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Abstract

The problem of learning a sparse conic combination of kefuradtions

or kernel matrices for classification or regression can Iésged via the
regularization by a block 1-norm [1]. In this paper, we presan al-

gorithm that computes the entire regularization path feséhproblems.
The path is obtained by using numerical continuation teges, and
involves a running time complexity that is a constant tinfesdcomplex-
ity of solving the problem for one value of the regularizatjparameter.
Working in the setting of kernel linear regression and kelogistic re-

gression, we show empirically that the effect of the blockotm reg-

ularization differs notably from the (non-block) 1-normgtdarization

commonly used for variable selection, and that the regzdéidn path is
of particular value in the block case.

1 Introduction

Kernel methods provide efficient tools for nonlinear leagnproblems such as classifica-
tion or regression. Given a learning problem, two majorddaked by practitioners are to
find an appropriate kernel and to understand how regulasizaffects the solution and its

performance. This paper addresses both of these issués thighsupervised learning set-
ting by combining three themes from recent statistical nreclearning research, namely
multiple kernel learning [2, 3, 1], computation of regutation paths [4, 5], and the use of
path following methods [6].

The problem of learning the kernel from data has recentlgived substantial attention,
and several formulations have been proposed that involtimization over the conic struc-
ture of the space of kernels [2, 1, 3]. In this paper we follber$pecific formulation of [1],
who showed that learning a conic combination of basis kerisetquivalent to regularizing
the original supervised learning problem by a weighted lblbmorm (see Section 2.2 for
further details). Thus, by solving a single convex optirtima problem, the coefficients
of the conic combination of kernels and the values of therpatars (the dual variables)
are obtained. Given the basis kernels and their coeffici¢dse is one free parameter
remaining—the regularization parameter.

Kernel methods are nonparametric methods, and thus rézatlan plays a crucial role in
their behavior. In order to understand a nonparametric aaktim particular complex non-



parametric methods such as those considered in this paisarseful to be able to consider
the entire path of regularization, that is, the set of sohgifor all values of the regulariza-
tion parameter [7, 4]. Moreover, if it is relatively cheamgoutationally to compute this

path, then it may be of practical value to compute the pathaasiard practice in fitting a

model. This would seem particularly advisable in cases iithivperformance can display
local minima along the regularization path. In such caseesidaird local search methods
may yield unnecessarily poor performance.

For least-squares regression with a 1-norm penalty or #ostipport vector machine, there
exist efficient computational techniques to explore thaulaigation path [4, 5]. These
techniques exploit the fact that for these problems the iggitecewise linear. In this paper
we consider the extension of these techniques to the maiktginel learning problem. As
we will show (in Section 3), in this setting the path is no lengiecewise linear. It is,
however, piecewise smooth, and we are able to follow it bpgisiumerical continuation
techniques [8, 6]. To do this in a computationally efficietywwe invoke logarithmic bar-
rier techniques analogous to those used in interior poirthaus for convex optimization
(see Section 3.3). As we shall see, the complexity of ourrdlgos essentially depends
on the number of “kinks” in the path, i.e., the number of dig@wuity points of the deriva-
tive. Our experiments suggest that the number of those kikbvays less than a small
constant times the number of basis kernels. The empiricapéexity of our algorithm is
thus a constant times the complexity of solving the problemgiinterior point methods
for one value of the regularization parameter (see SectibfioB details).

In Section 4, we present simulation experiments for clasgifin and regression problems,
using a large set of basis kernels based on the most widedykaseels (linear, polynomial,
Gaussian). In particular, we show empirically that the nandf kernels in the conic com-
bination is not a monotonic function of the amount of regaktion. This contrasts with
the simpler non-block 1-norm case for variable selectian,(blocks of size one [4]), where
the number of variables is usually monotonic (or nearly $bus the need to compute full
regularization paths is particularly acute in our more ctaxfblock 1-norm regularization)
case.

2 Block 1-norm regularization

In this section we review the block 1-norm regularizatioanfiework of [1] as it applies
to differentiable loss functions. To provide necessarykbeaund we begin with a short
review of classical 2-norm regularization.

