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Summary

• Machine learning and regularization

• Group Lasso

– Consistent estimation of groups?

• Multiple kernel learning as non parametric group Lasso

• Extension to trace norm minimization



Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f ∈ F :

n
∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two issues:

– Loss

– Function space / norm



Usual losses

• Regression: y ∈ R, prediction ŷ = f(x), quadratic cost ℓ(y, f) =
1
2(y − ŷ)2 = 1

2(y − f)2

• Classification : y ∈ {−1, 1} prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f) = ℓ(yf)

– “True” cost: ℓ(yf) = 1yf<0

– Usual convex costs:
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Regularizations

• Main goal: control the “capacity” of the learning problem

• Two main lines of work

1. Use Hilbertian (RKHS) norms

– Non parametric supervised learning and kernel methods

– Well developped theory

2. Use “sparsity inducing” norms

– main example: ℓ1 norm

– Perform model selection as well as regularization

– Often used heuristically

• Group lasso / MKL : two types of regularizations



Group lasso - linear predictors

• Assume xi, w ∈ R
p where p = p1 + · · · + pm, i.e., m groups

xi = (xi1, . . . , xim) w = (w1, . . . , wm)

• Goal: achieve sparsity at the levels of groups: J(w) = {i, wi 6= 0}

• Main application:

– Group selection vs. variable selection (Zhao et al., 2006)

– Multi-task learning (Argyriou et al., 2006, Obozinsky et al., 2007)

• Regularization by block ℓ1-norm (Yuan & Lin, 2006, Zhao et al.,

2006, Bach et al., 2004):

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λ

∑

dj‖wj‖



Group lasso - Main questions

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λ

∑

dj‖wj‖

1. Analysis of sparsity inducing property:

• where do ŵ and J(ŵ) = {i, ŵi 6= 0} converge to?

• letting the problem grow

– sizes of the groups pi, i = 1, . . . ,m ⇒ “kernelization”

– number of groups m ⇒ ?

• Influence of the weights dj

2. Algorithms

• very efficient and elegant for the Lasso (Efron et al., 2004)



Group lasso - Asymptotic analysis

Groups of finite sizes - Square loss

• Assumptions:

1. Data (Xi, Yi) sampled i.i.d.

2. w ∈ R
p denotes the (unique) minimizer of E(Y − X⊤w)2 (best

linear predictor). Assume E((Y −w⊤X)2|X) > σ2
min > 0 a.s.

3. Finite fourth order moments: E‖X‖4 < ∞ and E‖Y ‖4 < ∞.

4. Invertible covariance: ΣXX = EXX⊤ ∈ R
p×p is invertible.

• Denote J = {j,wj 6= 0} the sparsity pattern of w

• Goal: estimate consistently both w and J when n tends to infinity

– ∀ε > 0, P(‖ŵ −w‖ > ε) tends to zero

– P({j, ŵj 6= 0} 6= J) tends to zero

– Rates of convergence



Group lasso - Consistency conditions

• Strict condition:

max
i∈Jc

1

di

∥

∥

∥
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥
< 1

• Weak condition:

max
i∈Jc

1

di

∥

∥

∥
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥
6 1

• Theorem 1: Strict condition is sufficient for joint regular and sparsity

consistency of the group lasso (λn → 0 and λnn1/2 → +∞)

• Theorem 2: Weak condition is necessary for joint regular and sparsity

consistency of the group lasso (for any λn).



Group lasso - Consistency conditions

• Condition:

max
i∈Jc

1

di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ < or 6 1

• Extension of the Lasso consistency conditions (Zhao and Yu, 2006,

Yuan and Lin, 2007, Zou, 2006, Wainwright, 2006)

• Additional questions:

– Is strict condition necessary (as in the Lasso case)?

– Estimate of probability of correct sparsity estimation

– Loading independent condition

– Other losses

– Negative or positive result?



Group lasso - Strict condition necessary?

