
Computing regularization paths
for learning multiple kernels

Francis R. Bach & Romain Thibaux
Computer Science

University of California
Berkeley, CA 94720

{fbach,thibaux}@cs.berkeley.edu

Michael I. Jordan
Computer Science and Statistics

University of California
Berkeley, CA 94720

jordan@cs.berkeley.edu

Abstract

The problem of learning a sparse conic combination of kernelfunctions
or kernel matrices for classification or regression can be achieved via the
regularization by a block 1-norm [1]. In this paper, we present an al-
gorithm that computes the entire regularization path for these problems.
The path is obtained by using numerical continuation techniques, and
involves a running time complexity that is a constant times the complex-
ity of solving the problem for one value of the regularization parameter.
Working in the setting of kernel linear regression and kernel logistic re-
gression, we show empirically that the effect of the block 1-norm reg-
ularization differs notably from the (non-block) 1-norm regularization
commonly used for variable selection, and that the regularization path is
of particular value in the block case.

1 Introduction

Kernel methods provide efficient tools for nonlinear learning problems such as classifica-
tion or regression. Given a learning problem, two major tasks faced by practitioners are to
find an appropriate kernel and to understand how regularization affects the solution and its
performance. This paper addresses both of these issues within the supervised learning set-
ting by combining three themes from recent statistical machine learning research, namely
multiple kernel learning [2, 3, 1], computation of regularization paths [4, 5], and the use of
path following methods [6].

The problem of learning the kernel from data has recently received substantial attention,
and several formulations have been proposed that involve optimization over the conic struc-
ture of the space of kernels [2, 1, 3]. In this paper we follow the specific formulation of [1],
who showed that learning a conic combination of basis kernels is equivalent to regularizing
the original supervised learning problem by a weighted block 1-norm (see Section 2.2 for
further details). Thus, by solving a single convex optimization problem, the coefficients
of the conic combination of kernels and the values of the parameters (the dual variables)
are obtained. Given the basis kernels and their coefficients, there is one free parameter
remaining—the regularization parameter.

Kernel methods are nonparametric methods, and thus regularization plays a crucial role in
their behavior. In order to understand a nonparametric method, in particular complex non-



parametric methods such as those considered in this paper, it is useful to be able to consider
the entire path of regularization, that is, the set of solutions for all values of the regulariza-
tion parameter [7, 4]. Moreover, if it is relatively cheap computationally to compute this
path, then it may be of practical value to compute the path as standard practice in fitting a
model. This would seem particularly advisable in cases in which performance can display
local minima along the regularization path. In such cases, standard local search methods
may yield unnecessarily poor performance.

For least-squares regression with a 1-norm penalty or for the support vector machine, there
exist efficient computational techniques to explore the regularization path [4, 5]. These
techniques exploit the fact that for these problems the pathis piecewise linear. In this paper
we consider the extension of these techniques to the multiple kernel learning problem. As
we will show (in Section 3), in this setting the path is no longer piecewise linear. It is,
however, piecewise smooth, and we are able to follow it by using numerical continuation
techniques [8, 6]. To do this in a computationally efficient way, we invoke logarithmic bar-
rier techniques analogous to those used in interior point methods for convex optimization
(see Section 3.3). As we shall see, the complexity of our algorithms essentially depends
on the number of “kinks” in the path, i.e., the number of discontinuity points of the deriva-
tive. Our experiments suggest that the number of those kinksis always less than a small
constant times the number of basis kernels. The empirical complexity of our algorithm is
thus a constant times the complexity of solving the problem using interior point methods
for one value of the regularization parameter (see Section 3.4 for details).

In Section 4, we present simulation experiments for classification and regression problems,
using a large set of basis kernels based on the most widely used kernels (linear, polynomial,
Gaussian). In particular, we show empirically that the number of kernels in the conic com-
bination is not a monotonic function of the amount of regularization. This contrasts with
the simpler non-block 1-norm case for variable selection (i.e., blocks of size one [4]), where
the number of variables is usually monotonic (or nearly so).Thus the need to compute full
regularization paths is particularly acute in our more complex (block 1-norm regularization)
case.

2 Block 1-norm regularization

In this section we review the block 1-norm regularization framework of [1] as it applies
to differentiable loss functions. To provide necessary background we begin with a short
review of classical 2-norm regularization.

2.1 Classical 2-norm regularization

Primal formulation We consider the general regularized learning optimizationprob-
lem [7], where the dataxi, i = 1, . . . , n, belong to theinput space X , andyi, i = 1, . . . , n
are theresponses (lying either in{−1, 1} for classification orR for regression). We map
the data into afeature space F throughx 7→ Φ(x). The kernel associated with this feature
map is denotedk(x, y) = Φ(x)>Φ(y). The optimization problem is the following1:

minw∈Rp

∑n
i=1

`(yi, w
>Φ(xi)) + λ

2
||w||2, (1)

whereλ > 0 is a regularization parameter and||w|| is the 2-norm ofw, defined as||w|| =
(w>w)1/2. The loss functioǹ is any function fromR × R to R. In this paper, we focus
on loss functions that are strictly convex and twice continuously differentiable in their
second argument. Letψi(v), v ∈ R, be the Fenchel conjugate [9] of the convex function
ϕi(u) = `(yi, u), defined asψi(v) = maxu∈R(vu − ϕi(u)). Since we have assumed that

1We omit the intercept as it can be included by adding the constant variable equal to 1 to each
feature vectorΦ(xi).



