuan and Lin, 2007, Zou, 2006, Wainwright, 2006)

e Additional questions:

— Is strict condition necessary (as in the Lasso case)?
— Estimate of probability of correct sparsity estimation
— Loading independent condition

— Other losses

— Negative or positive result?



Group lasso - Strict condition necessary?

e Strict condition necessary for the Lasso (Zou, 2006, Zhao and Yu,
2006)

e Strict condition not necessary for the group Lasso

— |f weak condition is satisfied and for all ¢+ € J¢ such that

& | P, Bx x, Ding(dy/lw) ) wa| = 1, we have

T I wiw/ )
A ZXJXiZX’iXJZXJXJDlag d]/HWJH ij_WTW- A>O,

i W
with A = —E)_(}XJ Diag(d;/||w;||)wys, then the group lasso
estimate leads to joint regular and sparsity consistency (A, — 0
and \,n'/* — 400)



Loading independent sufficient condition

e Condition on X and J:

1
maxmax — || X x. x: 2w+ Diag(d;/||w;||)w 1
wy i€Je d; XiXI= XXy g(d;/l|w;l)ws|| <
1
< Imax—  max HZ . 2%t Diag(d;)u < 1
ieJe d; |ujl|=1, VjeJ XX XX g( J) J
= maXlE d.; § ZXX (Z_l ) < 1
ged ked

e Lasso (groups of size 1): all those are equivalent

e Group lasso: stricter sufficient condition (in general)

— NB: can obtain better one with convex relaxation (see paper)



Probability of correct selection of pattern

e Simple general result when \,, = \gn™1/?
e Probability equal to
P (max ||—2 5y ¢ D20 Sy g 07 Diag( % ywiyll < 1
icJe |Inl/2)\, d; HiXIEX X d; MR X |w ]| i

where u is normal with mean zero and identity covariance matrix.

e With additional conditions, valid when \,n!/? not too far from
constant = exponential rate of convergence if strict condition is
satisfied

e Dependence on 0 and n



Positive or negative result?

e “Disappointing” result for Lasso/group Lasso

— Does not always do what heuristic justification suggests!

e Can we make it always consistent?

— Data dependent weights = adaptive Lasso/group Lasso

e Do we care about exact sparsity consistency?

— Recent results by Meinshausen and Yu (2007)



Relationship with multiple kernel learning (MKL)
(Bach, Lanckriet, Jordan, 2004)

e Alternative equivalent formulation:

2
2 ™m
Hél@j —HY Xwl||? + Q,un (Zj:ldeij)

e Dual optimization problem (using conic programming):
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Relationship with multiple kernel learning (MKL)
(Bach, Lanckriet, Jordan, 2004)

e Alternative equivalent formulation:

2
2 m
Héllélp =Y — Xwl||* + S, (Zj:ldeij)

e Dual optimization problem (using conic programming):
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Relationship with multiple kernel learning (MKL)
(Bach, Lanckriet, Jordan, 2004)

e Alternative equivalent formulation:

2
2 ™m
Hélﬂ%j —HY Xwl||? + Q,un (Zj:ldeij)

e Dual optimization problem:
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Relationship with multiple kernel learning (MKL)

/

min max <
n=0,3200 njdi=10€R"

\

—5,llY = npnal?

\

Z Nl | o p
=1

/

e Optimality conditions: the dual variable o« € R" is optimal if and only
if there exists 7 € R such that 7" | n;d% = 1 and « is optimal for
ridge regression problem with kernel matrix K = Z;n:l n; K

e 1) can also be obtained as the minimizer of

1

J(n) = max ——[|Y = npna® -

aERM

j{:7bi{j Q,
7=1

— J(n) is the optimal value of the objective function of the single
kernel estimation problem with kernel K = 3" 1, K;



Multiple kernel learning (MKL)

e Jointly learn optimal (sparse) combination of kernel () together with
the estimate with this kernel («)

e Application

— Kernel learning

— Heteregeneous data fusion
e Known issues

— Algorithms
— Influence of weights d; (feature spaces have different sizes)

