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Abstract

We propose a novel method of dimensionality reduction faresuised
learning. Given a regression or classification problem ifctvive wish

to predict a variabl@” from an explanatory vectoX, we treat the prob-
lem of dimensionality reduction as that of finding a low-dmm®nal “ef-
fective subspace” oK which retains the statistical relationship between
X andY. We show that this problem can be formulated in terms of
conditional independence. To turn this formulation intcogtimization
problem, we characterize the notion of conditional indejgzice using
covariance operators on reproducing kernel Hilbert spabissallows us

to derive a contrast function for estimation of the effegthubspace. Un-
like many conventional methods, the proposed method regjuieither
assumptions on the marginal distribution f nor a parametric model
of the conditional distribution of".

1 Introduction

Many statistical learning problems involve some form of dimsionality reduction. The
goal may be one deature selectionin which we aim to find linear or nonlinear combina-
tions of the original set of variables, or onewvairiable selectionin which we wish to select
a subset of variables from the original set. Motivationssfach dimensionality reduction
include providing a simplified explanation and visualieatfor a human, suppressing noise
S0 as to make a better prediction or decision, or reducingdhgutational burden.

We study dimensionality reduction for supervised learningvhich the data consists of
(X,Y) pairs, whereX is anm-dimensional explanatory variable aids an¢-dimensional
response. The variablé may be either continuous or discrete. We refer to these gnabl
generically as “regression,” which indicates our focushendonditional probability density
py|x (y|x). Thus, our framework includes classification problems,neheis discrete.

We wish to solve a problem of feature selection in which thetdees are linear combi-
nations of the components o&f. In particular, we assume that there isradimensional
subspaces C R™ such that the following equality holds for allandy:

py|x (y]7) = py s x (y[sz), (1)

wherellg is the orthogonal projection &' onto S. The subspacé is called theef-
fective subspace for regressiomBased on observations ¢X,Y") pairs, we wish to re-



cover a matrix whose columns sp&n We approach the problem withinsemiparamet-
ric statistical framework—we make no assumptions regardingahelitional distribution
py|usx (y|Ilsz) or the distributionpx () of X. Having found an effective subspace, we
may then proceed to build a parametric or nonparametriessggn model on that sub-
space. Thus our approach is an explicit dimensionality cgoii for supervised learning
that does not need any particular form of regression moddljtacan be used as a prepro-
cessor for any supervised learner.

Most conventional approaches to dimensionality reduati@ke specific assumptions re-
garding the conditional distributiopy 11 x (y|IIsx), the marginal distributiomx (), or
both. For example, classical two-layer neural networks lmauiseen as attempting to es-
timate an effective subspace in their first layer, using aifipemodel for the regressor.
Similar comments apply to projection pursuit regressignafid ACE [2], which assume
an additive modeE[Y|X] = ¢1 (8L X) + - -+ + g (8% X). While canonical correlation
analysis (CCA) and partial least squares (PLS, [3]) can bd fr dimensionality reduc-
tion in regression, they make a linearity assumption andepkirong restrictions on the
allowed dimensionality. The line of research that is closesur work is sliced inverse re-
gression (SIR, [4]) and related methods including princhbessian directions (pHd, [5]).
SIR is a semiparametric method that can find effective sudespaut only under strong
assumptions of ellipticity for the marginal distributipr (). pHd also places strong re-
strictions onpx (x). If these assumptions do not hold, there is no guaranteediffrthe
effective subspace.

In this paper we present a novel semiparametric method foesionality reduction that
we refer to akernel Dimensionality Reduction (KDRYDR is based on a particular class
of operators on reproducing kernel Hilbert spaces (RKHJ, [6 distinction to algorithms
such as the support vector machine and kernel PCA [7, 8], KibRat be viewed as a “ker-
nelization” of an underlying linear algorithm. Rather, vdate dimensionality reduction
to conditional independencef variables, and use RKHSs to provide characterizations of
conditional independence and thereby design objectivetifums for optimization. This
builds on the earlier work of [9], who used RKHSs to charazeamarginal independence
of variables. Our characterization of conditional indegemce is a significant extension,
requiring rather different mathematical tools—the covac@operators on RKHSs that we
present in Section 2.2.

