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ABSTRACT
Motivation: Glycans are covalent assemblies of sugar that play cru-
cial roles in many cellular processes. Recently, comprehensive data
about the structure and function of glycans have been accumulated,
therefore the need for methods and algorithms to analyze these data
is growing fast.
Results: This paper presents novel methods for classifying glycans
and detecting discriminative glycan motifs with support vector
machines (SVM). We propose a new class of tree kernels to meas-
ure the similarity between glycans. These kernels are based on
the comparison of tree substructures, and take into account sev-
eral glycan features such as the sugar type, the sugar bound type,
or layer depth. The proposed methods are tested on their ability to
classify human glycans into four blood components: leukemia cells,
erythrocytes, plasma, and serum. They are shown to outperform a
previously published method. We also applied a feature selection
approach to extract glycan motifs which are characteristic of each
blood component. We confirmed that some leukemia-specific glycan
motifs detected by our method corresponded to several results in the
literature.
Availability: Softwares are available upon request.
Supplementary information: Datasets are available at the following
webisite: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/glycankernel/.
Contact: yoshi@kuicr.kyoto-u.ac.jp

1 INTRODUCTION
Glycans, or carbohydrate sugar chains, are covalent assemblies of
sugars (oligosaccharides and polysaccharides) that exist in either
free form or in covalent complexes with proteins or lipids. Although
a growing body of evidence supports crucial roles for glycans
in many cellular processes, including cell-cell communication,
immune system, protein interaction or tumor progression [Varki
et al., 1999, Fuster and Esko, 2005], understanding the biological
functions of glycans and relating them to their structure remains
challenging experimentally. As databases such as KEGG/Glycan
[Kanehisa et al., 2004, Hashimoto et al., 2006] have started accumu-
lating information about the structure and function of glycans, the
need for methods and algorithms to analyze these data is growing
fast.

Unlike genes or protein sequences, for which a number of well-
established algorithms are now available for various data mining
tasks such as similarity detection, clustering, supervised classifica-
tion, structure prediction, or functional motif extraction, glycans are
generally not linear polymers. They have more complex structures,
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that can be represented by rooted ordered trees, with monosac-
charides as labeled vertices, and sugar bounds as labeled edges
(see Figure 1). As a result, specific approaches have recently been
developed for comparison of glycans [Aoki et al., 2004, 2005],
probabilistic modeling of glycan families [Ueda et al., 2005], and
analysis of MS/MS spectra of oligosaccharides [Tang et al., 2005].
There is still an incentive to develop efficient methods for the auto-
matic classification of glycans, and the extraction of biologically
relevant substructures.

Glycans exhibit a large diversity of structures in different organ-
isms, and in different tissues and organs of a given organism.
Recently, a computational approach to the supervised classification
of glycans into blood components and to the detection of leukemia-
specific glycan substructures has been proposed [Hizukuri et al.,
2005]. The approach is based on the extraction of short linear sub-
structures from the glycan structures, resulting in a quantitative
measure of similarity between glycans based on the count of shared
substructures. This measure of similarity is then used as an input to
a support vector machine (SVM) classifier which is trained to dis-
criminate between different blood components and blood types. The
goal of this paper is to extend this framework to a broader class of
structure representations, with the motivation of both increasing the
accuracy of glycan classification, and providing a framework for the
extraction of biologically relevant glycan substructures.

More precisely, we investigate different high-dimensional rep-
resentations for glycan structures and use them for supervised
classification with SVM. In SVM jargon, we define newkernels
for trees, adapted to the classification of glycans. Our tree ker-
nels are based on the indexation of a glycan tree structure by a
set of subtrees it contains. We investigate different variants in the
definition of subtrees, in the importance placed on the depth of a
subtree in the glycan tree, and in the size of the subtrees. In spite
of their large dimensions, these vector representations are adap-
ted to the supervised classification of glycans by kernel methods
and in particular the SVM, in the spirit of earlier work on convolu-
tion kernels for tree structures [Collins and Duffy, 2001, Haussler,
1999]. We perform a thorough analysis of the classification per-
formance obtained by different representations on the problem of
predicting the blood origin of glycans among leukemia cell, erythro-
cyte, plasma, and serum. We then apply feature selection methods to
find discriminative subtree motifs in glycans, and relate the selected
substructures to biologically known facts. Finally, in order to com-
bine the information provided by different representations we apply
recently developed methods for multiple kernel learning [Bach et al.,
2005], resulting in an optimal weighting of each representation
for each classification task. As shown in Section 4, the methods
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Fig. 1. An example of a glycan structure.

