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ABSTRACT

Motivation: Glycans are covalent assemblies of sugar that play cru-
cial roles in many cellular processes. Recently, comprehensive data
about the structure and function of glycans have been accumulated,
therefore the need for methods and algorithms to analyze these data
is growing fast.

Results: This paper presents novel methods for classifying glycans
and detecting discriminative glycan motifs with support vector
machines (SVM). We propose a new class of tree kernels to meas-
ure the similarity between glycans. These kernels are based on
the comparison of tree substructures, and take into account sev-
eral glycan features such as the sugar type, the sugar bound type,
or layer depth. The proposed methods are tested on their ability to
classify human glycans into four blood components: leukemia cells,
erythrocytes, plasma, and serum. They are shown to outperform a
previously published method. We also applied a feature selection
approach to extract glycan motifs which are characteristic of each
blood component. We confirmed that some leukemia-specific glycan
motifs detected by our method corresponded to several results in the
literature.

Availability: Softwares are available upon request.

Supplementary information:  Datasets are available at the following
webisite: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/glycankernel/.
Contact: yoshi@kuicr.kyoto-u.ac.jp

1 INTRODUCTION

that can be represented by rooted ordered trees, with monosac-
charides as labeled vertices, and sugar bounds as labeled edges
(see Figure 1). As a result, specific approaches have recently been
developed for comparison of glycans [Aoki et al., 2004, 2005],
probabilistic modeling of glycan families [Ueda et al., 2005], and
analysis of MS/MS spectra of oligosaccharides [Tang et al., 2005].
There is still an incentive to develop efficient methods for the auto-
matic classification of glycans, and the extraction of biologically
relevant substructures.

Glycans exhibit a large diversity of structures in different organ-
isms, and in different tissues and organs of a given organism.
Recently, a computational approach to the supervised classification
of glycans into blood components and to the detection of leukemia-
specific glycan substructures has been proposed [Hizukuri et al.,
2005]. The approach is based on the extraction of short linear sub-
structures from the glycan structures, resulting in a quantitative
measure of similarity between glycans based on the count of shared
substructures. This measure of similarity is then used as an input to
a support vector machine (SVM) classifier which is trained to dis-
criminate between different blood components and blood types. The
goal of this paper is to extend this framework to a broader class of
structure representations, with the motivation of both increasing the
accuracy of glycan classification, and providing a framework for the
extraction of biologically relevant glycan substructures.

More precisely, we investigate different high-dimensional rep-
resentations for glycan structures and use them for supervised
classification with SVM. In SVM jargon, we define newernels

Glycans, or carbohydrate sugar chains, are covalent assemblies g trees, adapted to the classification of glycans. Our tree Ker-
sugars (oligosaccharides and polysaccharides) that exist in eithgg|s are based on the indexation of a glycan tree structure by a
free form or in covalent complexes with proteins or lipids. Although get of subtrees it contains. We investigate different variants in the
a growing body of evidence supports crucial roles for glycansyeginition of subtrees, in the importance placed on the depth of a
in many cellular processes, including cell-cell communication,sptree in the glycan tree, and in the size of the subtrees. In spite
immune system, protein interaction or tumor progression [Varkiof their large dimensions, these vector representations are adap-
et al.,, 1999, Fuster and Esko, 2005], understanding the biologicah to the supervised classification of glycans by kernel methods
functions of glycans and relating them to their structure remaing;nq in particular the SVM, in the spirit of earlier work on convolu-
challenging experimentally. As databases such as KEGG/Glycafion kernels for tree structures [Collins and Duffy, 2001, Haussler,
[Kanehisa et al., 2004, Hashimoto et al., 2006] have started accumyggg]. We perform a thorough analysis of the classification per-
lating information about the structure and function of glycans, theigrmance obtained by different representations on the problem of
need for methods and algorithms to analyze these data is growmlgredicting the blood origin of glycans among leukemia cell, erythro-
fast. ] ) ] cyte, plasma, and serum. We then apply feature selection methods to
Unlike genes or protein sequences, for which a number of wellfing giscriminative subtree motifs in glycans, and relate the selected
established algorithms are now available for various data miningpstructures to biologically known facts. Finally, in order to com-
tasks such as similarity detection, clustering, supervised classificasine the information provided by different representations we apply
tion, structure prediction, or functional motif extraction, glycans arérecently developed methods for multiple kernel learning [Bach etal.,
generally not linear polymers. They have more complex structure52005]l resulting in an optimal weighting of each representation
for each classification task. As shown in Section 4, the methods
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Fig. 1. An example of a glycan structure.