2 Kerne method of dimensionality reduction for regression

2.1 Dimensionality reduction and conditional independence

The problem discussed in this paper is to find the effectivisgaceS defined by Eq. (1),
given an i.i.d. samplé(X;,Y;)}",, sampled from the conditional probability Eg. (1) and
a marginal probabilitypx for X. The crux of the problem is that we have agriori
knowledge of the regressor, and place no assumptions omtititional probabilitypy-| x

or the marginal probability x .

We do not address the problem of choosing the dimensionailityhis paper—in practical
applications of KDR any of a variety of model selection mekthsuch as cross-validation
can be reasonably considered. Rather our focus is on théepradf finding the effective
subspace for a given choice of dimensionality.

The notion of effective subspace can be formulated in terfne®aditional independence.
Let @ = (B, C) be anm-dimensional orthogonal matrix such that the column vectsr
B span the subspace (thus B ism x r andC'is m x (m — r)), and defind/ = BT X
andV = CTX. Because) is an orthogonal matrix, we hayey (z) = py v (u,v) and
px,y(z,y) = puv,y(u,v,y). Thus, Eq. (1) is equivalent to

pyiu,v (Y, v) = pyu(ylu). (2)



Figure 1: Graphical representation of dimensionality ridun for regression.

This shows that the effective subspagés the one which makes andV conditionally
independent gively (see Figure 1).

Mutual information provides another viewpoint on the eqlénce between conditional
independence and the effective subspace. Itis well knoain th

I(Y,X)=1(Y,U)+ Ey[I(Y|U,V|U)], (3)

whereI(Z, W) is the mutual information betweefi and W. Because Eq. (1) implies
I(Y, X) = I(Y,U), the effective subspackis characterized as the subspace which retains
the entire mutual information betwegéhandY’, or equivalently, such thd(Y'|U, V' |U) =

0. This is again the conditional independenc&cndV givenU.

2.2 Covariance operatorson kernel Hilbert spaces and conditional independence

We use cross-covariance operators [10] on RKHSs to chaizetihe conditional inde-
pendence of random variables. (&1, k) be a (real) reproducing kernel Hilbert space of
functions on a sef2 with a positive definite kernet : 2 x  — R and an inner product
(-, )%. The most important aspect of a RKHS is the reproducing ptgpe

(f,k(-,2))y = f(x) forallz € Qandf € H. (4)

In this paper we focus on the Gaussian keifel , z2) = exp(—||z1 — 22|?/20?).

Let (H1, k1) and(Hz, k2) be RKHSs over measurable spa¢@s, B;) and (£, Ba), re-
spectively, withk; and k> measurable. For a random vec{oX,Y’) on Q; x s, the
Cross-covariance operatdty x from H; to H, is defined by the relation

(9, Xy xNin, = Exy[f(X)g(Y)] = Ex[f(X)]Ey[g(Y)] (= Covf(X),g(Y)]) (5)

forall f € H, andg € Hs. EQ. (5) implies that the covariance $fX) andg(Y") is given

by the action of the linear operatdk  x and the inner product. Under the assumption that
Ex[k1(X,X)] and Ey [k2 (Y, Y)] are finite, by using Riesz’s representation theorem, it is
not difficult to see that a bounded operalby x is uniquely defined by Eq. (5). We have
¥}y x = Xxv, whereA* denotes the adjoint of. From Eq. (5), we see thaly x contains

all the information on nonlinear correlations given by thadtions inH x andHy .

Cross-covariance operators provide a useful frameworkligussing conditional proba-
bility and conditional independence, as shown by the fallgtheorem and its corollaty

Theorem 1. Let (H;, k1) and (Haz, ko) be RKHSs on measurable spaéesand (2., re-
spectively, withk, andk. measurable, andX, Y') be a random vector oft; x Q5. Assume
that Ex [k, (X, X)] and Ey [k2(Y, Y] are finite, and for ally € H, the conditional expec-
tation By x[g(Y) | X = -] is an element of{;. Then, for allg € H, we have

ExxEByix[g(Y) | X =] =Zxvyg. (6)

Full proofs of all theorems can be found in [11].