` is strictly convex and differentiable, the maximum definingψi(v) is attained at a unique
point equal toψ′

i(v) (possibly equal to+∞ or −∞). The functionψi(v) is then strictly
convex and twice differentiable in its domain.

In particular, we have the following examples in mind: forleast-squares regression, we
haveϕi(u) = 1

2
(yi − u)2 andψi(v) = 1

2
v2 + vyi, while for logistic regression, we have

ϕi(u) = log(1+exp(−yiui)), whereyi ∈ {−1, 1}, andψi(v) = (1+ vyi) log(1+ vyi)−
vyi log(−vyi) if vyi ∈ (−1, 0), +∞ otherwise.

Dual formulation and optimality conditions The Lagrangian for problem (1) is

L(w, u, α) =
∑

i ϕi(ui) + λ
2
||w||2 − λ

∑

i αi(ui − w>Φ(xi))

and is minimized with respect tou andw with w = −
∑

i αiΦ(xi). The dual problem is
then

maxα∈Rn

(

−
∑

i ψi(λαi) −
λ
2
α>Kα

)

, (2)

whereK ∈ R
n×n is the kernel matrix of the points, i.e.,Kab = k(xa, xb). The optimality

condition for the dual variableα is then:

∀i, (Kα)i + ψ′
i(λαi) = 0 (3)

2.2 Block 1-norm regularization

In this paper, we map the input spaceX tom different feature spacesF1, . . . ,Fm, through
m feature mapsΦ1(x), . . . ,Φm(x). We now havem different variableswj ∈ Fj , j =
1, . . . ,m. We use the notationΦ(x) = (Φ1(x), . . . ,Φm(x)) andw = (w1, . . . , wm), and
from now on, we use the implicit convention that the indexi ranges over data points (from
1 ton), while the indexj ranges over kernels/feature spaces (from1 tom).

Let dj , j = 1, . . . ,m, be weights associated with each kernel. We will see in Section 4 how
these should be linked to the rank of the kernel matrices. Following [1], we consider the fol-
lowing problem with weighted block 1-norm regularization2 (where||wj || = (w>

j wj)
1/2

still denotes the2-norm ofwj):

minw∈F1×···×Fm

∑

i ϕi(w
>Φ(xi)) + λ

∑

j dj ||wj ||. (4)

The problem (4) is a convex problem, but not differentiable.In order to derive optimal-
ity conditions, we can reformulate it with conic constraints and derive the following dual
problem (we omit details for brevity) [9, 1]:

maxα −
∑

i ψi(λαi) such that∀j, α>Kjα 6 d2
j (5)

whereKj is the kernel matrix associated with kernelkj , i.e., defined as(Kj)ab =
kj(xa, xb). From the KKT conditions for problem Eq. (5), we obtain that the dual vari-
ableα is optimal if and only if there existsη ∈ R

m such thatη > 0 and

∀i, (
∑

j ηjKjα)i + ψ′
i(λαi) = 0 (6)

∀j, α>Kjα 6 d2
j , ηj > 0, ηj(d

2
i − α>Kjα) = 0.

We can go back and forth between optimalw andα by w = −λDiag(η)
∑

i αixi or
αi = 1

λϕ
′
i(w

>xi).

We see that the solution of Eq. (5) can be obtained by using only the kernel matricesKj

(i.e., this is indeed a kernel machine) and that the optimal solution of the block1-norm

2In [1], the square of the block 1-norm was used. However, when the entire regularization path is
sought, it is easy to show that the two problems are equivalent. The advantage of the current formula-
tion is that when the blocks are of size one the problem reduces to classical1-norm regularization [4].
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Figure 1: (Left) Geometric interpretation of the dual problem in Eq. (5) for linear regres-
sion; see text for details. (Right) Predictor-corrector algorithm.

problem in Eq. (5), with optimality conditions in Eq. (6), isthe solution of the regular 2-
norm problem in Eq. (2) with kernelK =

∑

j ηjKj . Thus, with this formulation, we learn
the coefficients of the conic combination of kernels as well as the dual variablesα [1]. As
shown in [1], the conic combination is sparse, i.e., many of the coefficientsηj are equal to
zero.