developed in this paper not only lead to better classification performstructured data [Sdhkopf et al., 2004]. In this paper, we present

ance than previously reported results, they also provide additionalifferent experiments of binary classification of glycans, but the

biological insights in the role and structure of glycans, through theframework developed could easily take into account more complex

substructures extracted by feature selection and the weights learnedpervised or unsupervised learning tasks, such as multi-label clas-

by multiple kernel learning. sification or clustering, by simply choosing the appropriate kernel
algorithm [Shawe-Taylor and Cristianini, 2004].

2 MATERIALS 31 K | methods for classificati
All glycan structures used in this study are obtained from the " ernel methods for classitication

KEGG/Glycan database [Kanehisa et al., 2004, Hashimoto et alKérnel methods work by first embedding each data peiat ¥’ (
2006]. We use the same dataset as Hizukuri et al. [2005], whéePresentaglycan structure in our case) to a vector spaheough

took care to remove non-carbohydrate moieties such as phosphaiefeature magb : X' — F7; the vector space is referred to as
and sulfate, and gathered glycan structures consisting of the followthe feature spaceThen, linear pattern recognition algorithms are
ing seven monosaccharides (sugars): glucose (Glc), galactose (Gaqtﬁplied in this feature space, on the mapped data points. The first
mannose (Man), fucose (Fuc), N-acetylglucosamine (GIcNAc), N-Key characteristic of these methods is that the mappirg ®(x)
acetylgalactosamine (GalNAc), and N-acetyl neuraminic/sialic acidnto feature space may not be explicit; rather, the mapping is defined

(Neu). The linkages between these monosaccharides also have vafPlicitly through the inner produck(z,y) = (2(z), (y)),
ables, such as the anomerdr 3) and the hydroxyl group numbers defined for anyz andy in X', and referred to as thieernel func-
to which they are attached on the monosaccharides. The dataset cdin- Given data pointsz; € &, ¢ = 1,...,n, kernel learning

sists of 365 glycan structures originating from four human b|oodalgorithms will mainly use the kerne_l function evaluated at pairs of
components: leukemic cells, erythrocytes, serum, and plasm, witfata points(z;, z;). Then x n matrix composed of those kernel

respectively 162, 112, 85, and 73 examples. Note that some glycarignction evaluations, defined ds;; = k(xi, z;), is referred to as
belong to several blood components. the kernel matrix Note that in many cases, the dimension of the

feature space is large and potentially infinite; by manipulating only

kernel matrices, kernel methods make possible to deal with very
3 METHODS large numbers of features. In our experiments, the total number of
The main contribution of this paper is to propose various embedfeatures is 3330 (when considering co-rooted subtrees) and 18681
dings of glycan structures into Euclidean spaces of possibly largéwhen considering all subtrees).
dimensions, trying to both capture biologically relevant features The second key characteristic of kernel methods is that they can
from the glycan structures and make them amenable to further prdse applied to non-vectorial data, in our case labeled tree structures.
cessing. More precisely, we investigate the developmekeofel  We only need to be able to define a valid positive semi-definite ker-
functionsfor glycans, that is, of similarity functions which corres- nel function, i.e., a function which corresponds to an inner product
pond to inner products of such Euclidean embeddings&opf in some potentially large feature space. In Section 3.2 we present
and Smola, 2002]. Indeed, once such an embedding is chosehow such kernel functions can be defined for glycans.
various algorithms from machine learning can be used that can Inthis paperwe focus on the task of binary classification. Namely,
take advantage of the representation in terms of kernel—thosee assume that we have labeled data pdipisy;) € X' x{—1, 1},
algorithms are usually referred to kesrnel methodsand are enjoy- ¢ = 1,...,n. We use two different learning algorithms, ker-
ing an increasingly popularity in computational biology due to theirnel logistic regression and the support vector machine (SVM).
generally good performance and ability to process complex and’hose two methods look for classifiers of the forfijz) =




Glycan classification with tree kernels

N=1 HHOOOO0eA N=T HHOOOO0eA

(depth) (1) (2) (3) (3) (4) (4) (4 (B) (depth) (1) (2) (3) () 4) (4) (4) (9)
o wem el Ao wew g Mo 1gn g
ep ep
(1 (3) (4) 1 @ @ @ 3 @ (4)
6 6 ) G4 o6 6 6
N=3 N=3 44 O’-I R ,
depth W depth @l a 3
(depth) 3 @3 ’ 5(23) (depth) ’ 3 B2 Mw
(2) (3) (1 1hn @ @ (2) @ @3 (3)
N=4,5 67,8, .. N=4,567, 8, ...