Corollary 2. Let S;}X be the right inverse oE x x on (KerYxx)*. Under the same
assumptions as Theorem 1, we have, forfatl (KerYx x)* andg € Hao,

(1,235 Sxvo)m, = (f Byix[9(Y) | X =), )
Sketch of the proof¥ xy can be decomposed Bsy = zﬁ(/f(vzly/é for a bounded oper-
atorV (Theorem 1, [10]). Thus, we sé:é}lx Y xy is well-defined, becaud@ange. yy C
RangeXx y = (KerXx x)*. Then, Eq. (7) is a direct consequence of Theorem 1. [

Given thatX x x is invertible, Eq. (7) implies

Eyix[gY)| X =]=5Exyg forallg e Ho. (8)
This can be understood by analogy to the conditional exfientaf Gaussian random
variables. IfX andY are Gaussian random variables, it is well-known that thalitimmal
expectation is given by x[a”Y | X = 2] = 27S{Exya for an arbitrary vecto,
whereX x x andX xy are the variance-covariance matrices in the ordinary sense
Using cross-covariance operators, we derive an objeativetion for characterizing con-
ditional independence. Lé&t;,k;) and (Ha, k2) be RKHSs on measurable spades

and(),, respectively, withk; andk, measurable, and suppose we have random variables
U € H; andY € H,. We define theonditional covariance operatdtyy s onH; by

Yyyiu = Xyy — SyuipnSuy- 9
Corollary 2 easily yields the following result on the comalial covariance of variables:

Theorem 3. Assume thatEx[k,(X,X)] and Ey[k:(Y,Y)] are finite, and that
By x[f(Y)|X]is an element of{; for all f € Hs. Then, for allf,g € H,, we have

(9, Zvyiu)n, = Ev[f(Y)g(Y)] = Ev [Eyiu[f (V) |U]Eyu(g(Y)|U]]
= Ey [Covy iy [f(Y),9(Y) | U]]. (10)

As in the case of Eq. (8), Egs. (9) and (10) can be viewed agtdlegs of the well-known
equality for Gaussian variables: Ga¥Y,b"Y|U] = a” (Zyy — SyuSpp Zoy)b.

From Theorem 3, it is natural to use minimizationXfy; as a basis of a method for
finding the most informativé/, which gives the least Vaiy [f(Y)|U]. The following
definition is needed to justify this intuition. LéR, ) be a measurable space, (&t, k) be

a RKHS over2 with £ measurable and bounded, andAdtbe the set of all the probability
measures ofX2, B). The RKHSH is calledprobability-determiningif the map

M3P = (f—Ex-p[f(X)])eH" (11)

is one-to-one, whergl* is the dual space dfl. The following theorem can be proved by a
similar argument to the proof of Theorem 2 in [9].

Theorem 4. For an arbitraryo > 0, the RKHS with Gaussian kernglz, y) = exp(—||z—
y||?/20%) onR™ is probability-determining.

Recall that for two RKHS$+; and H, on 2; and ()., respectively, the direct product
H1®H- isthe RKHS orf2; x Qs with the kernek, k- [6]. The relation between conditional
independence and the conditional covariance operatoves diy the following theorem:

Theorem 5. Let (Hi1,k11), (H12, k12), and (Hs, ko) be RKHSs on measurable spaces
Q11, 12, and Qs, respectively, with continuous and bounded kernels. (D&tY’) =
(U,V,Y) be a random vector of;; x Q2 X Qo, whereX = (U,V), and letH; =
Hi1 ® Hio be the direct product. It is assumed th&t;[g(Y)|U = -] € M1 and
Eyx[g(Y)|X =] € H forall g € H,. Then, we have

Yyvyiw 2 Xyyixs (12)



where the inequality refers to the order of self-adjoint @pers. If further Hs is
probability-determining, in particular, for Gaussian kegls, we have the equivalence:

Eyyp( = Zyy|U <~ YLV | U. (13)

Sketch of the proofTaking the expectation of the well-known equality Va#[g(Y)|U] =
Eyu|Varyu,v[g(Y)|U, V]| + Varyy [Eyu,v[g(Y)|U, V]] with respect toU, we ob-
tain By [Vary . [g(Y)|U]] — Ex [Vary x[9(Y)|X]] = Ev [Vary|y[Ey|x[g(Y)|X]]] >0,
which implies Eq. (12). The equality holds iffy | x [¢(Y)| X] = Ey |y [g(Y)|U] fora.e.X.
Since’H, is probability-determining, this meay, x = Py |y, thatis,Y 1LV | U, O

From Theorem 5, for probability-determining kernel spactike effective subspace can
be characterized in terms of the solution to the followingimization problem:

mgnZyy‘U, subjectto U =TIgX. (14)

2.3 Kernel generalized variance for dimensionality reduction

To derive a sampled-based objective function from Eq. (@4affinite sample, we have to
estimate the conditional covariance operator with giveia,dand choose a specific way to
evaluate the size of self-adjoint operators. Hereaftercaresider only Gaussian kernels,
which sufficiently work for both of continuous and discretgiables.