— Consistency



Analysis of MKL as non parametric group Lasso

e Assume m Hilbert spaces F;, 1 =1,...,m
2 2
SRR 3l U Sy o) Ry b gPATN
fi€F;, i=1,..m 2n — ' i IR 2 P I

e Sparse generalized additive models (Hastie and Tibshirani, 1990)
e Estimate is obtained through MKL formulation

e Same question: regular and sparsity consistency when the groups are
infinite-dimensional Hilbert spaces



Analysis of MKL as non parametric group Lasso
(non centered) covariance operators

e Single random variable X: X x x is a bounded linear operator from
F to F such that for all (f,g) € F x F,

frXxxg) = E(f(X)g(X))

Under minor assumptions, the operator X x x is auto-adjoint, non-
negative and Hilbert-Schmidt

e Tool of choice for the analysis of least-squares non parametric
methods (Fukumizu et al., 2005, 2006, Gretton et al., 2006, etc...)

— Natural empirical estimate Yyx = IS ECx) @ k(- @)
converges in probability to X x x in HS norm.



Cross-covariance operators

e Several random variables: cross-covariance operators EX,L.XJ. from F;
to F; such that V(f;, ;) € Fi x F},

(fir Xx,x; [5) = E(fi(Xi) f3(X5))
e Similar convergence properties of empirical estimates

e Joint covariance operator X x x defined by blocks

e \We can define the bounded correlation operators through

L wl)2 1/2

e NB: the joint covariance operator is never invertible, but the
correlation operator may be



Analysis of MKL as non parametric group Lasso

e Assumptions

1. V5, F; is a separable RKHS associated with kernel k;, and
Ekj(Xj,Xj)2 < Q.

2. Model: There exists functions f = (f;,...,f,) e F=F; x--- X
F.n and a function h of X = (X,...,X,,) such that

E(Y]X) =>2;2 §(X;) + h(X)
with Eh(X)? < oo and Eh(X)f;(X;) =0forall j =1,...,m and
E((Y — X7 £5(X,)%X) > 02y, > 0 as

3. Compacity and invertibility : All cross-correlation operators are
compact and the joint correlation operator is invertible.

4. Range condition: For all j, 3g; € 7; such that f; = Y’ g,



Compacity and invertibility of joint correlation
operator

e Sufficient condition for compacity when distributions have densities:

]E{ pXin(xivxj)) B 1} < oo,

sz‘(xi)pXj (xj

— Dependence between variables is not too strong

e Sufficient condition for invertibility: no exact correlation using
functions in the RKHS.

— Empty concurvity space assumption (Hastie and Tibshirani, 1990)



Range condition

e Technical condition: For all j, dg; € F; such that f; = Z%fngJ

— Conditions on the support of f; with respect to the support of the
data
— Conditions on the smoothness of f;

e Sufficient condition for translation invariant kernels
k(z,2") = q(x — 2') in R

— [f; is of the form f; = g * g; where f (xjj))dxj.




Group lasso - Consistency conditions

e Strict condition

1

max —
1eJe€

1/2

e OxxsCx i, Ding(dy/ £ ea | < 1

e \Weak condition

1

max —
1eJ¢€

1/2
¥ CxixaCxix, Diag(d /)| < 1

e Theorem 1: Strict condition is sufficient for joint regular and sparsity
consistency of the lasso.

e Theorem 2: \Weak condition is necessary for joint regular and sparsity
consistency of the lasso.



Adaptive group lasso

e Consistency condition depends on w or f and is not always satisfied!

e Empirically, the weights do matter a lot (Bach, Thibaux, Jordan,
2005)



Importance of weigts (Bach, Thibaux, Jordan, 2005)

o

= N W A O
o O O

o

number of kernels

o

0

logn) ° Cogly

e Canonical behavior as \ decreases

— Training error decreases to zero
— Testing error decreases, increases, then stabilizes

e Importance of d; (weight of penalization = } . d;||w;l])

— d; should be an increasing function of the “rank”™ of K, e.g.,

(when matrices are normalized to unit trace):

