Consistency of group lasso and multiple kernel learning

Francis Bach INRIA - Ecole Normale Supérieure Willow project

November 2007

Summary

- Machine learning and regularization
- Group Lasso
 - Consistent estimation of groups?
- Multiple kernel learning as non parametric group Lasso
- Extension to trace norm minimization

Supervised learning and regularization

- Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, $i = 1, \dots, n$
- Minimize with respect to function $f \in \mathcal{F}$:

- Two issues:
 - Loss
 - Function space / norm

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y} = f(x)$, quadratic cost $\ell(y, f) = \frac{1}{2}(y \hat{y})^2 = \frac{1}{2}(y f)^2$
- Classification : $y \in \{-1, 1\}$ prediction $\hat{y} = \operatorname{sign}(f(x))$
 - loss of the form $\ell(y,f)=\ell(yf)$
 - "True" cost: $\ell(yf) = 1_{yf < 0}$
 - Usual convex costs:

Regularizations

- Main goal: control the "capacity" of the learning problem
- Two main lines of work
 - 1. Use Hilbertian (RKHS) norms
 - Non parametric supervised learning and kernel methods
 - Well developped theory
 - 2. Use "sparsity inducing" norms
 - main example: ℓ_1 norm
 - Perform model selection as well as regularization
 - Often used heuristically
- Group lasso / MKL : two types of regularizations

Group lasso - linear predictors

• Assume $x_i, w \in \mathbb{R}^p$ where $p = p_1 + \cdots + p_m$, i.e., *m* groups

$$x_i = (x_{i1}, \dots, x_{im}) \qquad w = (w_1, \dots, w_m)$$

- Goal: achieve sparsity at the levels of groups: $J(w) = \{i, w_i \neq 0\}$
- Main application:
 - Group selection vs. variable selection (Zhao et al., 2006)
 - Multi-task learning (Argyriou et al., 2006, Obozinsky et al., 2007)
- Regularization by block ℓ_1 -norm (Yuan & Lin, 2006, Zhao et al., 2006, Bach et al., 2004):

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \sum d_j \|w_j\|$$

Group lasso - Main questions

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \sum d_j \|w_j\|$$

- 1. Analysis of sparsity inducing property:
 - where do \hat{w} and $J(\hat{w}) = \{i, \ \hat{w}_i \neq 0\}$ converge to?
 - letting the problem grow
 - sizes of the groups $p_i, i = 1, \ldots, m \Rightarrow$ "kernelization"
 - number of groups $m \Rightarrow ?$
 - Influence of the weights d_j
- 2. Algorithms
 - very efficient and elegant for the Lasso (Efron et al., 2004)

Group lasso - Asymptotic analysis Groups of finite sizes - Square loss

- Assumptions:
 - 1. Data (X_i, Y_i) sampled **i.i.d.**
 - 2. $\mathbf{w} \in \mathbb{R}^p$ denotes the (unique) minimizer of $\mathbb{E}(Y X^{\top}w)^2$ (best linear predictor). Assume $\mathbb{E}((Y \mathbf{w}^{\top}X)^2|X) \ge \sigma_{\min}^2 > 0$ a.s.
 - 3. Finite fourth order moments: $\mathbb{E}||X||^4 < \infty$ and $\mathbb{E}||Y||^4 < \infty$.
 - 4. Invertible covariance: $\Sigma_{XX} = \mathbb{E}XX^{\top} \in \mathbb{R}^{p \times p}$ is invertible.
- Denote $\mathbf{J} = \{j, \mathbf{w}_j \neq 0\}$ the sparsity pattern of \mathbf{w}
- \bullet Goal: estimate consistently both ${\bf w}$ and ${\bf J}$ when n tends to infinity
 - $\forall \varepsilon > 0$, $\mathbb{P}(\|\hat{w} \mathbf{w}\| > \varepsilon)$ tends to zero
 - $\mathbb{P}(\{j, \hat{w}_j \neq 0\} \neq \mathbf{J})$ tends to zero
 - Rates of convergence