2.1 Classical 2-norm regularization

Primal formulation  We consider the general regularized learning optimizagitob-
lem [7], where the data;, i = 1,...,n, belong to thenput space X' , andy;,i =1,...,n
are theresponses (lying either in{—1,1} for classification oiR for regression). We map
the data into deature space F throughz — ®(z). The kernel associated with this feature
map is denoted(z,y) = ®(z) " ®(y). The optimization problem is the followifg

mingere > L(yi, w’ @ (2:)) + 3wl €h)

where) > 0 is a regularization parameter afja|| is the 2-norm ofw, defined agjw|| =
(wTw)'/2. The loss functiorf is any function fromR x R to R. In this paper, we focus
on loss functions that are strictly convex and twice cordiraly differentiable in their
second argument. Let;(v), v € R, be the Fenchel conjugate [9] of the convex function
@i(u) = £(y;,u), defined as);(v) = max,er(vu — @;(u)). Since we have assumed that

We omit the intercept as it can be included by adding the constant varigbé ® 1 to each
feature vecto®(x;).



¢ is strictly convex and differentiable, the maximum definifidv) is attained at a unique
point equal toy}(v) (possibly equal tot-co or —oo). The functiony;(v) is then strictly
convex and twice differentiable in its domain.

In particular, we have the following examples in mind: feast-squares regression, we
havey;(u) = 1(y; — u)? andy;(v) = 3v% + vy;, while for logistic regression, we have
vi(u) = log(1+exp(—y;u;)), wherey; € {—1,1}, andy; (v) = (1 +vy;) log(1 + vy;) —
vy; log(—wvy;) if vy; € (—1,0), 400 otherwise.

Dual formulation and optimality conditions  The Lagrangian for problem (1) is
Lw,u,0) =Y, @i(wi) + gllw]]> =AY, ai(u; — wT ()

and is minimized with respect @ andw with w = — >, a;®(x;). The dual problem is
then
maXeqecRrn (_ Zz 1/11()\0%) - %QTKQ) ) (2)

whereK € R™*" is the kernel matrix of the points, i.€s,;, = k(z4,xp). The optimality
condition for the dual variable is then:

Vi, (Ka); +vi(Aa;) = 0 @3)

2.2 Block 1-norm regularization

In this paper, we map the input spatdo m different feature spaces,, . ..., F,,, through
m feature mapsp,(z), ..., 2, (x). We now haven different variablesv; € F;, j =
1,...,m. We use the notatio®(z) = (®1(x),..., P (z)) andw = (wy,...,w,,), and
from now on, we use the implicit convention that the inde&nges over data points (from
1 ton), while the indexj ranges over kernels/feature spaces (ftotm m).

Letd;, j = 1,...,m, be weights associated with each kernel. We will see in Sedthow
these should be linked to the rank of the kernel matricedoWaig [1], we consider the fol-
lowing problem with weighted block 1-norm regularizatiqwhere||w;|| = (ijwj)l/2
still denotes th@-norm ofw;):

Millye 7y xnx F 2 Pi(W ! P(25)) + A D05 dj[wy]]. 4

The problem (4) is a convex problem, but not differentialie order to derive optimal-
ity conditions, we can reformulate it with conic constraiaind derive the following dual
problem (we omit details for brevity) [9, 1]:

max, — Y, ¥i(Aa;) such thatVj,a’ Ko < d? (5)

where K; is the kernel matrix associated with kernet;, i.e., defined agkj;),, =
k;(zq, ). From the KKT conditions for problem Eq. (5), we obtain tha¢ dual vari-
ablea is optimal if and only if there exists € R™ such that; > 0 and

Vi, (32, niKa)i + ¥i(Aag) =0 (6)
V7, aTKjoz < d?,nj > 0777j(dz2 — aTKja) =0.
We can go back and forth between optimaland o by w = —ADiag(n) >, a;x; or
1, T
a; = yoi(w ' x;).

We see that the solution of Eq. (5) can be obtained by using thel kernel matriceds;
(i.e., this is indeed a kernel machine) and that the optirohltion of the blockl-norm

2In [1], the square of the block 1-norm was used. However, whenrttieeeegularization path is
sought, itis easy to show that the two problems are equivalent. Thetadesof the current formula-
tion is that when the blocks are of size one the problem reduces to clakssioa regularization [4].
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Figure 1. (Left) Geometric interpretation of the dual peshlin Eq. (5) for linear regres-
sion; see text for details. (Right) Predictor-correctgoaithm.

problem in Eq. (5), with optimality conditions in Eq. (6),tise solution of the regular 2-
norm problem in Eq. (2) with kernél’ = Zj n; K ;. Thus, with this formulation, we learn
the coefficients of the conic combination of kernels as welihe dual variables [1]. As
shown in [1], the conic combination is sparse, i.e., manhefdoefficients); are equal to
zero.

