
Graph Kernels between Point Clouds

Francis R. Bach FRANCIS.BACH@MINES.ORG

INRIA - WILLOW Project-Team, Laboratoire d’Informatique del’Ecole Normale Suṕerieure, Paris, France

Abstract

Point clouds are sets of points in two or three di-
mensions. Most kernel methods for learning on
sets of points have not yet dealt with the specific
geometrical invariances and practical constraints
associated with point clouds in computer vision
and graphics. In this paper, we present exten-
sions of graph kernels for point clouds, which al-
low one to use kernel methods for such objects as
shapes, line drawings, or any three-dimensional
point clouds. In order to design rich and numer-
ically efficient kernels with as few free parame-
ters as possible, we use kernels between covari-
ance matrices and their factorizations on prob-
abilistic graphical models. We derive polyno-
mial time dynamic programming recursions and
present applications to recognition of handwrit-
ten digits and Chinese characters from few train-
ing examples.

1. Introduction

In recent years, kernels for structured data have been de-
signed in many domains, such as bioinformatics (Vert et al.,
2004), text processing (Lodhi et al., 2002) and computer vi-
sion (Harchaoui & Bach, 2007; Parsana et al., 2008). They
provide an elegant way of including knowna priori infor-
mation, by using directly the natural topological structure
of objects. Usinga priori knowledge through kernels on
structured data have proved beneficial because it allows
(a) to reduce the number of training examples, (b) to re-
use existing data representations that are already well de-
veloped by experts of those domains and (c) to bring to
bear the rapidly developing kernel machinery, and in par-
ticular semi-supervised learning—see, e.g., Chapelle et al.
(2006)—and hyperparameter learning for supervised ker-
nel methods—see, e.g., Bach et al. (2004).

In this paper, we propose a positive definite kernel between

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

point clouds, with applications to classification of line
drawings—such as handwritten digits (LeCun et al., 1998)
or Chinese characters (Srihari et al., 2007)—or shapes (Be-
longie et al., 2002). The natural geometrical structure of
point clouds is hard to represent in a few real-valued fea-
tures (see, e.g., Forsyth and Ponce (2003)), in particular
because of (a) the required local or global invariances by
rotation, scaling, and/or translation, (b) the lack of pre-
established registrations of the point clouds (i.e., points
from one cloud are not given matched to points from an-
other cloud), and (c) the noise and occlusion that impose
that only portions of two point clouds ought to be com-
pared.

One of the leading principles for designing kernels between
structured objects is to decompose each object into parts
and to compare all parts of one object to all parts of another
object (Shawe-Taylor & Cristianini, 2004). Even if there
is an exponential number of such decompositions, which
is a common case, this is numerically possible under two
conditions: (a) the object must lead itself to an efficient
enumeration of subparts, and (b) the similarity function be-
tween subparts (i.e., thelocal kernel), beyond being a posi-
tive definite kernel, must be simple enough so that the sum
over a potentially exponential number of terms can be re-
cursively performed in polynomial time through factoriza-
tion.

One of the most striking instantiations of this design princi-
ple are thestring kernels(see, e.g., Shawe-Taylor and Cris-
tianini (2004)), which consider all substrings of a given
string but still allow efficient computation in polynomial
time. The same principle can also be applied to graphs:
intuitively, the graph kernels(Ramon & G̈artner, 2003;
Kashima et al., 2004; Borgwardt et al., 2005) consider all
possible subgraphs and compare and count matching sub-
graphs. However, the set of subgraphs (or even the set of
paths) has exponential size and cannot be efficiently de-
scribed recursively. By choosing appropriate substructures,
such aswalksor tree-walks, and fully factorized local ker-
nels, matrix inversion formulations (Kashima et al., 2004)
and efficient dynamic programming recursions (Harchaoui
& Bach, 2007) allow one to sum over an exponential num-
ber of substructures in polynomial time (for more details

Graph Kernels between Point Clouds

on graph kernels, see Section 2.1).

In this paper, we consider the application of graph kernels
to point clouds. Indeed, we assume that each point cloud
has a graph structure (most often a neighborhood graph);
then, our graph kernels consider all partial matches be-
tween two neighborhood graphs and sum over those. How-
ever, the straightforward application of graph kernels poses
a major problem: in the context of computer vision, sub-
structures correspond to matched sets of points, and deal-
ing with local invariances by rotation and/or translation im-
poses to use a local kernel that cannot be readily expressed
as a product of separate terms for each pair of points, and
the usual dynamic programming and matrix inversion ap-
proaches cannot then be directly applied. One of the main
contributions of this paper is to design a local kernel that is
not fully factorized but can be instead factorized according
to the graph underlying the substructure. This is naturally
done through probabilistic graphical models and the design
of positive definite kernels for covariance matrices that fac-
torize on graphical models (see Section 3). With this novel
local kernel, we derive new polynomial time dynamic pro-
gramming recursions in Section 4. In Section 5, we present
simulations on handwritten character recognition.