developed in this paper not only lead to better classification perform-
ance than previously reported results, they also provide additional
biological insights in the role and structure of glycans, through the
substructures extracted by feature selection and the weights learned
by multiple kernel learning.

2 MATERIALS
All glycan structures used in this study are obtained from the
KEGG/Glycan database [Kanehisa et al., 2004, Hashimoto et al.,
2006]. We use the same dataset as Hizukuri et al. [2005], who
took care to remove non-carbohydrate moieties such as phosphate
and sulfate, and gathered glycan structures consisting of the follow-
ing seven monosaccharides (sugars): glucose (Glc), galactose (Gal),
mannose (Man), fucose (Fuc), N-acetylglucosamine (GlcNAc), N-
acetylgalactosamine (GalNAc), and N-acetyl neuraminic/sialic acid
(Neu). The linkages between these monosaccharides also have vari-
ables, such as the anomer (α or β) and the hydroxyl group numbers
to which they are attached on the monosaccharides. The dataset con-
sists of 365 glycan structures originating from four human blood
components: leukemic cells, erythrocytes, serum, and plasm, with
respectively 162, 112, 85, and 73 examples. Note that some glycans
belong to several blood components.

3 METHODS
The main contribution of this paper is to propose various embed-
dings of glycan structures into Euclidean spaces of possibly large
dimensions, trying to both capture biologically relevant features
from the glycan structures and make them amenable to further pro-
cessing. More precisely, we investigate the development ofkernel
functionsfor glycans, that is, of similarity functions which corres-
pond to inner products of such Euclidean embeddings [Schölkopf
and Smola, 2002]. Indeed, once such an embedding is chosen,
various algorithms from machine learning can be used that can
take advantage of the representation in terms of kernel—those
algorithms are usually referred to askernel methods, and are enjoy-
ing an increasingly popularity in computational biology due to their
generally good performance and ability to process complex and

structured data [Schölkopf et al., 2004]. In this paper, we present
different experiments of binary classification of glycans, but the
framework developed could easily take into account more complex
supervised or unsupervised learning tasks, such as multi-label clas-
sification or clustering, by simply choosing the appropriate kernel
algorithm [Shawe-Taylor and Cristianini, 2004].

3.1 Kernel methods for classification
Kernel methods work by first embedding each data pointx ∈ X (x
represent a glycan structure in our case) to a vector spaceF through
a feature mapΦ : X → F ; the vector spaceF is referred to as
the feature space. Then, linear pattern recognition algorithms are
applied in this feature space, on the mapped data points. The first
key characteristic of these methods is that the mappingx 7→ Φ(x)
into feature space may not be explicit; rather, the mapping is defined
implicitly through the inner productk(x, y) = ⟨Φ(x), Φ(y)⟩,
defined for anyx andy in X , and referred to as thekernel func-
tion. Given data points,xi ∈ X , i = 1, . . . , n, kernel learning
algorithms will mainly use the kernel function evaluated at pairs of
data points(xi, xj). Then × n matrix composed of those kernel
function evaluations, defined asKij = k(xi, xj), is referred to as
the kernel matrix. Note that in many cases, the dimension of the
feature space is large and potentially infinite; by manipulating only
kernel matrices, kernel methods make possible to deal with very
large numbers of features. In our experiments, the total number of
features is 3330 (when considering co-rooted subtrees) and 18681
(when considering all subtrees).