Fig. 2. An illustration for the decomposition of the glycan tree in Fig.1 into all possible co-rooted subtrees (left) and all possible subtrees (right).

sign({(w, ®(x)) + b), wherew € F andb € R, but with different  paper are labeled ordered rooted trees, and from now on, we refer
optimization formulations (see Shawe-Taylor and Cristianini [2004]to those as simply trees. Note that glycan trees are not always rep-
for details). The two methods work solely on the kernel maktix  resented by binary trees. There are some glycans in which the nodes
and usually lead to similar classification accuracies [Hastie et al.have multiple children (more than two children).
2001]. Given a tre€Tl’, the treeS is asubtreeof T if and only if it is a

All experimental results reported below are obtained from a com-connected subgraph @f and the labels of the edges and vertices of
mon methodological framework. For each classification problem & match the corresponding onesih Note that the ordered rooted
5-fold cross-validation is performed, and the measures are averagetiructure of a tred” is naturally inherited by subtrees. The subtree
over 3 repeats of the whole process. Since our binary classificatiots said to beco-rootedif a vertex is always included in the subtree
tasks involve unbalanced classes, the SVM and the logistic regresvith all its siblings inT. See Figure 2 for examples of co-rooted
sion are trained with asymmetric cost,” for false positives and subtrees and all subtrees of a given glycan. We let defi(ifg the
C™ for false negatives. Ih, andn_ are the number of positive set of subtrees of the trdéandSc (T) the set of co-rooted subtrees
and negative examples, then we uSé and C~ such that that of the treeT.
Ct 4+ C~ =1andC*nt = C~n~. Classification performance All kernels that we define exhibit the same structure, i.e., the ker-
on test data is reported using areas under the ROC curve (AUC). nel functions evaluated at; and x> can be expressed as a sum

We performed the computation for single kernel learning with of local kernelsq(S1, S2) over all possible subtrees (or co-rooted
the libsvm implementation of SVM in the PyMt.machine learn-  subtrees)s; and.S; of the tre€l’(x:) andT(z2):
ing environment. For multiple kernel learning, we used the Matlab
toolbox of Bach et al. [2005] k(z1,x2) = > q(S1, 52)

S1€8(T (1)), S2€S8(T(=2))

3.2 Tree kernels for glycans or
The molecular structure of a glycanis characterized by kabeled
ordered rooted tred(x) = (V(z), E(z)), whereV (z) and E(x) ko(z1,2) = Z q(S1, S2)
are respectively the set of vertices and the set of edges of the tree 51€80(T(21), 52€80(T(w2))
T(x). Both vertices and edges are labeled. For glycans, the vertewhere ¢(S1,52) is itself a kernel between trees. This imme-
labels represents the monosaccharide type and can take seven adititely shows that the kernelé and kc are valid posit-
egorical values, while the edge labels characterize the sugar bounéle& semi-definite functions. Indeed; being a kernel we can
and may take 12 values in the blood data used in our study. write q(S1,S2) = (®(S1),¥(S2)), and thusk(zi,z2) =

We use rooted trees, because for glycans, the same sugar is alw. U(S (S > ;
© 1 ® 2) ), which shows that
bound to proteins or cells during interactions between the egcarL(m Sl;i<gi;13eefj ar)]’i%;?f;rgu?t) (52)
1,42 .

and proteins or cells; it can thus be isolated as a root. Moreover, the ) . .
treeT(x) is considered ordered because for each vertex the order When the local kernej(51, S2) is a Dirac function betweef;

of the children is significant. All trees which are considered in this2d 52, then the value of the kemél(z, ,) is simply the num-
ber of common subtrees that verified some additional properties.