2. Graph Kernels

In this section, we consider two labelled undirected graphs
G = (V,E, a, x) andH = (W,F, b, y), whereV,W are
vertex sets,E,F are edge sets anda, b, x, y are vertex la-
belling functions (Diestel, 2005). Two types of labels are
considered:attributes, which are denoteda(v) ∈ A for
vertexv ∈ V andb(w) ∈ A for vertexw ∈ W andpo-
sitions, which are denotedx(v) ∈ X andy(w) ∈ X . We
assume that the graphs have no self-loops. Our motivating
examples are line drawings, whereX = A = R

2 (i.e., the
position is itself also an attribute). In this case, the graph
is naturally obtained from the drawings by considering 4-
connectivity or 8-connectivity (Forsyth & Ponce, 2003). In
other cases, graphs can be easily obtained from nearest-
neighbor graphs.

2.1. Related work

Graph data occur in many application domains, and kernels
for attributed graphs have received increased interest in the
applied machine learning literature, in particular in bioin-
formatics (Kashima et al., 2004; Borgwardt et al., 2005)
and computer vision (Harchaoui & Bach, 2007). Note that
in this paper, we only consider kernels between graphs
(each data point is a graph), as opposed to kernels for a sin-
gle dataset with associated graph information between data
points (see, e.g., Shawe-Taylor and Cristianini (2004)).

Current graph kernels can roughly be divided in two
classes: the first class is composed of non positive definite

Figure 1.(top left) path, (top right)1-walk which is not a2-walk,
(bottom left)2-walk which is not a3-walk, (bottom right) 4-walk.

similarity measures based on existing techniques from the
graph matching literature, that can be made positive def-
inite by ad hocmatrix transformations; this includes the
edit-distance kernel (Neuhaus & Bunke, 2006) and the op-
timal assignment kernel (Fröhlich et al., 2005; Vert, 2008).

Another class of graph kernels relies on a set of substruc-
tures of the graphs. The most natural ones are paths, sub-
trees and more generally subgraphs; however, they do not
lead to positive definite kernels with polynomial time com-
putation algorithms—see, in particular, NP-hardness re-
sults by Ramon and G̈artner (2003)—and recent work has
focused on larger sets of substructures. In particular,ran-
dom walkkernels consider all possible walks and sum a
local kernel over all possible walks of the graphs (with
all possible lengths). With a proper length-dependent fac-
tor, the computation can be achieved by solving a large
sparse linear system (Kashima et al., 2004; Borgwardt
et al., 2005), whose running time complexity has been re-
cently reduced (Vishwanathan et al., 2007). When consid-
ering fixed-length walks, efficient dynamic programming
recursions can de derived (Harchaoui & Bach, 2007) that
drive down the computation time, at the cost of consider-
ing a smaller feature space. These however have the ad-
vantage of allowing extensions to other types of substruc-
tures, namely “tree-walks” (Ramon & G̈artner, 2003), that
we now present.

2.2. Paths, Walks, Subtrees and Tree-walks

Given an undirected graphG with vertex setV , a path is
a sequence of distinct connected vertices, while awalk is
a sequence of possibly non distinct connected vertices. In
order to prevent the walks from going back and forth too
quickly (a phenomenon referred to astottering by Mah́e
and Vert (2006)), we further restrain the set of walks; that
is, for any positive integerβ, we defineβ-walks as walks
such that anyβ+1 successive vertices are distinct (1-walks
are regular walks); see examples in Figure 1. Note that
when the graphG is a tree (no cycles), then the set of2-
walks is equal to the set of paths. More generally, for any
graph,β-walks of lengthβ + 1 are exactly paths of length
β+1. Note that the integerβ corresponds to the “memory”

Graph Kernels between Point Clouds

Figure 2.(left) binary2-tree-walk, which in fact a subtree, (right)
binary1-tree-walk which is not a2-tree-walk.

of the walk, i.e., the number of past vertices it needs to
remember before going on.

A subtree ofG is a subgraph ofG with no cycles. A sub-
tree ofG can thus be seen as a connected subset of distinct
nodes ofG with an underlying tree structure. The notion
of walk is extending the notion of path by allowing nodes
to be equal; similarly, we can extend the notion of subtrees
to tree-walks, which can have nodes that are equal. More
precisely, we define anα-ary tree-walk of depthγ of G as a
rooted labelledα-ary tree of depthγ with nodes labelled by
vertices inG, and such that the labels of neighbors in the
tree-walk must be neighbors inG (we refer to all allowed
such set of labels asconsistentlabels). We assume that
the tree-walks are not necessarily complete trees, i.e., each
node may have less thanα children. Tree-walks can be
plotted on top of the original graph, as shown in Figure 2,
and may be represented by a tree structureT over the ver-
tex set{1, . . . , |T |} and a tuple of consistent but possibly
non distinct labelsI ∈ V |T | (i.e., the labels of neighboring
vertices inT must be neighboring vertices inG). Finally, in
this paper, we consider only rooted subtrees, i.e., subtrees
where a specific node is identified as the root; moreover, all
the trees that we consider are unordered trees (i.e., no order
is considered among siblings).