The second key characteristic of kernel methods is that they can
be applied to non-vectorial data, in our case labeled tree structures.
We only need to be able to define a valid positive semi-definite ker-
nel function, i.e., a function which corresponds to an inner product
in some potentially large feature space. In Section 3.2 we present
how such kernel functions can be defined for glycans.

In this paper we focus on the task of binary classification. Namely,
we assume that we have labeled data points(xi, yi) ∈ X×{−1, 1},
i = 1, . . . , n. We use two different learning algorithms, ker-
nel logistic regression and the support vector machine (SVM).
Those two methods look for classifiers of the formf(x) =
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Fig. 2. An illustration for the decomposition of the glycan tree in Fig.1 into all possible co-rooted subtrees (left) and all possible subtrees (right).

sign(⟨w, Φ(x)⟩ + b), wherew ∈ F andb ∈ R, but with different
optimization formulations (see Shawe-Taylor and Cristianini [2004]
for details). The two methods work solely on the kernel matrixK
and usually lead to similar classification accuracies [Hastie et al.,
2001].

All experimental results reported below are obtained from a com-
mon methodological framework. For each classification problem a
5-fold cross-validation is performed, and the measures are averaged
over3 repeats of the whole process. Since our binary classification
tasks involve unbalanced classes, the SVM and the logistic regres-
sion are trained with asymmetric cost,C− for false positives and
C+ for false negatives. Ifn+ andn− are the number of positive
and negative examples, then we useC+ and C− such that that
C+ + C− = 1 andC+n+ = C−n−. Classification performance
on test data is reported using areas under the ROC curve (AUC).

We performed the computation for single kernel learning with
the libsvm1 implementation of SVM in the PyML2 machine learn-
ing environment. For multiple kernel learning, we used the Matlab
toolbox of Bach et al. [2005]3.

3.2 Tree kernels for glycans
The molecular structure of a glycanx is characterized by alabeled
ordered rooted treeT (x) = (V (x), E(x)), whereV (x) andE(x)
are respectively the set of vertices and the set of edges of the tree
T (x). Both vertices and edges are labeled. For glycans, the vertex
labels represents the monosaccharide type and can take seven cat-
egorical values, while the edge labels characterize the sugar bounds
and may take 12 values in the blood data used in our study.

We use rooted trees, because for glycans, the same sugar is always
bound to proteins or cells during interactions between the glycan
and proteins or cells; it can thus be isolated as a root. Moreover, the
treeT (x) is considered ordered because for each vertex the order
of the children is significant. All trees which are considered in this

1 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
2 http://pyml.sourceforge.net
3 http://cmm.ensmp.fr/ bach/path/

paper are labeled ordered rooted trees, and from now on, we refer
to those as simply trees. Note that glycan trees are not always rep-
resented by binary trees. There are some glycans in which the nodes
have multiple children (more than two children).

Given a treeT , the treeS is a subtreeof T if and only if it is a
connected subgraph ofT and the labels of the edges and vertices of
S match the corresponding ones inT . Note that the ordered rooted
structure of a treeT is naturally inherited by subtrees. The subtree
is said to beco-rootedif a vertex is always included in the subtree
with all its siblings inT . See Figure 2 for examples of co-rooted
subtrees and all subtrees of a given glycan. We let denoteS(T ) the
set of subtrees of the treeT andSC(T ) the set of co-rooted subtrees
of the treeT .

All kernels that we define exhibit the same structure, i.e., the ker-
nel functions evaluated atx1 and x2 can be expressed as a sum
of local kernelsq(S1, S2) over all possible subtrees (or co-rooted
subtrees)S1 andS2 of the treeT (x1) andT (x2):

k(x1, x2) =
X

S1∈S(T (x1)), S2∈S(T (x2))

q(S1, S2)

or

kC(x1, x2) =
X

S1∈SC(T (x1)), S2∈SC(T (x2))

q(S1, S2)

where q(S1, S2) is itself a kernel between trees. This imme-
diately shows that the kernelsk and kC are valid posit-
ive semi-definite functions. Indeed,q being a kernel we can
write q(S1, S2) = ⟨Φ(S1), Ψ(S2)⟩, and thusk(x1, x2) =
D