Geometrically, this amount to representing a tree by the vector of

! http:/Awww.csie.ntu.edu.tw/ cjlin/libsvm/ indicator functions for each subtree, and taking the inner product
2 http://pyml.sourceforge.net between such vector representations. This fact will be used when
8 http://cmm.ensmp.fr/ bach/path/ computing those kernels efficiently in Section 3.2.2.

puting y
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3.2.1 Local kernel functionsWe consider the following local 3.3 Feature selection

kernel functions;(S1, 52) between subtrees: Kernel methods and support vector machines have the drawback
that, although they generally give good classification accuracy,
e ¢°(51,82) = 6(S1 = S2), thatis, 1if S; = S, and0  the biological facts that make this classification efficient are often
otherwise, equality between trees being defined as equalithidden. In the case of glycans, however, a particular incentive
of structure and all vertex and edge labels. The kernel themesides good classification is to extract substructures character-
simply counts the number of common subtrees or the numbeistic of different classes of glycans. Indeed, the determination of

of common co-rooted subtrees. such substructures might shed light on the biochemical mechanisms
o ¢N(S1,82) = 6(S1 = S2)6(n(S1) = N)§(n(S2) = N), involved in a given process, for example.
wheren(S;) denotes the number of nodes §f and N is a Among the kernels proposed in 3.2, those involving the local ker-

pre-specified number of nodes fraWi = 1 to 10. The result-  helsg” for D > 0 do not correspond to obvious embedding of
ing kernel simply counts the number of common subtrees of dhe glycans based on their substructures, and therefore do not lend
given size or the number of common co-rooted subtrees of dhemselves particularly well the the extraction of discriminative sub-
given size. structures. However, those involving onfy;, ¢ andq® for D = 0

o ¢P(S1,52) = max(D + 1 — |d(S1) — d(S2)],0)5(Sy = S») can be written as explicit dqt product in a space indexed by various
whered(S;) is the depth ir; of the root ofS;, andD is the sgbstructures._As a result, m_stead of_ keeping the complete embed-
maximal allowed difference in depths. Whéh — 0, only ding, one c_an mste_ad focus its attentl_on on the_ ;ele_ctlon ofasr_nall
subtrees with identical depths are matched:Iaincreases, number of informative features, for a given classification task, which

pairs of subtrees with increasingly different depths (:ontributeCOUIOI then correspond to discriminative substructures.

to the kernel. We note thag® (matching subtrees whatever tTt'h?' problgm ofhf_eatlljre S§|ECIICJ_It’IhIS a Wellik?ownlpro_tt)rl]em |nA
their depths) can be seen to some extent as the limit afhen stalistics and machine jearning, with many €xisting aigorithms.

D tend to infinity. The fact thag” is a valid positive definite thprough comp?rlson Sf many _metlhofds tbelng tieygnd thetﬁcc(;pe of
function between subtrees results from the classical results thettp's paper, we focused on a simple feature selection method pro-
: 2 : s posed in Golub et al. [1999] in the framework of gene selection
the function(z, y) € R* — max(D — |z — y|, 0) is a positive ¢ . data. Gi traini t of positi d i
definite function, usually referred to as thé&ngular kernel rom microarray data. 5lven a training set ot posilive and negative
[Berg et al., 1984] examples (in the binary classification framework), each feature is
N D . ranked according to the value of the statistiés:—“=! wherey .,
e Any product of¢g™ andg¢”: common subtrees of siz& and oy +o-—
. n—, o4 ando_ are the mean and standard deviation of the values of
with more or less close depths are counted. I . .
the features on the positive and negative sets, respectively. In order
to evaluate the relevance of this approach to feature selection for the
| ¢ classification of glycans, we first estimate the classification accuracy
D (D = n0,0,1,2,---,5) and 19 values forN (N = \han 4 varying number of features are selected; we then propose an