We can also defineβ-tree-walks, as tree-walks such that
for each node inT , its label (which is an element of the
original vertex setV) and the ones of all its descendants up
to theβ-th generation are all distinct. With that definition,
1-tree-walks are regular tree-walks (see Figure 2), and if
α = 1, we get backβ-walks. From now on, we refer to the
descendants up to theβ-th generation as theβ-descendants.

We let denoteTα,γ the set of rooted tree structures of depth
less thanγ and with at mostα children per node; for exam-
ple, T1,γ is exactly the set of chain graphs of length less
than γ. For T ∈ Tα,γ , we denoteJβ(T,G) the set of
consistent labellings ofT by vertices inV leading toβ-
tree-walks. With these definitions, aβ-tree-walk ofG is
characterized by (a) a tree structureT ∈ Tα,γ and (b) a
labellingI ∈ Jβ(T,G).

2.3. Graph Kernels

We assume that we are given a positive definite kernel be-
tween tree-walks that share the same tree structure, which
we refer to as thelocal kernel. This kernel depends on the
tree structureT and the set of attributes and positions as-

HG

Figure 3.Graph kernels between two graphs (each color repre-
sents a different label). We display all binary 1-tree walks with
a specific tree structure, extracted from two simple graphs; the
graph kernels is computing and summing the local kernels be-
tween all those extracted tree-walks. In the case of the Dirac ker-
nel (hard matching), only one pair of tree-walks is matched (for
both labels and structures).

sociated with the nodes in the tree-walks (remember that
each node ofG and H has two labels, a position and
an attribute). Given a tree structureT and consistent la-
bellings I ∈ Jβ(T,G) andJ ∈ Jβ(T,H), we let denote
qT,I,J (G,H) the value of the local kernel between two
tree-walks defined by the same structureT and labellingsI
andJ .

Following Ramon and G̈artner (2003), we can define the
tree-kernelas the sum over all matching tree-walks ofG
andH of the local kernel, i.e.:

kT
α,β,γ(G,H) =

∑

T∈Tα,γ

fλ,ν(T)×

∑

I∈Jβ(T,G)

∑

J∈Jβ(T,H)

qT,I,J (G,H). (1)

When considering 1-walks (i.e.,α = β = 1), and letting
the maximal walk lengthγ tend to+∞, we get back the
random walk kernel (Ramon & G̈artner, 2003; Kashima
et al., 2004). If the kernelqT,I,J (G,H) has nonnegative
values and is equal to 1 if the two tree-walks are equal, it
can be seen as a soft matching indicator, and then the kernel
in Eq. (1) simply counts the softly matched tree-walks in
the two graphs (see Figure 3 for an illustration with hard
matching).

We add a nonnegative penalizationfλ,ν(T) depending only
on the tree-structure. Besides the usual penalization of the
number of nodes|T |, we also add a penalization of the
number of leaf nodesℓ(T) (i.e., nodes with no children).
More precisely, we use the penalizationfλ,ν = λ|T |νℓ(T).
This penalization, suggested by Mahé and Vert (2006), is
essential in our situation to avoid that trees with nodes of
higher degrees dominate the sum.

If qT,I,J (G,H) is obtained from a positive definite kernel
between (labelled) tree-walks, thenkT

α,β,γ(G,H) also de-
fines a positive definite kernel. The kernelkT

α,β,γ(G,H)
sums thelocal kernelqT,I,J (G,H) over all tree-walks of
G and H that share the same tree structure; the number

Graph Kernels between Point Clouds

of such matching tree-walks is exponential in the depthγ,
thus, in order to deal with potentially deep trees, a recursive
definition is needed. As we now detail, it requires a specific
type of local kernels, which can be decomposed according
to tree structures.

2.4. Local Kernels

The local kernel is used between tree-walks which can have
large depths (note that everything we propose will turn out
to have linear time complexity in the depthγ). We use
the product of a kernel for attributes and a kernel for posi-
tions. For attributes, we use the following usual factorized
form qA(a(I), b(J)) =

∏|I|
p=1 kA(a(Ip), b(Jp)), wherekA

is a positive definite kernel onA × A. This allows the
separate comparison of each matched pair of points and
efficient dynamic programming recursions (Harchaoui &
Bach, 2007). However, for our local kernel on positions,
we need a kernel thatjointly depends on the whole vectors
x(I) ∈ X |I| andy(J) ∈ X |J|, and not only on thep pairs
(x(Ip), y(Jp)) ∈ X × X . Indeed, we do not assume that
the pairs areregistered, i.e., we do not know the matching
between points indexed byI in the first graph and the ones
indexed byJ in the second graph.

In this paper, we focus onX = R
d andtranslation invari-

ant local kernels, which implies that the local kernel for
positions may only depend on differencesx(i) − x(i′) and
y(j) − y(j′) for (i, i′) ∈ I × I and(j, j′) ∈ J × J . We
further reduce these to kernel matrices corresponding to a
translation invariant positive definite kernelkX (x1 − x2).
Depending on the application,kX may or may not be rota-
tion invariant. In simulations, we use the rotation invariant
Gaussian kernel of the formkX (x1, x2) = e−υ‖x1−x2‖

2

.