P

S1∈S(T (x1)) Ψ(S1),
P

S2∈S(T (x2)) Ψ(S2)
E

, which shows that

k(x1, x2) is indeed an inner product.
When the local kernelq(S1, S2) is a Dirac function betweenS1

andS2, then the value of the kernelk(x1, x2) is simply the num-
ber of common subtrees that verified some additional properties.
Geometrically, this amount to representing a tree by the vector of
indicator functions for each subtree, and taking the inner product
between such vector representations. This fact will be used when
computing those kernels efficiently in Section 3.2.2.
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3.2.1 Local kernel functionsWe consider the following local
kernel functionsq(S1, S2) between subtrees:

• q0(S1, S2) = δ(S1 = S2), that is, 1 if S1 = S2 and 0
otherwise, equality between trees being defined as equality
of structure and all vertex and edge labels. The kernel then
simply counts the number of common subtrees or the number
of common co-rooted subtrees.

• qN (S1, S2) = δ(S1 = S2)δ(n(S1) = N)δ(n(S2) = N),
wheren(Si) denotes the number of nodes ofSi andN is a
pre-specified number of nodes fromN = 1 to 10. The result-
ing kernel simply counts the number of common subtrees of a
given size or the number of common co-rooted subtrees of a
given size.

• qD(S1, S2) = max(D + 1 − |d(S1)− d(S2)|, 0)δ(S1 = S2)
whered(Si) is the depth inTi of the root ofSi, andD is the
maximal allowed difference in depths. WhenD = 0, only
subtrees with identical depths are matched; asD increases,
pairs of subtrees with increasingly different depths contribute
to the kernel. We note thanq0 (matching subtrees whatever
their depths) can be seen to some extent as the limit ofqD when
D tend to infinity. The fact thatqD is a valid positive definite
function between subtrees results from the classical results that
the function(x, y) ∈ R2 7→ max(D − |x− y|, 0) is a positive
definite function, usually referred to as thetriangular kernel
[Berg et al., 1984]

• Any product ofqN andqD: common subtrees of sizeN and
with more or less close depths are counted.

Limiting ourselves to all combinations of the 7 values for
D (D = no, 0, 1, 2, · · · , 5) and 19 values forN (N =
1, 2, 3, · · · , 17, 18, all) , and applying the local kernels either on
the set of subtrees or the set of co-rooted subtrees, already provides
us with a basic set of2 × 7 × 19 different kernel functions. In this
case,D = no means that we do not consider any depth information,
andN = all means that we use all the nodes. We observe that with
these notations, the representation of glycans proposed in Hizukuri
et al. [2005] involving the matching of linear subtrees of length3
with identical depth corresponds to the kernel obtained by taking
the product ofqN , for N = 3, with qD, for D = 0, and summing
over all subtrees.

3.2.2 Kernel computationsFor large trees, the kernels presented
earlier can be computed by dynamic programming in time quadratic
in the number of vertices [Collins and Duffy, 2001, Shawe-Taylor
and Cristianini, 2004]. In our situation, the number of vertices is
usually small (always less than 18) and thus a complete recursive
enumeration of the subtrees is feasible, which leads to a basis rep-
resentation of the feature space (except forqD, D > 0), and thus
allows us to perform feature selection as presented in Section 3.3.
The case ofqD(D > 0 is just slightly different, because although
one can write it as an inner product in an explicit feature space
(e.g., each subtreeS with depthd can be indexed by the features
{Sd, Sd+1, . . . , Sd+D−1} to obtain the kernelqD by inner product),
which allows to compute this kernel by explicit vector represent-
ations of the trees, the dimensions of this feature space are not
associated to a precise subtree which makes feature selection in that
case meaningless.

3.3 Feature selection
Kernel methods and support vector machines have the drawback
that, although they generally give good classification accuracy,
the biological facts that make this classification efficient are often
hidden. In the case of glycans, however, a particular incentive
besides good classification is to extract substructures character-
istic of different classes of glycans. Indeed, the determination of
such substructures might shed light on the biochemical mechanisms
involved in a given process, for example.