2.3 Geometric interpretation of dual problem

Each functiony; is strictly convex, with a strict minimum a$; defined byy.(3;) = 0
(for least-squares regression we haye= —y;, and for the logistic regression we have
B; = —y;/2). The negated dual objectiVe’, ¥;(A«;) is thus a metric between and
B/ (for least-squares regression, this is simply the squaigtdrte while for logistic
regression, this is an entropy distance). Therefore, tla¢ ghoblem aims to minimize a
metric betweerv and thetarget 3/, under the constraint thatbelongs to an intersection
of m ellipsoids{c € R", o' Ko < d3 }.

When computing the regularization path from= +oo to A = 0, the target goes fror
to oo in the directions (see Figure 1). The geometric interpretation immediatelylies
that as long ag%ﬁTKjﬁ < d?, the active set is empty, the optimalis equal tog/A
and the optimaky is equal to 0. We thus initialize the path following techreqwith
A =max; (8" K;3/d?)"/* anda = 3/\.

3 Building the regularization path

In this section, the goal is to vary from +oo (no regularization) td (full regulariza-
tion) and obtain a representation of the path of solutier(s\), n(A)). We will essentially
approximate the path by a piecewise linear function ef log(\).

3.1 Active set method

For the dual formulation Eq. (5)-Eq. (6), if the set of actienels7 («) is known, i.e., the
set of kernels that are such that K;a = d?, then the optimality conditions become

VieJ, o Kja=d; 7
V’L', (Zjej T]jKjOt)i + 1/1;()\041) =0
and they are valid as long & ¢ J, o' K;a < d7 andVj € J,7; > 0.

The path is thus piecewise smooth, with “kinks” at each paihere the active seff
changes. On each of the smooth sections, only those keriitblsngdex belonging tQ7
are used to define andr, through Eq. (7). When all blocks have size one, or equivBient
when all kernel matrices have rank one, then the path is phpimear in 1/ between
each kink [4] and is thus easy to follow. However, when thenkbmatrices have higher



rank, this is not the case and additional numerical teclesgure needed, which we now
present. In the regularized formulation we present in $a@i3, the optimal is a function
of «, and therefore we only have to follow the optinaglas a function o& = log()).

3.2 Following a smooth path using numerical continuation tehniques

In this section, we provide a brief review of path followirigcusing on predictor-corrector
methods [8]. We assume that the functiefr) € R? is defined implicitly by.J (a, o) = 0,
where J is C* from R%*! to R? ando is a real variable. Starting from a poiat, o
such thatJ(ag, 09) = 0, by the implicit function theorem, the solution is well defth
andC® if the differentialg—i € R4 s invertible. The derivative at, is then equal to

—1
92 (00) = — (5Z(aw,00))  9Z(w,00)-

In order to follow the curvex(o), the most effective numerical method is the predictor-
corrector method, which works as follows (see Figure 1):

o predictor step : from («yg, o) predict wherex(og + k) should be using the first order
expansion, i.e., taka; = A\g + h, a1 = ag + h%(ao) (note thath can be chosen
positive or negative, depending on the direction we wanbliow).

e corrector steps: (a1, 01) might not satisfy.J(ay,01) = 0, i.e., the tangent prediction
might (and generally will) leave the curvgo). In order to return to the curve, New-
ton’s method is used to solve the nonlinear system of equatio «) J(«, 1) = 0,
starting froma = «;. If h is small enough, then the Newton steps will converge
quadratically to a solutiorns of J(«, 01) = 0 [8].

Methods that do only one of the two steps are not as efficiesihgdonly predictor steps
is not stable and the algorithm leaves the path very quiekiereas doing only corrector
steps (with increasing) is essentially equivalent to seeding the optimizer foregi
with the solution for a previous, which is very inefficient in sections where the path is
close to linear. Predictor-corrector methods approxirtfagepath by a sequence of points
on that path, which can be joined to provide a piecewise tiaparoximation.