Thus, we reduce the set of all positions inX |V | andX |W |

to full kernel matricesK ∈ R
|V |×|V | andL ∈ R

|W |×|W |

for each graph, defined asK(v, v′) = kX (x(v) − x(v′))
(and similarly forL). These matrices are by construction
symmetric positive semi-definite and, for simplicity, we as-
sume that these matrices are positive definite (i.e., invert-
ible), which can be enforced by adding a multiple of the
identity matrix. The local kernel will thus only depend on
the submatricesKI = KI,I andLJ = LJ,J , which are
positive definite matrices. Note that we use kernel matrices
K andL to represent the geometry of each graph, and that
we use a positive definite kernel on such kernel matrices.

We consider the following positive definite kernel on
positive matricesK and L, the (squared) Bhattacharyya
kernelkB, defined as (Kondor & Jebara, 2003):

kB(K,L) = |K|1/2|L|1/2
∣

∣

K+L
2

∣

∣

−1
, (2)

where|K| denotes the determinant ofK.

By taking the product of the attribute-based local kernel
and the position-based local kernel, we get the following

local kernelq0
T,I,J (G,H) = kB(KI , LJ)qA(a(I), b(J)).

However, this local kernelq0
T,I,J (G,H) does not yet de-

pend on the tree structureT and the recursion may be ef-
ficient only if q0

T,I,J (G,H) can be computed recursively.
The factorized termqA(a(I), b(J)) does not cause any
problems; however, for the termkB(KI , LJ), we need an
approximation based onT . As we show in Section 3, this
can be obtained by a factorization according to the appro-
priate graphical model, i.e., we will replace each kernel ma-
trix of the formKI by a projection onto a subset of kernel
matrices which allow efficient recursions.

3. Positive Matrices and Graphical Models

The main idea underlying the factorization of the kernel is
to consider symmetric positive definite matrices as covari-
ance matrices and to look at probabilistic graphical models
defined for Gaussian random vectors with those covariance
matrices. The goal of this section is to show that by ap-
propriate graphical model techniques, we can design prop-
erly factorized approximations of Eq. (2), namely through
Eq. (6) and Eq. (7).

More precisely, we assume that we haven random vari-
ables Z1, . . . , Zn with probability distribution p(z) =
p(z1, . . . , zn). Given a kernel matrixK (in our case de-
fined asKij = e−υ‖xi−xj‖

2

, for positionsx1, . . . , xn),
we consider jointly Gaussian distributed random variables
Z1, . . . , Zn such thatcov(Zi, Zj) = Kij . In this section,
with this identification, we consider covariance matrices as
kernel matrices, and vice-versa.

3.1. Graphical Models and Junction Trees

Graphical models provide a flexible and intuitive way of
defining factorized probability distributions. Given any
undirected graphQ with vertices in{1, . . . , n}, the distri-
butionp(z) is said to factorize inQ if it can be written as
a product of potentials over all cliques (completely con-
nected subgraphs) of the graphQ. When the distribution is
Gaussian with covariance matrixK ∈ R

n×n, the distribu-
tion factorizes if and only if(K−1)ij = 0 for each(i, j)
which is not an edge inQ (Lauritzen, 1996).

In this paper, we only considerdecomposablegraphical
models, for which the graphQ is triangulated(i.e., there
exists no chordless cycle of length strictly larger than 3).
In this case, the joint distribution is uniquely defined from
its marginalspC(zC) on the cliquesC of the graphQ.
Namely, ifC(Q) is the set of maximal cliques ofQ, we can
build a tree of cliques, ajunction tree, such thatp(z) =
∏

C∈C(Q) pC(zC)/
∏

C,C′∈C(Q),C∼C′ pC∩C′(zC∩C′) (see
Figure 4 for an example of a graphical model and a junction
tree). The setsC ∩C ′ are usually referred to asseparators
and we let denoteS(Q) the set of such separators. Note that
for a zero mean normally distributed vector, the marginals

Graph Kernels between Point Clouds

1

987

654

32

Figure 4.(left) original graph, (middle) a single ex-
tracted tre-walk, (right) decomposable graphical model
Q1(T) with added edges in red, defined in Section 3.4.
The junction tree is a chain composed of the cliques
{1, 2}, {2, 3, 6}, {5, 6, 9}, {4, 5, 8}, {4, 7}.

pC(zC) are characterized by the marginal covariance ma-
trix KC = KC,C . Projecting onto a graphical model will
preserve the marginal over all maximal cliques, and thus
preserve the local kernel matrices, while imposing zeros in
the inverse ofK.