Among the kernels proposed in 3.2, those involving the local ker-
nels qD for D > 0 do not correspond to obvious embedding of
the glycans based on their substructures, and therefore do not lend
themselves particularly well the the extraction of discriminative sub-
structures. However, those involving onlyq0, qN andqD for D = 0
can be written as explicit dot product in a space indexed by various
substructures. As a result, instead of keeping the complete embed-
ding, one can instead focus its attention on the selection of a small
number of informative features, for a given classification task, which
could then correspond to discriminative substructures.

The problem of feature selection is a well-known problem in
statistics and machine learning, with many existing algorithms. A
thorough comparison of many methods being beyond the scope of
this paper, we focused on a simple feature selection method pro-
posed in Golub et al. [1999] in the framework of gene selection
from microarray data. Given a training set of positive and negative
examples (in the binary classification framework), each feature is
ranked according to the value of the statistics:|µ+−µ−|

σ++σ−
, whereµ+,

µ−, σ+ andσ− are the mean and standard deviation of the values of
the features on the positive and negative sets, respectively. In order
to evaluate the relevance of this approach to feature selection for the
classification of glycans, we first estimate the classification accuracy
when a varying number of features are selected; we then propose an
analysis of the features themselves in the context of glycobiology in
Section 4.

3.4 Multiple kernel learning
In Section 3.2 we have defined a large set of 266 different kernels
kj , j = 1, . . . , Q = 266, by matching subtrees with different struc-
tures. In this situation, it has recently been proved advantageous to
combine the different kernelskj into a a single kernelk by using a
convex combinationk(x, y) =

PQ
j=1 ηjkj(x, y), with nonnegative

coefficients(ηj) which sum to one [Lanckriet et al., 2004]. During
training, both the parameters of the convex combination(ηj) and
the resulting classifier using the combined kernels are estimated in
a single convex optimization problem. In this paper, we used the
kernel matrix normalization procedure and the code of Bach et al.
[2005], which is based on kernel logistic regression and provides an
efficient way of searching over the regularization parameter. In par-
ticular, the entire set of solutions for all values of the regularization
parameter is obtained with complexityO(Qn3). Combining kernels
leads to better classification performance as well as a selection of the
kernels which are relevant for the classification task at hand. In our
case, those kernels are characterized by a number of nodesN and a
depth parameterD; the weights of the kernel combination thus give
information on the most discriminative size of subtrees as well as on
the importance of depth.
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Table 1. Classification results for each class: erythrocyte, leukemia, plasma and serum.

Erythrocyte Leukemia Plasma Serum

Co-rooted All Co-rooted All Co-rooted All Co-rooted All

D N AUC AUC AUC AUC AUC AUC AUC AUC

0 1 91.7± 0.2 89.1± 0.3 92.0± 0.6 89.7± 1.0 81.6± 0.8 77.3± 0.5 87.2± 0.1 84.4± 0.5
0 3 91.8± 0.4 93.3± 0.5 91.1± 0.4 93.3± 0.2 81.0± 0.8 83.6± 1.2 86.2± 0.8 86.5± 0.2
0 all 92.7± 0.3 92.5± 0.3 92.5± 0.2 91.5± 0.6 82.7± 0.7 83.5± 0.4 88.7± 0.7 89.6± 0.9
2 1 92.2± 0.3 90.1± 0.2 91.7± 0.1 89.9± 0.5 83.1± 0.8 76.6± 0.9 87.0± 1.3 83.9± 0.5
2 3 93.4± 0.6 94.6± 0.5 93.3± 0.3 94.6± 0.2 82.7± 1.6 83.1± 1.7 86.5± 0.7 86.6± 0.3
2 all 93.3± 0.3 93.6± 0.2 93.2± 0.2 92.1±0.5 84.5± 1.0 83.5± 0.6 88.7± 1.1 88.7± 1.0
no 1 93.2± 0.3 88.5± 0.3 91.5± 0.2 91.0± 0.6 81.6± 0.9 72.8± 1.2 85.2± 0.3 85.5± 1.6
no 3 93.8± 0.7 94.8± 0.6 92.9± 0.3 94.0± 0.2 82.2± 1.3 82.0± 1.7 85.9± 0.3 86.2± 0.7
no all 93.6± 0.5 93.3± 0.4 92.2± 0.1 92.7± 0.0 83.3± 1.4 84.3± 1.2 87.6± 0.8 89.0± 1.1

Table 2. Classification results for multiple kernels
(AUC).