Group lasso - Consistency conditions

• Strict condition:

$$\max_{i \in \mathbf{J}^c} \frac{1}{d_i} \left\| \Sigma_{X_i X_\mathbf{J}} \Sigma_{X_\mathbf{J} X_\mathbf{J}}^{-1} \operatorname{Diag}(d_j / \|\mathbf{w}_j\|) \mathbf{w}_\mathbf{J} \right\| < 1$$

• Weak condition:

$$\max_{i \in \mathbf{J}^c} \frac{1}{d_i} \left\| \Sigma_{X_i X_\mathbf{J}} \Sigma_{X_\mathbf{J} X_\mathbf{J}}^{-1} \operatorname{Diag}(d_j / \|\mathbf{w}_j\|) \mathbf{w}_\mathbf{J} \right\| \leqslant 1$$

- Theorem 1: Strict condition is sufficient for joint regular and sparsity consistency of the group lasso $(\lambda_n \to 0 \text{ and } \lambda_n n^{1/2} \to +\infty)$
- Theorem 2: Weak condition is necessary for joint regular and sparsity consistency of the group lasso (for any λ_n).

Group lasso - Consistency conditions

• Condition:

$$\max_{i \in \mathbf{J}^c} \frac{1}{d_i} \left\| \Sigma_{X_i X_\mathbf{J}} \Sigma_{X_\mathbf{J} X_\mathbf{J}}^{-1} \operatorname{Diag}(d_j / \|\mathbf{w}_j\|) \mathbf{w}_\mathbf{J} \right\| < \text{ or } \leq 1$$

- Extension of the Lasso consistency conditions (Zhao and Yu, 2006, Yuan and Lin, 2007, Zou, 2006, Wainwright, 2006)
- Additional questions:
 - Is strict condition necessary (as in the Lasso case)?
 - Estimate of probability of correct sparsity estimation
 - Loading independent condition
 - Other losses
 - Negative or positive result?

Group lasso - Strict condition necessary?

- Strict condition necessary for the Lasso (Zou, 2006, Zhao and Yu, 2006)
- Strict condition not necessary for the group Lasso
 - If weak condition is satisfied and for all $i \in \mathbf{J}^c$ such that $\frac{1}{d_i} \left\| \Sigma_{X_i X_\mathbf{J}} \Sigma_{X_\mathbf{J} X_\mathbf{J}}^{-1} \operatorname{Diag}(d_j / \|\mathbf{w}_j\|) \mathbf{w}_\mathbf{J} \right\| = 1$, we have

$$\Delta^{\top} \Sigma_{X_{\mathbf{J}} X_{i}} \Sigma_{X_{i} X_{\mathbf{J}}} \Sigma_{X_{\mathbf{J}} X_{\mathbf{J}}}^{-1} \operatorname{Diag} \left[d_{j} / \| \mathbf{w}_{j} \| \left(I_{p_{j}} - \frac{\mathbf{w}_{j} \mathbf{w}_{j}^{\top}}{\mathbf{w}_{j}^{\top} \mathbf{w}_{j}} \right) \right] \Delta > 0,$$

with $\Delta = -\Sigma_{X_J X_J}^{-1} \operatorname{Diag}(d_j / || \mathbf{w}_j ||) \mathbf{w}_J$, then the group lasso estimate leads to joint regular and sparsity consistency $(\lambda_n \to 0$ and $\lambda_n n^{1/4} \to +\infty)$

Loading independent sufficient condition

 \bullet Condition on Σ and ${\bf J}:$

$$\max_{\mathbf{w}_{\mathbf{J}}} \max_{i \in \mathbf{J}^{c}} \frac{1}{d_{i}} \left\| \Sigma_{X_{i}X_{\mathbf{J}}} \Sigma_{X_{\mathbf{J}}X_{\mathbf{J}}}^{-1} \operatorname{Diag}(d_{j}/\|\mathbf{w}_{j}\|) \mathbf{w}_{\mathbf{J}} \right\| < 1$$

$$\Leftrightarrow \max_{i \in \mathbf{J}^{c}} \frac{1}{d_{i}} \max_{\|u_{j}\|=1, \forall j \in \mathbf{J}} \left\| \Sigma_{X_{i}X_{\mathbf{J}}} \Sigma_{X_{\mathbf{J}}X_{\mathbf{J}}}^{-1} \operatorname{Diag}(d_{j}) \mathbf{u}_{\mathbf{J}} \right\| < 1$$

$$\Rightarrow \qquad \max_{i \in \mathbf{J}^{c}} \frac{1}{d_{i}} \sum_{j \in \mathbf{J}} d_{j} \left\| \sum_{k \in \mathbf{J}} \Sigma_{X_{i}X_{k}} \left(\Sigma_{X_{\mathbf{J}}X_{\mathbf{J}}}^{-1} \right)_{kj} \right\| < 1$$