3.2. Graphical Models and Projections

We let denoteΠQ(K) the covariance matrix that factor-
izes inQ which is closest toK for the Kullback-Leibler
divergence between normal distributions. In this paper, we
essentially replaceK byΠQ(K); i.e., we project all our co-
variance matrices onto a graphical model, which is a clas-
sical tool in probabilistic modelling (Lauritzen, 1996). We
leave the study of the approximation properties of such a
projection (i.e., for a givenK, how dense the graph should
be to approximate the full local kernel correctly?) to future
work—see, e.g., Caetano et al. (2006) for related results.

Practically, since our kernel on kernel matrices involves
determinants, we simply need to compute|ΠQ(K)| effi-
ciently. For decomposable graphical models,ΠQ(K) can
be obtained in closed form (Lauritzen, 1996) and its deter-
minant has the following simple expression:

log |ΠQ(K)| =
∑

C∈C(Q)

log |KC | −
∑

S∈S(Q)

log |KS |. (3)

The determinant|ΠQ(K)| is thus a ratio of terms (determi-
nants over cliques and separators), which will restrict the
applicability of the projected kernels (see Proposition 1).
In order to keep only products, we consider the following
equivalent form: if the junction tree is rooted (by choosing
any clique as the root), then for each clique but the root, a
unique parent clique is defined, and we have:

log |ΠQ(K)| =
∑

C∈C(Q) log |KC |
|KpQ(C)|

=
∑

C∈C(Q) log |KC|pQ(C)|, (4)

where pQ(C) is the parent clique ofQ (and ∅ for
the root clique) and the conditional covariance ma-
trix is defined, as usual, asKC|pQ(C) = KC,C −

KC,pQ(C)K
−1
pQ(C),pQ(C)KpQ(C),C (Lauritzen, 1996).

3.3. Graphical Models and Kernels

We now propose several ways of defining a kernel adapted
to graphical models. All of them are based on replacing
determinants|M | by |ΠQ(M)|, and their different decom-
positions in Eq. (3) and Eq. (4). Simply using Eq. (3), we
obtain the similarity measure:

kQ
B,0(K,L)=

∏

C∈C(Q)

kB(KC , LC)
∏

S∈S(Q)

kB(KS , LS)−1. (5)

which turns out not to be a positive definite kernel for gen-
eral covariance matrices:

Proposition 1 For any decomposable modelQ, the kernel
kQ
B,0 defined in Eq. (5) is a positive definite kernel on the

set of covariance matricesK such that for all separators
S ∈ S(Q), KS,S = I. In particular, when all separators
have cardinal one, this is a kernel on correlation matrices.

In order to remove the condition on separators (i.e.,
we want more sharing between cliques than through a
single variable), we consider the rooted junction tree
representation in Eq. (4). A straightforward kernel is
to compute the product of the Bhattacharyya kernels
kB(KC|pQ(C), LC|pQ(C)) for each conditional covariance
matrix. However, this does not lead to a true distance on
covariance matrices that factorize onQ because the set of
conditional covariance matrices do not characterize entirely
those distributions. Rather, we consider the following ker-
nel:

kQ
B (K,L) =

∏

C∈C(Q) k
C|pQ(C)
B (K,L); (6)

for the root clique, we definekR|∅
B (K,L) = kB(KR, LR)

and the kernelskC|pQ(C)
B (K,L) are defined as kernels

between conditional Gaussian distributions ofZC given
ZpQ(C). We use

k
C|pQ(C)
B (K,L)=

|KC|pQ(C)|
1/2|LC|pQ(C)|

1/2

∣

∣

1
2KC|pQ(C)+

1
2LC|pQ(C)+MM⊤

∣

∣

, (7)

where the additional term M is equal to
1
2 (KC,pQ(C)K

−1
pQ(C)−LC,pQ(C)L

−1
pQ(C)). This exactly cor-

responds to putting a prior with identity covariance matrix
on variablesZpQ(C) and considering the kernel between
the resulting joint covariance matrices on variables indexed
by (C, pQ(C)). We now have a positive definite kernel on
all covariance matrices:

Proposition 2 For any decomposable modelQ, the kernel
kQ
B (K,L) defined in Eq. (6) and Eq. (7) is a positive defi-

nite kernel on the set of covariance matrices.

Note that the kernel is not invariant by the choice of the
particular root of the junction tree. However, in our setting,
this is not an issue because we have a natural way of rooting
the junction trees (i.e, following the rooted tree-walk, see
Section 3.4). Note that these kernels could be useful in
other domains than point clouds and computer vision.

Graph Kernels between Point Clouds

In Section 4, we will use the notationkI1|I2,J1|J2

B (K,L)
for |I1| = |I2| and |J1| = |J2| to denote the kernel
between covariance matricesKI1∪I2

andLI1∪I2
adapted

to the conditional distributionsI1|I2 and J1|J2, defined
through Eq. (7).