1

v
dj = (number of eigenvalue > —>
2n



Importance of weigts (Bach, Thibaux, Jordan, 2005)

e Left: v =0 (unit trace, Lanckriet et al., 2004), right: v =1

e Top: training (bold)/testing (dashed) error
bottom: number of kernels

Regression (Boston dataset) Classification (Liver dataset)
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Adaptive group lasso

e Consistency condition depends on w or f and is not always satisfied!

e Empirically, the weights do matter a lot (Bach, Thibaux, Jordan,
2005)

e Extension of the Lasso adaptive version (Yuan & Lin, 2006) using
the regularized LS estimate f° defined as:

2

| 1 & " K N
min P yi—ij(sz') +7ZHfjH27
j=1 J=1

f@‘EF@‘, 1=1,....m 27}, 1
1=



Adaptive group lasso

e Theorem: Let fL 1,3 be the least-square estimate with regularization

parameter proportional to n=1/3. Let f denote any minimizer of
2 2
1 n m ,uon_l/
5 yi— > filzy) | + 5 ZH )il £
i—1 =1

>

For any v > 1, f converges to f and J(f) converges to J in
probability.

e Convergence rates with more assumptions (and more work!)

e Practical implications in applications to be determined



Algorithms for group lasso and MKL

e Algorithms for general convex losses

e many different interpretations implies many different algorithms

— Group Lasso - primal formulation w.r.t. w
— Group Lasso - dual formulation w.r.t. «
— Direct problem involving n



Algorithms for MKL

e (very) costly optimization with SDP, QCQP ou SOCP (Lanckriet et
al., 2004)

—n > 1,000 — 10,000, m > 100 not possible
— "“loose” required precision = first order methods

e Shooting algorithm (Yuan & Lin, 2006)
e Dual coordinate ascent (SMO) with smoothing (Bach et al., 2004)
e Optimization of J(n) by cutting planes (Sonnenburg et al., 2005)

e Optimization of J(n) with steepest descent with smoothing
(Rakotomamonjy et al, 2007)

e Regularization path (Bach, Thibaux & Jordan, 2005)



lllustrative toy experiments

e 6 groups of size 2 - Card(J) = 3

e Consistent condition fullfilled:

Original Adaptive Unit trace
1 ——— 1 | Il
< 0.5 = 0.5 = 0.5
O ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ === e —
-8 6 -4 -2 0 2 -10 -5 0 -6 -4 -2 0 2



lllustrative toy experiments

e 6 groups of size 2 - Card(J) = 3

e Consistent condition not fullfilled:

Original Adaptive Unit trace

' 0
-6 -4 -2 0 2 98—6—4—2024 -2 0 2
—log( ) —log( ) —log( )



Applications

e Bioinformatics (Lanckriet et al., 2004)

— Protein function prediction

e Image annotation (Harchaoui & Bach, 2007)

— Fusing information from different aspects of images



Image annotation

e Corelld: 1400 natural images with 14 classes




Performance on Corell4
(Harchaoui & Bach, 2007)

e Histogram kernels (H)
e Walk kernels (W)
e Tree-walk kernels (TW)

e Weighted tree-walks
(WTW)

e MKL (M)
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Extension to trace norm minimization

e Consider learning linear predictor where covariates X are rectangular
matrices

e loading matrix W, and prediction tr W ' X

e Assumption of low rank loading matrix:

— Matrix completion (Srebro et al., 2004)
— collaborative filtering (Srebro et al., 2004, Abernethy et al., 2006)
— Multi-task learning (Argyriou et al., 2006, Obozinsky et al., 2007)

e Equivalent of the /; norm : trace norm = sums of singular values

e Do we actually get low-rank solutions?

— Necessary and sufficient consistency conditions (Bach, 2007)
— Extension of the group Lasso results.



Conclusion

e Analysis of sparsity behavior of the group lasso

— infinite dimensional groups = MKL
— Adaptive version to define appropriate weights

e Current work:

— Analysis for other losses

— Consider growing number of groups

— Analysis when consistency condition not satisfied

— non parametric group lasso: universal consistency?

— Infinite dimensional extensions of trace norm minimization