- Lasso (groups of size 1): all those are equivalent
- Group lasso: stricter sufficient condition (in general)
 - NB: can obtain better one with convex relaxation (see paper)

Probability of correct selection of pattern

- Simple general result when $\lambda_n = \lambda_0 n^{-1/2}$
- Probability equal to

$$\mathbb{P}\left(\max_{i\in\mathbf{J}^{c}}\left\|\frac{\sigma}{n^{1/2}\lambda_{n}d_{i}}\Sigma_{X_{i}X_{\mathbf{J}}}\Sigma_{X_{\mathbf{J}}X_{\mathbf{J}}}^{-1/2}\mathbf{u}-\frac{1}{d_{i}}\Sigma_{X_{i}X_{\mathbf{J}}}\Sigma_{X_{\mathbf{J}}X_{\mathbf{J}}}^{-1}\operatorname{Diag}(\frac{d_{j}}{\|\mathbf{w}_{j}\|})\mathbf{w}_{\mathbf{J}}\right\|\leqslant1\right)$$

where **u** is normal with mean zero and identity covariance matrix.

- With additional conditions, valid when $\lambda_n n^{1/2}$ not too far from constant \Rightarrow exponential rate of convergence if strict condition is satisfied
- Dependence on σ and n

Positive or negative result?

- "Disappointing" result for Lasso/group Lasso
 - Does not always do what heuristic justification suggests!
- Can we make it always consistent?
 - Data dependent weights \Rightarrow adaptive Lasso/group Lasso
- Do we care about exact sparsity consistency?
 - Recent results by Meinshausen and Yu (2007)

Relationship with multiple kernel learning (MKL) (Bach, Lanckriet, Jordan, 2004)

• Alternative equivalent formulation:

$$\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\bar{Y} - \bar{X}w\|^2 + \frac{1}{2}\mu_n \left(\sum_{j=1}^m d_j \|w_j\|\right)^2$$

• Dual optimization problem (using conic programming):

$$\max_{\alpha \in \mathbb{R}^n} \left\{ -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \max_{i=1,\dots,m} \frac{\alpha^\top K_i \alpha}{d_i^2} \right\}$$

Relationship with multiple kernel learning (MKL) (Bach, Lanckriet, Jordan, 2004)

• Alternative equivalent formulation:

$$\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\bar{Y} - \bar{X}w\|^2 + \frac{1}{2}\mu_n \left(\sum_{j=1}^m d_j \|w_j\|\right)^2$$

• Dual optimization problem (using conic programming):

$$\max_{\alpha \in \mathbb{R}^n} \left\{ -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \max_{i=1,...,m} \frac{\alpha^\top K_i \alpha}{d_i^2} \right\}$$
$$\Leftrightarrow \max_{\alpha \in \mathbb{R}^n} \min_{\eta \ge 0, \sum_{j=1}^m \eta_j d_j^2 = 1} \left\{ -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \alpha^\top \left(\sum_{j=1}^m \eta_i K_i \right) \alpha \right\}$$

Relationship with multiple kernel learning (MKL) (Bach, Lanckriet, Jordan, 2004)

• Alternative equivalent formulation:

$$\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\bar{Y} - \bar{X}w\|^2 + \frac{1}{2}\mu_n \left(\sum_{j=1}^m d_j \|w_j\|\right)^2$$

• Dual optimization problem:

$$\max_{\alpha \in \mathbb{R}^n} \left\{ -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \max_{i=1,...,m} \frac{\alpha^\top K_i \alpha}{d_i^2} \right\}$$
$$\Leftrightarrow \min_{\eta \ge 0, \sum_{j=1}^m \eta_j d_j^2 = 1} \max_{\alpha \in \mathbb{R}^n} \left\{ -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \alpha^\top \left(\sum_{j=1}^m \eta_i K_i \right) \alpha \right\}$$