For the estimation of the operator, we follow the proceduargdj (see also [11] for the
detail), and use the centralized Gram matrix [9, 8], whictidfned as:

Ky = (I,- 11,11 Gy (I, - 11,11, Ky = (1,-11,1))Gy(1,-11,17) (15)

wherel, = (1,...,1)T, (Gy)i; = k1(Yi,Y;) is the Gram matrix of the samples &,
and (Gv)ij = ko2(U;, U;) is given by the projectio’; = BT X;. With a regularization
constant > 0, the empirical conditional covariance matdix-y-;; is then defined by

iYY|U = iyy—iYUialUin = (Ky—FEIn)Z—KyKU(KU+EIn)_2KUKy. (16)

The size ofiyyw in the ordered set of positive definite matrices can be etedulay its

determinant. Although there are other choices for meaguhia size Ofi:yy‘U, such as
the trace and the largest eigenvalue, we focus on the detaninin this paper. Using the

Schur decomposition, det — BC—'BT) = det( s g)/deC, we have
det 2yy|U = det 2[YU] [YU] / det EUU, (17)

~ . . ~ - - % 2 % %
where Xy iy is defined bySyvyvo) = (g;; g;g) = ((K;;;IY) (KIEZZU)Z)

We symmetrize the objective function by dividing by the dansdet ¥y, which yields

det S
min CENUIYUL whereU = BTX. (18)
BeR™*" det Xyy det Xy
We refer to this minimization problem with respect to theichmf subspacé or matrix
B asKernel Dimensionality Reduction (KDR)

Eq. (18) has been termed the “kernel generalized variaka@¥/) by Bach and Jordan [9].
They used it as a contrast function for independent comparealysis, in which the goal
is to minimizea mutual information. They showed that KGV is in fact an appration

of the mutual information among the recovered sources arthnfactorized distributions.
In the current setting, on the other hand, our goal imyaximizethe mutual information




SIR(10) | SIR(15) | SIR(20) [ SIR(25) | pHd | KDR
R(b,) | 0.987 | 0993 | 0.988 | 0.990 | 0.110| 0.999
R(by) | 0.421 | 0.705 | 0.480 | 0.526 | 0.859| 0.984

Table 1: Correlation coefficients. SIR] indicates the SIR method with slices.

I(Y,U), and with an entirely different argument, we have shown K@V is an appro-
priate objective function for the dimensionality reductiproblem, and that minimizing
Eq. (18) can be viewed as maximizing the mutual informafiori, U ).

Given that the numerical task that must be solved in KDR issdime as the one to be
solved in kernel ICA, we can import all of the computatioredtiniques developed in [9]
for minimizing KGV. In particular, the optimization routhat we use is gradient descent
with a line search, where we exploit incomplete Choleskyodgmosition to reduce the
n X n matrices to low-rank approximations. To cope with locaimpat we make use of an
annealing technique, in which the scale paramettar the Gaussian kernel is decreased
gradually during the iterations of optimization. For a krg, the contrast function has
fewer local optima, and the search becomes more accuratésakecreased.

3 Experimental results

We illustrate the effectiveness of the proposed KDR methoaligh experiments, compar-
ing it with several conventional methods: SIR, pHd, CCA, &hdb.

The first data set is a synthesized one with 300 samples of h@&rdionalX and one
dimensionalY’, which are generated by Y ~ 0.9X; 4+ 0.2/(1 + X17) + Z, whereZ ~
N(0,0.01%) and X follows a uniform distribution orj0, 1]*7. The effective subspace is
given byb; = (1,0,...,0) andbs = (0,...,0,1). We compare the KDR method with
SIR and pHd only—CCA and PLS cannot find a 2-dimensional sulgsjiecaus¥ is one-
dimensional. To evaluate estimation accuracy, we use thipheucorrelation coefficient
R(b) = maxges B Xxxb/(B"ExxB - bTXxxb)'/2, which is used in [4]. As shown
in Table 1, KDR outperforms the others in finding the weak dbation of bs.