• Strict condition necessary for the Lasso (Zou, 2006, Zhao and Yu,

2006)

• Strict condition not necessary for the group Lasso

– If weak condition is satisfied and for all i ∈ Jc such that
1
di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ = 1, we have

∆⊤ΣXJXi
ΣXiXJ

Σ−1
XJXJ

Diag

[

dj/‖wj‖

(

Ipj
−

wjw
⊤
j

w⊤
j wj

)]

∆ > 0,

with ∆ = −Σ−1
XJXJ

Diag(dj/‖wj‖)wJ, then the group lasso

estimate leads to joint regular and sparsity consistency (λn → 0

and λnn1/4 → +∞)



Loading independent sufficient condition

• Condition on Σ and J:

max
wJ

max
i∈Jc

1

di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ < 1

⇔ max
i∈Jc

1

di
max

‖uj‖=1, ∀j∈J

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj)uJ

∥

∥

∥ < 1

⇒ max
i∈Jc

1

di

∑

j∈J

dj

∥

∥

∥

∥

∥

∥

∑

k∈J

ΣXiXk

(

Σ−1
XJXJ

)

kj

∥

∥

∥

∥

∥

∥

< 1

• Lasso (groups of size 1): all those are equivalent

• Group lasso: stricter sufficient condition (in general)

– NB: can obtain better one with convex relaxation (see paper)



Probability of correct selection of pattern

• Simple general result when λn = λ0n
−1/2

• Probability equal to

P

(

max
i∈Jc

∥

∥

∥

∥

σ

n1/2λndi
ΣXiXJ

Σ
−1/2
XJXJ

u −
1

di
ΣXiXJ

Σ−1
XJXJ

Diag(
dj

‖wj‖
)wJ

∥

∥

∥

∥

6 1

)

where u is normal with mean zero and identity covariance matrix.

• With additional conditions, valid when λnn1/2 not too far from

constant ⇒ exponential rate of convergence if strict condition is

satisfied

• Dependence on σ and n



Positive or negative result?

• “Disappointing” result for Lasso/group Lasso

– Does not always do what heuristic justification suggests!

• Can we make it always consistent?

– Data dependent weights ⇒ adaptive Lasso/group Lasso

• Do we care about exact sparsity consistency?

– Recent results by Meinshausen and Yu (2007)



Relationship with multiple kernel learning (MKL)

(Bach, Lanckriet, Jordan, 2004)

• Alternative equivalent formulation:

min
w∈Rp

1
2n‖Ȳ − X̄w‖2 + 1

2µn

(

∑m
j=1 dj‖wj‖

)2

• Dual optimization problem (using conic programming):

max
α∈Rn

{

− 1
2n‖Ȳ − nµnα‖2 − 1

2µn
max

i=1,...,m

α⊤Kiα

d2
i

}
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2µn

(
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α∈Rn
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− 1
2n‖Ȳ − nµnα‖2 − 1

2µn
max

i=1,...,m

α⊤Kiα

d2
i
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⇔ max
α∈Rn

min
η>0,

Pm
j=1 ηjd

2
j=1







− 1
2n‖Ȳ − nµnα‖2 − 1

2µn
α⊤





m
∑

j=1

ηiKi



α
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Relationship with multiple kernel learning (MKL)

min
η>0,

Pm
j=1 ηjd

2
j=1

max
α∈Rn







− 1
2n‖Ȳ − nµnα‖2 − 1

2µn
α⊤





m
∑

j=1

ηiKi



α







• Optimality conditions: the dual variable α ∈ R
n is optimal if and only

if there exists η ∈ R
m
+ such that

∑m
j=1 ηjd

2
j = 1 and α is optimal for

ridge regression problem with kernel matrix K =
∑m

j=1 ηjKj

• η can also be obtained as the minimizer of

J(η) = max
α∈Rn

−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
α⊤





m
∑

j=1

ηjKj



α,

– J(η) is the optimal value of the objective function of the single

kernel estimation problem with kernel K =
∑m

j=1 ηjKj



Multiple kernel learning (MKL)

• Jointly learn optimal (sparse) combination of kernel (η) together with

the estimate with this kernel (α)

• Application

– Kernel learning

– Heteregeneous data fusion

• Known issues

– Algorithms

– Influence of weights dj (feature spaces have different sizes)

– Consistency



Analysis of MKL as non parametric group Lasso

• Assume m Hilbert spaces Fi, i = 1, . . . ,m

min
fi∈Fi, i=1,...,m

1

2n

n
∑

i=1



yi −
m
∑

j=1

fj(xji)





2

+
µn

2





m
∑

j=1

dj‖fj‖





2

.