1,2,3,---,17,18,all) , and applying the local kernels either on analysis of the features themselves in the context of glycobiology in
the set of subtrees or the set of co-rooted subtrees, already prOV'd%?—:ction 4

us with a basic set df x 7 x 19 different kernel functions. In this
case,D = no means that we do not consider any depth information,
andN = all means that we use all the nodes. We observe that with
these notations, the representation of glycans proposed in Hizukugj . .
et al. [2005] involving the matching of linear subtrees of length §'4 Multiple kernel learning
with identical depth corresponds to the kernel obtained by takingn Section 3.2 we have defined a large set of 266 different kernels
the product ofy"Y, for N = 3, with ¢, for D = 0, and summing  k;,5 = 1,...,Q = 266, by matching subtrees with different struc-
over all subtrees. tures. In this situation, it has recently been proved advantageous to
combine the different kernels; into a a single kernet by using a
3.2.2 Kernel computationsFor large trees, the kernels presented convex combinatiok (z, y) = Z?zl n;k;(x,y), with nonnegative
earlier can be computed by dynamic programming in time quadraticoefficients(n; ) which sum to one [Lanckriet et al., 2004]. During
in the number of vertices [Collins and Duffy, 2001, Shawe-Taylor training, both the parameters of the convex combinatigr) and
and Cristianini, 2004]. In our situation, the number of vertices isthe resulting classifier using the combined kernels are estimated in
usually small (always less than 18) and thus a complete recursiva single convex optimization problem. In this paper, we used the
enumeration of the subtrees is feasible, which leads to a basis regernel matrix normalization procedure and the code of Bach et al.
resentation of the feature space (exceptd@r D > 0), and thus  [2005], which is based on kernel logistic regression and provides an
allows us to perform feature selection as presented in Section 3.&fficient way of searching over the regularization parameter. In par-
The case of,” (D > 0 is just slightly different, because although ticular, the entire set of solutions for all values of the regularization
one can write it as an inner product in an explicit feature spaceparameter is obtained with complexi(Qn?). Combining kernels
(e.g., each subtre§ with depthd can be indexed by the features leads to better classification performance as well as a selection of the
{84, Sat1,.-.,S4+p_1} toobtainthe kerne}” by inner product),  kernels which are relevant for the classification task at hand. In our
which allows to compute this kernel by explicit vector represent-case, those kernels are characterized by a number of Modesl a
ations of the trees, the dimensions of this feature space are naepth parameteb; the weights of the kernel combination thus give
associated to a precise subtree which makes feature selection in thiaformation on the most discriminative size of subtrees as well as on
case meaningless. the importance of depth.

Limiting ourselves to all combinations of the 7 values for
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Table 1. Classification results for each class: erythrocyte, leukemia, plasma and serum.

Erythrocyte Leukemia Plasma Serum
Co-rooted All Co-rooted  All Co-rooted  All Co-rooted  All
D N AUC AUC AUC AUC AUC AUC AUC AUC

0 1 917402 89.1+£03 92.0+0.6 89.7£1.0 81.6+0.8 77.3:05 87.2t£0.1 84.4+05
0 3 91.8+04 933+05 91.1+£04 093.3£0.2 81.0£08 83612 86.2£0.8 86.5£0.2
0 all 927403 925+0.3 925+0.2 91.5+£06 827+0.7 835+04 887+0.7 89.6+0.9
2 1 922+03 90.1£0.2 91.7£0.1 89.9+£05 83.1£08 76.6£09 87.0£1.3 83.9£05
2 3 934406 94.6+05 93.3+03 946+0.2 827+16 83.1+17 86.5£0.7 86.6+0.3
2 all 933+03 93.6+0.2 932+0.2 921+05 845+1.0 835+06 887+1.1 88.7+1.0
no 1 93203 885+03 915+0.2 91.0+06 81609 728+1.2 852+03 855+1.6
no 3 93.8+0.7 94.8+0.6 929+03 94.0+0.2 822+13 82.0+1.7 859+0.3 86.2+0.7
no all 93.6+£05 93.3+04 922+0.1 927+0.0 833+14 843t12 87.6+0.8 89.0+1.1

Table 2. Classification results for multiple kernels The results presented in Figure 3 suggests that most of the discrim-
(AUC). inative power is obtained from only a few glycan substructures for
all classes. This also shows that our feature selection procedure
provides a reasonable selection of discriminative features. The effect
of depth feature seems to differ between classes (blood compon-
ents in this study). This phenomenon might be due to the biological
function of glycans in each blood component.