At first glance, in order to follow the piecewise smooth pdthtet is needed is to follow
each piece and detect when the active set changes, i.e, Wheén7,a ' K;a = d? or
35 € J, n; = 0. However this approach can be tricky numerically [8]. Wetéasl prefer
to use a numerical regularization technique that will (akenthe entire path smooth, (b)
make sure that the Newton steps are globally convergent@mell still enable us to use
only a subset of the kernels to define the path locally.

3.3 Numerical regularization

We borrow a classical regularization method from interioinp methods, in which a con-
strained problem is made unconstrained by using a convekdoger [9]. In the dual

formulation, we solve the following problem (note that weanose a min-problem and
we have divided by\2, which leaves the problem unchanged), wheris a fixed small

constant:

min, F(a, A) whereF(a, A) = 3, 51 (Aa;) — 45 > log(d? —a"K;a)  (8)

For A fixed, a — F(a, A) is C* and strictly convex in its domaifoy, Vj,a " K;a < d?},
and thus the global minimum is uniquely defined %g = 0. If we definen;(a) =
/(3 — aTKja), then we haveSE = $4i(Aa;) + 5 X2, m;(a)(Kja);, and thus, the
optimality condition for the problem with the log-barrieréxactly equivalent to the one in

Eq. (6). But now instead of having(d? —a' K;a) = 0 (which would define an optimal
solution of the numerically unregularized problem), Weeha)(di —a'K;a) = p. Any
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Figure 2: Examples of variation of along the regularization path for linear regression
(left) and logistic regression (right).
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dual-feasible variables and« (not necessarily linked through a functional relationhip
define primal-dual variables and the quanﬂ}Yd?—aTKja) is exactly theduality gap [9],
i.e., the difference between the primal and dual objectiVesis the parameterholds fixed
the duality gap we are willing to pay. In simulations, we ugeg 10~3.

We can apply the techniques of Section 3.2 to follow the pattla fixedu, for the variables

« only, sincen is now a function okx. The corrector steps, are not only Newton steps for
solving a system of nonlinear equations, they are also NeRi@phson steps to minimize
a strictly convex function, and are thus globally convetdéh

3.4 Path following algorithm

Our path following algorithm is simply a succession of pogaii-corrector steps, described
in Section 3.2, with/(«, o) = g—g(a,a) defined in Section 3.3, where = log()). The
initialization presented in Section 2.3 is used.

In Figure 2, we show simple examples of the values of the kemegghtsn along the
path for a toy problem with a small number of kernels, for lekdmear regression and
kernel logistic regression. It is worth noting that the wefgare not even approximately
monotonic functions of\; also the behavior of those weights agpproaches zero (or
grows unbounbed) is very specific: they become constantrfeat regression and they
grow up to infinity for logistic regression. In Section 4, weg/ (a) why these behaviors
occur and (b) what the consequences are regarding the parfioe of the multiple kernel
Iearnigg problem. In the remaining of this section, we revé®me important algorithmic
issues.

Step size selection A major issue in path following methods is the choice of thepét

if his too big, the predictor will end up very far from the path anany Newton steps have

to be performed, while ifi is too small, progress is too slow. We chose a simple adaptive
scheme where at each predictor step we select the biggesthat the predictor step stays

in the domainJ(a, o)| < €. The precision parameteris itself adapted at each iteration:

if the number of corrector steps at the previous iteratigréster than 8 thenis decreased
whereas if this number is less than 4, it is increased.

Running time complexity Between each kink, the path is smooth, thus there is a bounded
number of steps [8, 9]. Each of those steps has compléxity’ + mn?). We have
observed empirically that the overall number of those s&eP$m), thus the total empirical
complexity isO(mn? + m?n?). The complexity of solving the optimization problem in
Eq. (5) using an interior point method for only one value @& thgularization parameter is
O(mn?) [2], thus if m < n, the empirical complexity of our algorithm, which yieldseth
entire regularization path, is a constant times the conifglex obtaining only one point in

the path using an interior point method. This makes inteitignse, as both methods follow

a path, by varying: in the case of the interior point method, and by varylig our case.

The difference is that every point along our path is meanihgiot just the destination.