Next, we apply the KDR method to classification problemsyibich many conventional
methods of dimensionality reduction are not suitable. mipalar, SIR requires the dimen-
sionality of the effective subspace to be less than the nuwtbdasses, because SIR uses
the average o in slices along the variable€. CCA and PLS have a similar limitation
on the dimensionality of the effective subspace. Thus wepaosmthe result of KDR only
with pHd, which is applicable to general binary classifieatproblems.

We show the visualization capability of the dimensionalgguction methods for thé/ine
dataset from the UCI repository to see how the projection adbw-dimensional space re-
alizes an effective description of data. TWénedata consists of 178 samples with 13 vari-
ables and a label with three classes. Figure 2 shows thectimjeonto the 2-dimensional
subspace estimated by each method. KDR separates the tatiarée classes most com-
pletely. We can see that the data are nonlinearly sepamabie two-dimensional space.

In the third experiment, we investigate how much informatim the classification is pre-
served in the estimated subspace. After reducing the dioalgy, we use the support
vector machine (SVM) method to build a classifier in the reglspace, and compare its
accuracy with an SVM trained using the full-dimensionalteecX. We use three data sets
from the UCI repository. Figure 3 shows the classificatictesdor the test set for sub-
spaces of various dimensionality. We can see that KDR yigta&l classification even in

low-dimensional subspaces, while pHd is much worse in sdialensionality. It is note-

worthy that in the lonosphere data set the classifier in d&ioss 5, 10, and 20 outperforms
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Figure 2: Projections dfVinedata: "+”, "e”, and gray TJ" represent the three classes.

the classifier in the full-dimensional space. This is causeduppressing noise irrelevant
to explainY. These results show that KDR successfully finds an effestidspace which
preserves the class information even when the dimenstgiglieduced significantly.

4 Extension to variable selection

The KDR method can be extended to variable selection, inhwhisubset of given ex-
planatory variable§ X1, ..., X,,} is selected. Extension of the KGV objective function
to variable selection is straightforward. We have only tmpare the KGV values for all
the subspaces spanned by combinations of a fixed humbereuftesglvariables. We of
course do not avoid the combinatorial problem of variabled®sn; the total number of
combinations may be intractably large for a large numbexpfamatory variables:, and
greedy or random search procedures are needed.

We first apply this kernel method to th&oston Housinglata (506 samples with 13 di-
mensionalX), which has been used as a typical example of variable smbediVe select
four variables that attain the smallest KGV value amonghaldombinations. The selected
variables are exactly the same as the ones selected by ACHd&{, we apply the method
to theleukemiamicroarray data of 7129 dimensions ([12]). We select 50ctiffe genes
to classify two types of leukemia using 38 training sampkes. optimization of the KGV
value, we use a greedy algorithm, in which new variables alected one by one, and
subsequently a variant of genetic algorithm is used. Hathef50 genes accord with 50
genes selected by [12]. With the genes selected by our mett@dame classifier as that
used in [12] classifies correctly 32 of the 34 test samplaswfich, with their 50 genes,
Golubet al. ([12]) report a result of classifying 29 of the 34 samplegecily.

5 Conclusion

We have presented KDR, a novel method of dimensionalityateoiu for supervised learn-
ing. One of the striking properties of this method is its galise. We do not place any
strong assumptions on either the conditional or the makgiis&ibution, in distinction to
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Figure 3: Classification accuracy of the SVM for test dataratimensionality reduction.

essentially all existing methods for dimensionality retiutin regression, including SIR,
pHd, CCA, and PPR. We have demonstrating promising emppedormance of KDR,
showing its practical utility in data visualization and fie®e selection for prediction. We
have also discussed an extension of KDR method to varialdetim.

The theoretical basis of KDR lies in the nonparametric otter&zation of conditional inde-
pendence that we have presented in this paper. Extendiliereeork on the kernel-based
characterization of marginal independence [9], we havevehbat conditional indepen-
dence can be characterized in terms of covariance operamosskernel Hilbert space.
While our focus has been on the problem of dimensionality ¢gdn, it is also worth not-

ing that there are many possible other applications of @rgslt. In particular, conditional
independence plays an important role in the structural itiefinof graphical models, and
our result may have implications for model selection andrafice in graphical models.
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