Erythrocyte Leukemia Plasma Serum

94.4 ± 2.3 96.0 ± 1.5 83.7 ± 4.9 91.2 ± 2.7

4 RESULTS AND DISCUSSIONS

4.1 Classification results
Table 1 presents the experimental results of a few kernels on the four
problems of discriminating each blood origin from the other ones.
We focus our attention on the following kernels, both for the set of
subtrees and for the set of co-rooted subtrees:N = 1 (single sugar),
N = 3 (sugar trimers), or noN (all subtrees);D = 0 (strict depth
matching),D = 2 (similar depth matching), or noD (all matches
whatever the depths). In each case we report the area below the ROC
curve (AUC) of true positives as a function of false positives. The
classification results for multiple kernel learning are presented in
Table 2.

A few points are worth mentioning; first, the AUCs are gener-
ally high for all problems, which confirms that the glycan structure
contains a lot of information on their role. Also, predicting the eryth-
rocyte and leukemia classes is easier than predicting the plasma and
serum class. In addition, results published by Hizukuri et al. [2005]
corresponds toD = 0, N = 3 and the choice “all subtrees”. This
shows that some kernels introduced in this paper usually lead to sim-
ilar or improved performance, although the best kernel depends on
the problem. Finally, apart from the plasma class, multiple kernel
learning leads to improved classification performance.

4.2 Feature and kernel selection
In order to confirm the trends observed in the results of supervised
classification, we performed a systematic analysis of the classifica-
tion performance when only a small number of features are selected.

The results presented in Figure 3 suggests that most of the discrim-
inative power is obtained from only a few glycan substructures for
all classes. This also shows that our feature selection procedure
provides a reasonable selection of discriminative features. The effect
of depth feature seems to differ between classes (blood compon-
ents in this study). This phenomenon might be due to the biological
function of glycans in each blood component.

In order to analyze relevant feature, we performed a single fea-
ture extraction on the whole dataset and examined the first few
discriminative features selected in each class. Because of the space
limitation we focus here on leukemia cell specific motifs obtained
from the tree kernel with all subtrees andD = 0. Figure 4 shows the
five subtrees with highest scores. The high scoring glycan substruc-
tures can be considered to be characteristic motifs of each blood
component; the substructure with the highest score isα-Neup-
(2→3)-β-Galp-(1→4)-GlcpNAc at the fifth layer, which exactly
corresponds to the substructure in previous work [Hizukuri et al.,
2005]. The substructure with the second highest score isα-Neup at
the seventh layer. This result suggests that a sialic acid (represented
by Neup) attaching to the leaf part of glycans can be involved in
cancer. This hypothesis is actually consistent with an experimental
report that sialic acid tends to appear in many tumor cells [Kannagi
et al., 1986]. All the results for extracted substructures in each blood
component can be obtained from the online supplement.

For the discrimination of leukemia cells, the multiple kernel
learning algorithm assigned highest weights on the kernels (D=no,
N=3) and the kernel (D=0, N=10), with respectivelyη = 0.18
andη = 0.15. The high weight on the kernel (D=no, N=3) sup-
ports an observation that glycosyltransferases, which are involved in
glycan synthesis, physically interact with about three monosacchar-
ides at the leaves of glycans [Varki et al., 1999]. The high weight
on the kernel (D=0, N=10) implies that there might exist a big
leukemia-specific glycan motif which depends strictly on the loc-
alization (layer). This is also reflected by the result of our feature
extraction result in Figure 4.