3.4. Choice of Graphical Models

Given the rooted tree structureT of aβ-tree-walk, we now
need to define the graphical modelQβ(T) that we use to
project our kernel matrices. A natural candidate isT it-
self; however, as shown in Section 4, in order to compute
efficiently the kernel we simply need that the local ker-
nel is a product of terms that only involve a node and its
β-descendants. The densest graph (remember that denser
graphs lead to better approximations when projecting onto
the graphical model) we may use is exactly the following:
we defineQβ(T) such that for all nodes inT , the node to-
gether with all itsβ-descendants form a clique, i.e., a node
is connected to itsβ-descendants and allβ-descendants
are also mutually connected (see Figure 4 for example for
β = 1): the set of cliques are thus the set offamiliesof
depthβ + 1 (i.e., withβ + 1 generations). Thus, our final
kernel is:

kT
α,β,γ(G,H) =

∑

T∈Tα,γ

fλ,ν(T)×

∑

I∈Jβ(T,G)

∑

J∈Jβ(T,H)

k
Qβ(T)
B (KI , LJ)qA(a(I), b(J)). (8)

The main intuition behind this definition is to sum local
similarities over all matching subgraphs. In order to obtain
a tractable formulation, we simply needed (a) to extend the
set of subgraphs (to tree-walks of depthγ) and (b) to fac-
torize the local similarities along the graphs. We now show
how these elements can be combined to derive efficient re-
cursions.

4. Dynamic Programming Recursions

In order to derive dynamic programming recursions, we
follow Mahé and Vert (2006) and rely on the fact thatα-
ary β-tree-walks ofG can essentially be defined through
1-tree-walks on the augmented graph of all rooted subtrees
of G of depth at mostβ and arity less thanα. We thus
consider the setVα,β of non complete rooted (unordered)
subtrees ofG = (V,E), of depths less thanβ and arity
less thanα. Given two different rooted unordered labelled
trees, they are saidequivalent(or isomorphic) if they share
the same tree structure, and this is denoted∼t.

On this setVα,β , we define adirectedgraph with edge set
Eα,β as follows:R0 ∈ Vα,β is connected toR1 ∈ Vα,β if
“the treeR1 extends the treeR0 one generation further”,
i.e., if and only if (a) the firstβ − 1 generations ofR1 are
exactly equal to one of the complete subtree ofR0 rooted
at a child of the root ofR0, and (b) the nodes of depth

Figure 5.(left) undirected graphG, (right) graphG1,2.

β of R1 are distinct from the nodes inR0. This defines a
graphGα,β = (Vα,β , Eα,β) and a neighborhoodNGα,β

(R)
for R ∈ Vα,β (see Figure 5 for an example). Similarly we
define a graphHα,β = (Wα,β , Fα,β) for the graphH. Note
that whenα = 1, V1,β is the set of paths of length less than
or equal toβ.

For a β-tree-walk, the root with itsβ-descendants must
have distinct vertices and thus corresponds exactly to an el-
ement ofVα,β . We denotekT

α,β,γ(G,H,R0, S0) the same
kernel as defined in Eq. (8), but restricted to tree-walks that
start respectively withR0 andS0. Note that ifR0 andS0

are not equivalent, thenkT
α,β,γ(G,H,R0, S0) = 0.

We obtain the following recursion between depthsγ and
depthγ−1, for all R0∈Vα,β and andS0∈Wα,β such that
R0∼t S0:

kT
α,β,γ(G,H,R0, S0) = kT

α,β,γ−1(G,H,R0, S0)

+

α
X

p=1

X

R1, . . . , Rp ∈ NGα,β
(R0)

R1, . . . , Rp disjoint

X

S1, . . . , Sp ∈ NHα,β
(S0)

S1, . . . , Sp disjoint
"

λ

p
Y

i=1

kA(a(root(Ri)), b(root(Si)))×

k
∪

p
i=1Ri|R0,∪

p
i=1Si|S0

B (K, L)
Qp

i=1
k

Ri,Si
B (K, L)

p
Y

i=1

k
T
α,β,γ−1(G, H, Ri, Si)

!#

.

Note that if any of the treesRi is not equivalent
to Si, it does not contribute to the sum. The
recursion is initialized with kT

α,β,γ(G,H,R0, S0) =

λ|R0|νℓ(R0)qA(a(R0), b(S0))kB(KR0
, LS0

) while the final
kernel is obtained by summing over allR0 and S0, i.e,
kT

α,β,γ(G,H) =
∑

R0∼tS0
kT

α,β,γ(G,H,R0, S0).

Computational Complexity The complexity of comput-
ing one kernel between two graphs is linear inγ (the depth
of the tree-walks), and quadratic in the size ofVα,β and
Wα,β . However, those sets may have exponential size inβ
andα in general (in particular if graphs are densely con-
nected). And thus, we are limited to small values (typically
α 6 3 andβ 6 6) which are sufficient for good classifica-
tion performance (in particular, higherβ or α do not nec-
essarily mean better performance, see Section 5). Overall,
one can deal with any graph size, as long as the “sufficient
statistics” (i.e., the unique local neighorhoods inVα,β) are
not too numerous.

Graph Kernels between Point Clouds

Figure 6.For digits and Chinese characters: (left) original charac-
ters, (right) thinned and subsampled characters.