Relationship with multiple kernel learning (MKL)

$$\min_{\eta \ge 0, \sum_{j=1}^{m} \eta_j d_j^2 = 1} \max_{\alpha \in \mathbb{R}^n} \left\{ -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \alpha^\top \left(\sum_{j=1}^{m} \eta_i K_i \right) \alpha \right\}$$

- Optimality conditions: the dual variable $\alpha \in \mathbb{R}^n$ is optimal if and only if there exists $\eta \in \mathbb{R}^m_+$ such that $\sum_{j=1}^m \eta_j d_j^2 = 1$ and α is optimal for ridge regression problem with kernel matrix $K = \sum_{j=1}^m \eta_j K_j$
- $\bullet~\eta$ can also be obtained as the minimizer of

$$J(\eta) = \max_{\alpha \in \mathbb{R}^n} -\frac{1}{2n} \|\bar{Y} - n\mu_n \alpha\|^2 - \frac{1}{2\mu_n} \alpha^\top \left(\sum_{j=1}^m \eta_j K_j\right) \alpha,$$

- $J(\eta)$ is the optimal value of the objective function of the single kernel estimation problem with kernel $K = \sum_{j=1}^{m} \eta_j K_j$

Multiple kernel learning (MKL)

- Jointly learn optimal (sparse) combination of kernel (η) together with the estimate with this kernel (α)
- Application
 - Kernel learning
 - Heteregeneous data fusion
- Known issues
 - Algorithms
 - Influence of weights d_j (feature spaces have different sizes)
 - Consistency

Analysis of MKL as non parametric group Lasso

• Assume m Hilbert spaces \mathcal{F}_i , $i = 1, \ldots, m$

$$\min_{f_i \in \mathcal{F}_i, \ i=1,\dots,m} \quad \frac{1}{2n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^m f_j(x_{ji}) \right)^2 + \frac{\mu_n}{2} \left(\sum_{j=1}^m d_j \|f_j\| \right)^2$$

- Sparse generalized additive models (Hastie and Tibshirani, 1990)
- Estimate is obtained through MKL formulation
- Same question: regular and sparsity consistency when the groups are infinite-dimensional Hilbert spaces

Analysis of MKL as non parametric group Lasso (non centered) covariance operators

• Single random variable X: Σ_{XX} is a bounded linear operator from \mathcal{F} to \mathcal{F} such that for all $(f,g) \in \mathcal{F} \times \mathcal{F}$,

$$\langle f, \Sigma_{XX}g \rangle = \mathbb{E}(f(X)g(X))$$

Under minor assumptions, the operator Σ_{XX} is *auto-adjoint*, *non-negative* and *Hilbert-Schmidt*

- Tool of choice for the analysis of least-squares non parametric methods (Fukumizu et al., 2005, 2006, Gretton et al., 2006, etc...)
 - Natural empirical estimate $\hat{\Sigma}_{XX} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, x_i) \otimes k(\cdot, x_i)$ converges in probability to Σ_{XX} in HS norm.

Cross-covariance operators

• Several random variables: cross-covariance operators $\Sigma_{X_iX_j}$ from \mathcal{F}_j to \mathcal{F}_i such that $\forall (f_i, f_j) \in \mathcal{F}_i \times \mathcal{F}_j$,

$$\langle f_i, \Sigma_{X_i X_j} f_j \rangle = \mathbb{E}(f_i(X_i) f_j(X_j))$$

- Similar convergence properties of empirical estimates
- Joint covariance operator Σ_{XX} defined by blocks
- We can define the bounded *correlation* operators through

$$\Sigma_{X_i X_j} = \Sigma_{X_i X_i}^{1/2} C_{X_i X_j} \Sigma_{X_j X_j}^{1/2}$$

• NB: the joint covariance operator is never invertible, but the correlation operator may be