Moreover, if we concatenate the high scoring subtrees in Figure 4
based on their layer information, we can reconstruct one big sugar
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Fig. 3. Feature selection for each class: erythrocyte, leukemia, plasma and serum

Fig. 4. Characteristic substructures for leukemic cells.

chain. Therefore it suggests that glycans including such motif struc-
ture might work as a signal in the discrimination of leukemic cells
from the normal cells. These results suggest that 3-mer might be an
appropriate size as a glycan motif in general, but the localization
information is also important in the case of big glycan motifs.

5 CONCLUSION
In this paper we developed an SVM-based approach for classify-
ing glycans with new tree kernels, and detecting discriminative
glycan motifs for each classification task. The originality of our
tree kernel relies on the richness of the substructures that are con-
sidered. Our works extends the previous work of Hizukuri et al.
[2005], who focused on the use ofk-mer representation (3-mer
in their case). Our results suggest that informative and discrim-
inative glycan motifs do not always constitute chains of sugars
of fixed length. Our framework enabled us not only to discrim-
inate classification groups with higher accuracy but also to detect
more flexible size of glycan motifs. We also confirmed that some
leukemia-specific glycan motifs detected by our method correspon-
ded to the results in the literature. It should be also pointed out that
our method is applicable to classification for any types of targets
such as tissues, organs, and organisms. Our future work includes
more comprehensive glycan classification and motif detection for
other targets.

ACKNOWLEDGMENTS
We thank Yoshiyuki Hizukuri for help with the dataset.

Conflict of Interest:None declared.

REFERENCES
K. F. Aoki, H. Mamitsuka, T. Akutsu, and M. Kanehisa. A score matrix to reveal the

hidden links in glycans.Bioinformatics, 21(8):1457–63, Apr 2005.

6



Glycan classification with tree kernels

K. F. Aoki, A. Yamaguchi, N. Ueda, T. Akutsu, H. Mamitsuka, S. Goto, and M. Kane-
hisa. KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the
structures of carbohydrate sugar chains.Nucleic Acids Res., 32(Web Server issue):
W267–72, Jul 2004.

F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning
multiple kernels. InAdv. Neural. Inform. Process Syst., volume 17, 2005.

C. Berg, J. P. R. Christensen, and P. Ressel.Harmonic analysis on semigroups.
Springer-Verlag, 1984.

M. Collins and N. Duffy. Convolution kernels for natural language. InAdv. Neural.
Inform. Process Syst., volume 14, pages 625–632, 2001.

M. N. Fuster and J. D. Esko. The sweet and sour of cancer: glycans as novel therapeutic
targets.Nat. Rev. Cancer, 5(7):526–42, Jul 2005.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring.Science, 286:531–537, 1999.

K. Hashimoto, S. Goto, S. Kawano, K. F. Aoki-Kinoshita, N. Ueda, M. Hama-
jima, T. Kawasaki, and M. Kanehisa. Kegg as a glycome informatics resource.
Glycobiology, 16:63R–70R, 2006.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning.
Springer-Verlag, 2001.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-
99-10, UC Santa Cruz, 1999.

Y. Hizukuri, Y. Yamanishi, O. Nakamura, F. Yagi, S. Goto, and M. Kanehisa. Extrac-
tion of leukemia specific glycan motifs in humans by computational glycomics.

Carbohydr. Res., 340(14):2270–8, Oct 2005.
M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource

for deciphering the genome.Nucleic Acids Res., 32(Database issue):D277–80, Jan
2004.

R. Kannagi, Fukushi Y., Tachikawa T., Shin S. Noda A., Shigeta K., Hiraiwa N., Fukuda
Y., Inamoto T., and HakomoriAoki S. Quantitative and qualitative characteriza-
tion of human cancer-associated serum glycoprotein antigens expressing fucosyl or
sialyl-fucosyl type 2 chain polylactosamine.Cancer Res., 46:2619–2626, 1986.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical
framework for genomic data fusion.Bioinformatics, 20:2626–2635, 2004.
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