In order to analyze relevant feature, we performed a single fea-
ture extraction on the whole dataset and examined the first few
discriminative features selected in each class. Because of the space

Erythrocyte Leukemia  Plasma Serum

944+£23 96.0*£15 83.7+49 91.2+27

4 RESULTS AND DISCUSSIONS limitation we focus hgre on leukemia cell spec_:ific motifs obtained
o from the tree kernel with all subtrees afid= 0. Figure 4 shows the
4.1 Classification results five subtrees with highest scores. The high scoring glycan substruc-

Table 1 presents the experimental results of a few kernels on the follures can be considered to be characteristic motifs of each blood
problems of discriminating each blood origin from the other ones.component; the substructure with the highest score-iNeup-
We focus our attention on the following kernels, both for the set of(2—3)-5-Galp-(1—4)-GlcpNAc at the fifth layer, which exactly
subtrees and for the set of co-rooted subtréés: 1 (single sugar), corresponds to the substructure in previous work [Hizukuri et al.,
N = 3 (sugar trimers), or n&V (all subtrees);D = 0 (strict depth ~ 2005]. The substructure with the second highest scasieNeup at
matching),D = 2 (similar depth matching), or n® (all matches the seventh layer. This result suggests that a sialic acid (represented
whatever the depths). In each case we report the area below the RG1® Newp) attaching to the leaf part of glycans can be involved in
curve (AUC) of true positives as a function of false positives. Thecancer. This hypothesis is actually consistent with an experimental
classification results for multiple kernel learning are presented irreport that sialic acid tends to appear in many tumor cells [Kannagi
Table 2. etal., 1986]. All the results for extracted substructures in each blood
A few points are worth mentioning; first, the AUCs are gener- component can be obtained from the online supplement.
ally high for all problems, which confirms that the glycan structure For the discrimination of leukemia cells, the multiple kernel
contains a lot of information on their role. Also, predicting the eryth- learning algorithm assigned highest weights on the kernels (D=no,
rocyte and leukemia classes is easier than predicting the plasma ah#3) and the kernel (D=0, N=10), with respectivejy = 0.18
serum class. In addition, results published by Hizukuri et al. [2005]andn = 0.15. The high weight on the kernel (D=no, N=3) sup-
corresponds td = 0, N = 3 and the choice “all subtrees”. This ports an observation that glycosyltransferases, which are involved in
shows that some kernels introduced in this paper usually lead to singlycan synthesis, physically interact with about three monosacchar-
ilar or improved performance, although the best kernel depends oitles at the leaves of glycans [Varki et al., 1999]. The high weight
the problem. Finally, apart from the plasma class, multiple kernebn the kernel (D=0, N=10) implies that there might exist a big

learning leads to improved classification performance. leukemia-specific glycan motif which depends strictly on the loc-
alization (layer). This is also reflected by the result of our feature
4.2 Feature and kernel selection extraction result in Figure 4.

Moreover, if we concatenate the high scoring subtrees in Figure 4

In order to confirm the trends observed in the results of supervisegased on their layer information, we can reconstruct one big sugar

classification, we performed a systematic analysis of the classifica-
tion performance when only a small number of features are selected.
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Fig. 3. Feature selection for each class: erythrocyte, leukemia, plasma and serum

No. score layer
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2 0.502 7 Neu
Gal £22% GleNag

3 0.487 3 /Manﬂl”l Man
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6 0.463 & Neu —#22_ Gal 2929 GlcNac

Fig. 4. Characteristic substructures for leukemic cells.

chain. Therefore it suggests that glycans including such motif struc-

5 CONCLUSION

In this paper we developed an SVM-based approach for classify-
ing glycans with new tree kernels, and detecting discriminative
glycan motifs for each classification task. The originality of our
tree kernel relies on the richness of the substructures that are con-
sidered. Our works extends the previous work of Hizukuri et al.
[2005], who focused on the use é&fmer representation (3-mer

in their case). Our results suggest that informative and discrim-
inative glycan motifs do not always constitute chains of sugars
of fixed length. Our framework enabled us not only to discrim-
inate classification groups with higher accuracy but also to detect
more flexible size of glycan motifs. We also confirmed that some
leukemia-specific glycan motifs detected by our method correspon-
ded to the results in the literature. It should be also pointed out that
our method is applicable to classification for any types of targets
such as tissues, organs, and organisms. Our future work includes
more comprehensive glycan classification and motif detection for
other targets.
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