Analysis of MKL as non parametric group Lasso

- Assumptions
 - 1. $\forall j$, \mathcal{F}_j is a separable RKHS associated with kernel k_j , and $\mathbb{E}k_j(X_j, X_j)^2 < \infty$.
 - 2. Model: There exists functions $\mathbf{f} = (\mathbf{f}_1, \dots, \mathbf{f}_m) \in \mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_m$ and a function \mathbf{h} of $X = (X_1, \dots, X_m)$ such that

$$\mathbb{E}(Y|X) = \sum_{j=1}^{m} \mathbf{f}_j(X_j) + \mathbf{h}(X)$$

with $\mathbb{E}h(X)^2 < \infty$ and $\mathbb{E}h(X)f_j(X_j) = 0$ for all j = 1, ..., m and $\mathbb{E}((Y - \sum_{j=1}^m \mathbf{f}_j(X_j))^2 | X) \ge \sigma_{\min}^2 > 0$ a.s.

- 3. **Compacity and invertibility** : All cross-correlation operators are compact and the joint correlation operator is invertible.
- 4. Range condition: For all j, $\exists \mathbf{g}_j \in \mathcal{F}_j$ such that $\mathbf{f}_j = \Sigma_{X_j X_j}^{1/2} \mathbf{g}_j$

Compacity and invertibility of joint correlation operator

• Sufficient condition for compacity when distributions have densities:

$$\mathbb{E}\left\{\frac{p_{X_iX_j}(x_i,x_j)}{p_{X_i}(x_i)p_{X_j}(x_j)}-1\right\}<\infty.$$

- Dependence between variables is not too strong
- Sufficient condition for invertibility: no exact correlation using functions in the RKHS.
 - Empty concurvity space assumption (Hastie and Tibshirani, 1990)

Range condition

- Technical condition: For all j, $\exists \mathbf{g}_j \in \mathcal{F}_j$ such that $\mathbf{f}_j = \Sigma_{X_j X_j}^{1/2} \mathbf{g}_j$
 - Conditions on the support of f_{j} with respect to the support of the data
 - Conditions on the smoothness of f_j
- Sufficient condition for translation invariant kernels

$$k(x, x') = q(x - x')$$
 in \mathbb{R}^d :

- f_j is of the form $f_j = q * g_j$ where $\int \frac{g_j^2(x_j)}{p_{X_j}(x_j)} dx_j$.

Group lasso - Consistency conditions

• Strict condition

$$\max_{i \in \mathbf{J}^c} \frac{1}{d_i} \left\| \sum_{X_i X_i}^{1/2} C_{X_i X_\mathbf{J}} C_{X_\mathbf{J} X_\mathbf{J}}^{-1} \operatorname{Diag}(d_j / \|\mathbf{f}_j\|) \mathbf{g}_\mathbf{J} \right\| < 1$$

• Weak condition

$$\max_{i \in \mathbf{J}^c} \frac{1}{d_i} \left\| \Sigma_{X_i X_i}^{1/2} C_{X_i X_\mathbf{J}} C_{X_\mathbf{J} X_\mathbf{J}}^{-1} \operatorname{Diag}(d_j / \|\mathbf{f}_j\|) \mathbf{g}_\mathbf{J} \right\| \leqslant 1$$

- **Theorem 1**: Strict condition is sufficient for joint regular and sparsity consistency of the lasso.
- **Theorem 2**: Weak condition is necessary for joint regular and sparsity consistency of the lasso.

Adaptive group lasso

- \bullet Consistency condition depends on ${\bf w}$ or ${\bf f}$ and is not always satisfied!
- Empirically, the weights do matter a lot (Bach, Thibaux, Jordan, 2005)

Importance of weigts (Bach, Thibaux, Jordan, 2005)

- Canonical behavior as λ decreases
 - Training error decreases to zero
 - Testing error decreases, increases, then stabilizes
- Importance of d_j (weight of penalization $= \sum_j d_j ||w_j||$)
 - d_j should be an increasing function of the "rank" of K_j , e.g., (when matrices are normalized to unit trace):

$$d_j = \left(\text{number of eigenvalue } \geqslant \frac{1}{2n} \right)^2$$

Importance of weigts (Bach, Thibaux, Jordan, 2005)