3A Matlab implementation can be downloaded framvw.cs.berkeley.edu/fbach
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Figure 3: Varying the weightg&l;): (left) classification on the Liver dataset, (right) regres
sion on the Boston dataset ; for each dataset, two differ@oes ofy, (left) v = 0 and
(right) v = 1. (Top) training set accuracy in bold, testing set accura@eished, (bottom)
number of kernels in the conic combination.

Efficient implementation Because of our numerical regularization, none ofijjis are
equal to zero (in fact eachy is lower bounded b)&/d?) We thus would have to use all
kernels when computing the various derivatives. We circembthis by truncating thosg
that are close to their lower bound to zero: we thus only us&éhnels that are numerically
present in the combination.

Second-order predictor step The implicit function theorem also allows to compute
derivative of the path of higher orders. By using a secort&oapproximation of the path,
we can reduce significantly the number of predictor-comesteps required for the path.

4 Simulations

We have performed simulations on the Boston dataset (r€igresl3 variables, 506 data
points) and Liver dataset (classification, 6 variables, @4ta points) from the UCI reposi-
tory, with the following kernels: linear kernel on all vabias, linear kernels on single vari-
ables, polynomial kernels (with 4 different orders), Gaas&ernels on all variables (with
7 different kernel widths), Gaussian kernels on subsetsinébles (also with 7 different
kernel widths), and the identity matrix. This makid$) kernels for the Boston dataset and
54 for the Liver dataset. All kernel matrices were normalizedit trace.

Intuitively, the regular|zat|on weight; for kernel K; should be an increasing function of
the rank ofK;, i.e., we should penalize more feature spaces of higherrdiifoes. In order

to explore the effect of; on performance, we séi as follows: we compute the number
p; of eigenvalues ofs; that are greater thagl- (remember that because of the unit trace
constraint, these eigenvalues sum to 1), and we take= p}. If v =0, then alld;’s are
equal to one, and whepnincreases, kernel matrices of high rank such as the identtyix
have relatively higher weights, noting that a higher weigiylies a heavier regularization.

In Figure 3, for the Boston and liver datasets, we plot the lmemof kernels in the conic
combination as well as the training and testing errors;fer 0 andy = 1. We can make
the following simple observations:

Number of kernels The number of kernels present in the sparse conic combmatio
is a non monotonic function of the regularization paramet&hen the blocks are one-
dimensional, a situation equivalent to variable seleatigh a 1-norm penalty, this number
is usually a nearly monotonic function of the regularizatmarameter [4].

Local minima  Validation set performance may exhibit local minima, angstalgorithms



based on hill-climbing might exhibit poor performance byrigetrapped in a local mini-
mum, whereas our approach where we compute the entire patld aweoid that.

Behavior for small A For all values ofy, as\ goes to zero, the number of kernels remains
the same, the training error goes to zero, while the testirgy eemains constant. What
changes when changes is the value ofat which this behavior appears; in particular, for
small values ofy, it happens before the testing error goes back up, leadiag tmusual
validation performance curve (an usual cross-validationewould diverge to large values
when the regularization parameter goes to zero). It is thusia to use weightd; that
grow with the “size” of the kernel, and not simply constant.

This behavior can be confirmed by a detailed analysis of thienajity conditions, which
show that if one of the kernel has a flat spectrum (such as #rgiig matrix), then, as
goes to zerog tends to a limity) tends to a limit for linear regression and goes to infinity
aslog(1/X) for logistic regression. Also, once in that limiting reginthe training error
goes to zero quickly, while the testing error remains contsta

5 Conclusion

We have presented an algorithm to compute entire regutemizpaths for the problem
of multiple kernel learning. Empirical results using thigaithm have provided us with
insight into the effect of regularization for such problerrsparticular we showed that the
behavior of the block 1-norm regularization differs notablbm traditional (non-block)

1-norm regularization.

As presented, the empirical results suggest that our #fgorscales quadratically in the
number of kernels, but cubically in the number of data poiltdeed, the main computa-
tional burden (for both predictor and corrector steps) ésitiversion of a Hessian. In order
to make the computation of entire paths efficient for prold@molving a large number of
data points, we are currently investigating inverse Hessglating, a technique which is
commonly used in quasi-Newton methods [10].
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