For example, for the handwritten digits we use in sim-
ulations, the average number of nodes in the graphs is
18 ± 4, while the average cardinal ofVα,β and running
times1 for one kernel evaluation are, for walk kernels of
depth 24: |Vα,β | = 36, T = 2 ms (α = 1, β = 2),
|Vα,β | = 37, T = 3 ms (α = 1, β = 4); and for tree-
kernels: |Vα,β | = 56, T = 25 ms (α = 2, β = 2),
|Vα,β | = 70, T = 32 ms (α = 2, β = 4).

Finally, we may reduce the computational load by consider-
ing a set of trees of smaller arity in the previous recursions;
i.e., we can considerV1,β instead ofVα,β with tree-kernels
of arity α > 1.

5. Application to Character Recognition

We have tested our new kernels on the task of isolated
handwritten character recognition, handwritten arabic nu-
merals (MNIST dataset) and Chinese characters (ETL9B
dataset). We selected the first 100 examples for the
ten classes in the MNIST dataset, while for the ETL9B
dataset, we selected the five hardest classes to discrimi-
nate among 3,000 classes (by computing distances between
class means) and then selected the first 50 examples per
class. Our learning task it to classify those characters; we
use a one-vs-rest multiclass scheme with 1-norm support
vector machines (see, e.g., Shawe-Taylor and Cristianini
(2004)).

We consider characters as drawings inR
2, which are sets

of possibly intersecting contours. Those are naturally rep-
resented as undirected planar graphs. We have thinned and
subsampled uniformly each character to reduce the sizes of
the graphs (see two examples in Figure 6).

The kernel on positions iskX (x, y) = exp(−τ‖x−y‖2)+
κδ(x, y), but could take into account different weights on
horizontal and vertical directions. We add the positions
from the center of the bounding box as features, to take
into account the global positions, i.e., we usekA(x, y) =
exp(−υ‖x − y‖2). This is necessary because the problem
of handwritten character recognition is not globally trans-
lation invariant.

1Those do not take into account preprocessing and were eval-
uated on an Intel Xeon 2.33 GHz processor from MATLAB/C
code, and are to be compared to the simplest recursions which
correspond to the usual random walk kernel (α = 1, β = 1),
whereT = 1 ms.

In this paper, we have defined a family of kernels, corre-
sponding to different values of the following free parame-
ters (shown with their possible values): arity of tree-walks
(α = 1, 2), order of tree-walks (β = 1, 2, 4, 6), depth of
tree-walks (γ = 1, 2, 4, 8, 16, 24), penalization on number
of nodes (λ=1), penalization on number of leaf nodes (ν =
.1, .01), bandwidth for kernel on positions (τ = .05, .01, .1),
ridge parameter (κ = .001), bandwidth for kernel on at-
tributes (υ= .05, .01, .1).

The first two sets of parameters (α, β, γ, λ, ν) are param-
eters of the graph kernel, independent of the application,
while the last set (τ, κ, ν) are parameters of the kernels for
attributes and positions. Note that with only a few impor-
tant scale parameters (τ andν), we are able to characterize
complex interactions between the vertices and edges of the
graphs. In practice, this is important to avoid considering
many more distinct parameters for all sizes and topologies
of subtrees.

In simulations, we performed two loops of 5-fold cross-
validation: in the outer loop, we consider 5 different train-
ing folds with their corresponding testing folds. On each
training fold, we consider all possible values ofα andβ.
For all of those values, we select all other parameters (in-
cluding the regularization parameters of the SVM) by 5-
fold cross-validation (the inner folds). Once the best pa-
rameters are found only by looking only at the training
fold, we train on the whole training fold, and test on the
testing fold. We output the means and standard deviations
of the testing errors for each testing fold. We show in Fig-
ure 7 the performance for various values ofα andβ. We
compare those favorably to three baseline kernels with hy-
perparameters learned by cross-validation in the same way:
(a) theGaussian-RBF kernelon the vectorized original im-
ages, which leads to testing errors of11.6±5.4% (MNIST)
and50.4 ± 6.2% (ETL9B); (b) the regularrandom walk
kernel which sums over all walk lengths, which leads to
testing errors of8.6 ± 1.3% (MNIST) and 34.8 ± 8.4%
(ETL9B); and (c) thepyramid match kernel(Grauman &
Darrell, 2007), which is commonly used for image clas-
sification and leads here to testing errors of10.8 ± 3.6%
(MNIST) and45.2 ± 3.4% (ETL9B).

These results show that our new family of kernels that
use the natural structure of line drawings are outperform-
ing other kernels on structured data (regular random walk
kernel and pyramid match kernel) as well as the “blind”
Gaussian-RBF kernel which does not take into account ex-
plicitly the structure of images but still leads to very good
performance with more training data (LeCun et al., 1998).
Note that for arabic numerals, higher arity does not help,
which is not surprising since most digits have a linear struc-
ture (i.e, graphs are chains). On the contrary, for Chinese
characters, which exhibit higher connectivity, best perfor-
mance is achieved for binary tree-walks.