• Sparse generalized additive models (Hastie and Tibshirani, 1990)

• Estimate is obtained through MKL formulation

• Same question: regular and sparsity consistency when the groups are

infinite-dimensional Hilbert spaces



Analysis of MKL as non parametric group Lasso

(non centered) covariance operators

• Single random variable X: ΣXX is a bounded linear operator from

F to F such that for all (f, g) ∈ F × F ,

〈f,ΣXXg〉 = E(f(X)g(X))

Under minor assumptions, the operator ΣXX is auto-adjoint, non-

negative and Hilbert-Schmidt

• Tool of choice for the analysis of least-squares non parametric

methods (Fukumizu et al., 2005, 2006, Gretton et al., 2006, etc...)

– Natural empirical estimate Σ̂XX = 1
n

∑n
i=1 k(·, xi) ⊗ k(·, xi)

converges in probability to ΣXX in HS norm.



Cross-covariance operators

• Several random variables: cross-covariance operators ΣXiXj
from Fj

to Fi such that ∀(fi, fj) ∈ Fi ×Fj,

〈fi,ΣXiXj
fj〉 = E(fi(Xi)fj(Xj))

• Similar convergence properties of empirical estimates

• Joint covariance operator ΣXX defined by blocks

• We can define the bounded correlation operators through

ΣXiXj
= Σ

1/2
XiXi

CXiXj
Σ

1/2
XjXj

• NB: the joint covariance operator is never invertible, but the

correlation operator may be



Analysis of MKL as non parametric group Lasso

• Assumptions

1. ∀j, Fj is a separable RKHS associated with kernel kj, and

Ekj(Xj,Xj)
2 < ∞.

2. Model: There exists functions f = (f1, . . . , fm) ∈ F = F1 × · · · ×

Fm and a function h of X = (X1, . . . ,Xm) such that

E(Y |X) =
∑m

j=1 fj(Xj) + h(X)

with Eh(X)2 < ∞ and Eh(X)fj(Xj) = 0 for all j = 1, . . . ,m and

E((Y −
∑m

j=1 fj(Xj))
2|X) > σ2

min > 0 a.s.

3. Compacity and invertibility : All cross-correlation operators are

compact and the joint correlation operator is invertible.

4. Range condition: For all j, ∃gj ∈ Fj such that fj = Σ
1/2
XjXj

gj



Compacity and invertibility of joint correlation

operator

• Sufficient condition for compacity when distributions have densities:

E

{

pXiXj
(xi, xj)

pXi
(xi)pXj

(xj)
− 1

}

< ∞.

– Dependence between variables is not too strong

• Sufficient condition for invertibility: no exact correlation using

functions in the RKHS.

– Empty concurvity space assumption (Hastie and Tibshirani, 1990)



Range condition

• Technical condition: For all j, ∃gj ∈ Fj such that fj = Σ
1/2
XjXj

gj

– Conditions on the support of fj with respect to the support of the

data

– Conditions on the smoothness of fj

• Sufficient condition for translation invariant kernels

k(x, x′) = q(x − x′) in R
d:

– fj is of the form fj = q ∗ gj where
∫ g2

j (xj)

pXj
(xj)

dxj.



Group lasso - Consistency conditions

• Strict condition

max
i∈Jc

1

di

∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥ < 1

• Weak condition

max
i∈Jc

1

di

∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥ 6 1

• Theorem 1: Strict condition is sufficient for joint regular and sparsity

consistency of the lasso.

• Theorem 2: Weak condition is necessary for joint regular and sparsity

consistency of the lasso.



Adaptive group lasso

• Consistency condition depends on w or f and is not always satisfied!