- Left: $\gamma = 0$ (unit trace, Lanckriet et al., 2004), right: $\gamma = 1$
- Top: training (bold)/testing (dashed) error bottom: number of kernels

Adaptive group lasso

- \bullet Consistency condition depends on w or f and is not always satisfied!
- Empirically, the weights do matter a lot (Bach, Thibaux, Jordan, 2005)
- Extension of the Lasso adaptive version (Yuan & Lin, 2006) using the regularized LS estimate $\hat{f}_{\kappa_n}^{LS}$ defined as:

$$\min_{f_i \in \mathcal{F}_i, i=1,...,m} \quad \frac{1}{2n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^m f_j(x_{ji}) \right)^2 + \frac{\kappa_n}{2} \sum_{j=1}^m \|f_j\|^2,$$

Adaptive group lasso

• **Theorem**: Let $\hat{f}_{n^{-1/3}}^{LS}$ be the least-square estimate with regularization parameter proportional to $n^{-1/3}$. Let \hat{f} denote any minimizer of

$$\frac{1}{2n}\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{m} f_j(x_{ji}) \right)^2 + \frac{\mu_0 n^{-1/3}}{2} \left(\sum_{j=1}^{m} \| (\hat{f}_{\kappa_n}^{LS})_j \|^{-\gamma} \| f_j \| \right)^2$$

For any $\gamma>1,\ \hat{f}$ converges to ${\bf f}$ and $J(\hat{f})$ converges to ${\bf J}$ in probability.

- Convergence rates with more assumptions (and more work!)
- Practical implications in applications to be determined

Algorithms for group lasso and MKL

- Algorithms for general convex losses
- many different interpretations implies many different algorithms
 - Group Lasso primal formulation w.r.t. \boldsymbol{w}
 - Group Lasso dual formulation w.r.t. α
 - Direct problem involving η

Algorithms for MKL

- (very) costly optimization with SDP, QCQP ou SOCP (Lanckriet et al., 2004)
 - $n \geqslant 1,000-10,000,\ m \geqslant 100$ not possible
 - "loose" required precision \Rightarrow first order methods
- Shooting algorithm (Yuan & Lin, 2006)
- Dual coordinate ascent (SMO) with smoothing (Bach et al., 2004)
- Optimization of $J(\eta)$ by cutting planes (Sönnenburg et al., 2005)
- Optimization of $J(\eta)$ with steepest descent with smoothing (Rakotomamonjy et al, 2007)
- Regularization path (Bach, Thibaux & Jordan, 2005)

Illustrative toy experiments

- 6 groups of size 2 Card(J) = 3
- Consistent condition **fullfilled**:

Illustrative toy experiments

- 6 groups of size 2 $Card(\mathbf{J}) = 3$
- Consistent condition **not fullfilled**:

Applications

- Bioinformatics (Lanckriet et al., 2004)
 - Protein function prediction

. . .

- Image annotation (Harchaoui & Bach, 2007)
 - Fusing information from different aspects of images

Image annotation

• Corel14: 1400 *natural images* with 14 classes

Performance on Corel14 (Harchaoui & Bach, 2007)

Extension to trace norm minimization

- Consider learning linear predictor where covariates X are rectangular matrices
- loading matrix W, and prediction $\operatorname{tr} W^\top X$
- Assumption of low rank loading matrix:
 - Matrix completion (Srebro et al., 2004)
 - collaborative filtering (Srebro et al., 2004, Abernethy et al., 2006)
 - Multi-task learning (Argyriou et al., 2006, Obozinsky et al., 2007)
- Equivalent of the ℓ_1 norm : trace norm = sums of singular values
- Do we actually get low-rank solutions?
 - Necessary and sufficient consistency conditions (Bach, 2007)
 - Extension of the group Lasso results.

Conclusion

- Analysis of sparsity behavior of the group lasso
 - infinite dimensional groups \Rightarrow MKL
 - Adaptive version to define appropriate weights
- Current work:
 - Analysis for other losses
 - Consider growing number of groups
 - Analysis when consistency condition not satisfied
 - non parametric group lasso: universal consistency?
 - Infinite dimensional extensions of trace norm minimization