Graph Kernels between Point Clouds

MNIST MNIST ETL9B ETL9B
α = 1 α = 2 α = 1 α = 2

β = 1 11.6 ± 4.6 9.2 ± 3.9 36.8 ± 4.6 32 ± 8.4
β = 2 5.6 ± 3.1 5.6 ± 3.0 29.2 ± 8.8 25.2 ± 2.7
β = 4 5.4 ± 3.6 5.4 ± 3.1 32.4 ± 3.9 29.6 ± 4.3
β = 6 5.6 ± 3.3 6 ± 3.5 29.6 ± 4.6 28.4 ± 4.3

Figure 7.Error rates (multiplied by 100) on handwritten character
classification tasks.

6. Conclusion

We have presented a new kernel for point clouds which is
based on comparisons of local subsets of the point clouds.
Those comparisons are made tractable by (a) considering
subsets based on tree-walks and walks, and (b) using a
specific factorized form for the local kernels between tree-
walks, namely a factorization on a properly defined proba-
bilistic graphical model.

Moreover, we have reported applications to handwritten
character recognition where we showed that the kernels
were able to capture the relevant information to allow
good predictions from few training examples. We are cur-
rently investigating other domains of applications of points
clouds, such as shape mining in computer vision (Belongie
et al., 2002), and prediction of protein functions from their
three-dimensional structures (Qiu et al., 2007).

Acknowledgements

We would like to thank Zäıd Harchaoui and Jean-Philippe
Vert for fruitful discussions related to this work.

References
Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004).

Multiple kernel learning, conic duality, and the SMO al-
gorithm. Proc. ICML.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape match-
ing and object recognition using shape contexts.IEEE
Trans. PAMI, 24, 509–522.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vish-
wanathan, S. V. N., Smola, A. J., & Kriegel, H.-P.
(2005). Protein function prediction via graph kernels.
Bioinformatics, 21.

Caetano, T., Caelli, T., Schuurmans, D., & Barone, D.
(2006). Graphical models and point pattern matching.
IEEE Trans. PAMI, 28, 1646–1663.

Chapelle, O., Scḧolkopf, B., & Zien, A. (Eds.). (2006).
Semi-supervised learning (adaptive computation and
machine learning). MIT Press.

Diestel, R. (2005).Graph theory. Springer-Verlag.

Forsyth, D. A., & Ponce, J. (2003).Computer vision: A
modern approach. Prentice Hall.

Fröhlich, H., Wegner, J. K., Sieker, F., & Zell, A. (2005).
Optimal assignment kernels for attributed molecular
graphs.Proc. ICML.

Grauman, K., & Darrell, T. (2007). The pyramid match
kernel: Efficient learning with sets of features.J. Mach.
Learn. Res., 8, 725–760.

Harchaoui, Z., & Bach, F. (2007). Image classification with
segmentation graph kernels.Proc. CVPR.

Kashima, H., Tsuda, K., & Inokuchi, A. (2004). Kernels for
graphs.Kernel Methods in Comp. Biology. MIT Press.

Kondor, R. I., & Jebara, T. (2003). A kernel between sets
of vectors.Proc. ICML.

Lauritzen, S. (1996).Graphical models. Oxford U. Press.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proc. IEEE, 86, 2278–2324.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.,
& Watkins, C. (2002). Text classification using string
kernels.J. Mach. Learn. Res., 2, 419–444.

Mahé, P., & Vert, J.-P. (2006).Graph kernels based on tree
patterns for molecules(Tech. report HAL-00095488).

Neuhaus, M., & Bunke, H. (2006). Edit distance based ker-
nel functions for structural pattern classification.Pattern
Recognition, 39, 1852–1863.

Parsana, M., Bhattacharyya, C., Bhattacharya, S., &
Ramakrishnan, K. R. (2008). Kernels on attributed
pointsets with applications.Adv. NIPS.

Qiu, J., Hue, M., Ben-Hur, A., Vert, J.-P., & Noble, W. S.
(2007). A structural alignment kernel for protein struc-
tures.Bioinformatics, 23, 1090–1098.

Ramon, J., & G̈artner, T. (2003). Expressivity versus ef-
ficiency of graph kernels.First International Workshop
on Mining Graphs, Trees and Sequences.

Shawe-Taylor, J., & Cristianini, N. (2004).Kernel methods
for pattern analysis. Cambridge Univ. Press.

Srihari, S. N., Yang, X., & Ball, G. R. (2007). Offline
Chinese handwriting recognition: A survey.Frontiers
of Computer Science in China.

Vert, J.-P. (2008). The optimal assignment kernel is not
positive definite(Tech. report HAL-00218278).

Vert, J.-P., Saigo, H., & Akutsu, T. (2004). Local align-
ment kernels for biological sequences.Kernel Methods
in Comp. Biology. MIT Press.

Vishwanathan, S. V. N., Borgwardt, K. M., & Schraudolph,
N. (2007). Fast computation of graph kernels.Adv. NIPS.