• Empirically, the weights do matter a lot (Bach, Thibaux, Jordan,

2005)



Importance of weigts (Bach, Thibaux, Jordan, 2005)
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• Canonical behavior as λ decreases

– Training error decreases to zero

– Testing error decreases, increases, then stabilizes

• Importance of dj (weight of penalization =
∑

j dj||wj||)

– dj should be an increasing function of the “rank” of Kj, e.g.,

(when matrices are normalized to unit trace):

dj =

(

number of eigenvalue >
1

2n

)γ



Importance of weigts (Bach, Thibaux, Jordan, 2005)

• Left: γ = 0 (unit trace, Lanckriet et al., 2004), right: γ = 1

• Top: training (bold)/testing (dashed) error

bottom: number of kernels

Regression (Boston dataset)
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Classification (Liver dataset)
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Adaptive group lasso

• Consistency condition depends on w or f and is not always satisfied!

• Empirically, the weights do matter a lot (Bach, Thibaux, Jordan,

2005)

• Extension of the Lasso adaptive version (Yuan & Lin, 2006) using

the regularized LS estimate f̂LS
κn

defined as:

min
fi∈Fi, i=1,...,m

1

2n

n
∑

i=1



yi −
m
∑

j=1

fj(xji)





2

+
κn

2

m
∑

j=1

‖fj‖
2,



Adaptive group lasso

• Theorem: Let f̂LS
n−1/3 be the least-square estimate with regularization

parameter proportional to n−1/3. Let f̂ denote any minimizer of

1

2n

n
∑

i=1



yi −
m
∑

j=1

fj(xji)





2

+
µ0n

−1/3

2





m
∑

j=1

‖(f̂LS
κn

)j‖
−γ‖fj‖





2

.

For any γ > 1, f̂ converges to f and J(f̂) converges to J in

probability.

• Convergence rates with more assumptions (and more work!)

• Practical implications in applications to be determined



Algorithms for group lasso and MKL

• Algorithms for general convex losses

• many different interpretations implies many different algorithms

– Group Lasso - primal formulation w.r.t. w

– Group Lasso - dual formulation w.r.t. α

– Direct problem involving η



Algorithms for MKL

• (very) costly optimization with SDP, QCQP ou SOCP (Lanckriet et

al., 2004)

– n > 1, 000 − 10, 000, m > 100 not possible

– “loose” required precision ⇒ first order methods

• Shooting algorithm (Yuan & Lin, 2006)

• Dual coordinate ascent (SMO) with smoothing (Bach et al., 2004)

• Optimization of J(η) by cutting planes (Sönnenburg et al., 2005)

• Optimization of J(η) with steepest descent with smoothing

(Rakotomamonjy et al, 2007)

• Regularization path (Bach, Thibaux & Jordan, 2005)



Illustrative toy experiments

• 6 groups of size 2 - Card(J) = 3

• Consistent condition fullfilled:
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Illustrative toy experiments

• 6 groups of size 2 - Card(J) = 3

• Consistent condition not fullfilled:
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Applications

• Bioinformatics (Lanckriet et al., 2004)

– Protein function prediction

– ...

• Image annotation (Harchaoui & Bach, 2007)

– Fusing information from different aspects of images



Image annotation

• Corel14: 1400 natural images with 14 classes



Performance on Corel14

(Harchaoui & Bach, 2007)

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
(wTW)

• MKL (M) H W TW wTW M
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Extension to trace norm minimization

• Consider learning linear predictor where covariates X are rectangular

matrices

• loading matrix W , and prediction tr W⊤X

• Assumption of low rank loading matrix:

– Matrix completion (Srebro et al., 2004)

– collaborative filtering (Srebro et al., 2004, Abernethy et al., 2006)

– Multi-task learning (Argyriou et al., 2006, Obozinsky et al., 2007)

• Equivalent of the ℓ1 norm : trace norm = sums of singular values

• Do we actually get low-rank solutions?

– Necessary and sufficient consistency conditions (Bach, 2007)

– Extension of the group Lasso results.



Conclusion

• Analysis of sparsity behavior of the group lasso

– infinite dimensional groups ⇒ MKL

– Adaptive version to define appropriate weights

• Current work:

– Analysis for other losses

– Consider growing number of groups

– Analysis when consistency condition not satisfied

– non parametric group lasso: universal consistency?

– Infinite dimensional extensions of trace norm minimization