2.3 Geometric interpretation of dual problem

Each functionψi is strictly convex, with a strict minimum atβi defined byψ′
i(βi) = 0

(for least-squares regression we haveβi = −yi, and for the logistic regression we have
βi = −yi/2). The negated dual objective

∑

i ψi(λαi) is thus a metric betweenα and
β/λ (for least-squares regression, this is simply the squared distance while for logistic
regression, this is an entropy distance). Therefore, the dual problem aims to minimize a
metric betweenα and thetarget β/λ, under the constraint thatα belongs to an intersection
of m ellipsoids{α ∈ R

n, α>Kjα 6 d2
j}.

When computing the regularization path fromλ = +∞ to λ = 0, the target goes from0
to ∞ in the directionβ (see Figure 1). The geometric interpretation immediately implies
that as long as1

λ2 β
>Kjβ 6 d2

j , the active set is empty, the optimalα is equal toβ/λ
and the optimalw is equal to 0. We thus initialize the path following technique with
λ = maxj(β

>Kjβ/d
2
j )

1/2 andα = β/λ.

3 Building the regularization path

In this section, the goal is to varyλ from +∞ (no regularization) to0 (full regulariza-
tion) and obtain a representation of the path of solutions(α(λ), η(λ)). We will essentially
approximate the path by a piecewise linear function ofσ = log(λ).

3.1 Active set method

For the dual formulation Eq. (5)-Eq. (6), if the set of activekernelsJ (α) is known, i.e., the
set of kernels that are such thatα>Kjα = d2

j , then the optimality conditions become

∀j ∈ J , α>Kjα = d2
j (7)

∀i, (
∑

j∈J
ηjKjα)i + ψ′

i(λαi) = 0

and they are valid as long as∀j /∈ J , α>Kjα 6 d2
j and∀j ∈ J , ηj > 0.

The path is thus piecewise smooth, with “kinks” at each pointwhere the active setJ
changes. On each of the smooth sections, only those kernels with index belonging toJ
are used to defineα andη, through Eq. (7). When all blocks have size one, or equivalently
when all kernel matrices have rank one, then the path is provably linear in 1/λ between
each kink [4] and is thus easy to follow. However, when the kernel matrices have higher



rank, this is not the case and additional numerical techniques are needed, which we now
present. In the regularized formulation we present in Section 3.3, the optimalη is a function
of α, and therefore we only have to follow the optimalα, as a function ofσ = log(λ).

3.2 Following a smooth path using numerical continuation techniques

In this section, we provide a brief review of path following,focusing on predictor-corrector
methods [8]. We assume that the functionα(σ) ∈ R

d is defined implicitly byJ(α, σ) = 0,
whereJ is C∞ from R

d+1 to R
d andσ is a real variable. Starting from a pointα0, σ0

such thatJ(α0, σ0) = 0, by the implicit function theorem, the solution is well defined
andC∞ if the differential ∂J

∂α ∈ R
d×d is invertible. The derivative atσ0 is then equal to

dα
dσ (σ0) = −

(

∂J
∂α (α0, σ0)

)−1 ∂J
∂σ (α0, σ0).

In order to follow the curveα(σ), the most effective numerical method is the predictor-
corrector method, which works as follows (see Figure 1):

• predictor step : from (α0, σ0) predict whereα(σ0 + h) should be using the first order
expansion, i.e., takeλ1 = λ0 + h, α1 = α0 + hdα

dσ (σ0) (note thath can be chosen
positive or negative, depending on the direction we want to follow).

• corrector steps : (α1, σ1) might not satisfyJ(α1, σ1) = 0, i.e., the tangent prediction
might (and generally will) leave the curveα(σ). In order to return to the curve, New-
ton’s method is used to solve the nonlinear system of equations (inα) J(α, σ1) = 0,
starting fromα = α1. If h is small enough, then the Newton steps will converge
quadratically to a solutionα2 of J(α, σ1) = 0 [8].

Methods that do only one of the two steps are not as efficient: doing only predictor steps
is not stable and the algorithm leaves the path very quickly,whereas doing only corrector
steps (with increasingσ) is essentially equivalent to seeding the optimizer for a givenσ
with the solution for a previousσ, which is very inefficient in sections where the path is
close to linear. Predictor-corrector methods approximatethe path by a sequence of points
on that path, which can be joined to provide a piecewise linear approximation.

At first glance, in order to follow the piecewise smooth path all that is needed is to follow
each piece and detect when the active set changes, i.e, when∃j /∈ J , α>Kjα = d2

j or
∃j ∈ J , ηj = 0. However this approach can be tricky numerically [8]. We instead prefer
to use a numerical regularization technique that will (a) make the entire path smooth, (b)
make sure that the Newton steps are globally convergent, and(c) will still enable us to use
only a subset of the kernels to define the path locally.

3.3 Numerical regularization

We borrow a classical regularization method from interior point methods, in which a con-
strained problem is made unconstrained by using a convex log-barrier [9]. In the dual
formulation, we solve the following problem (note that we now use a min-problem and
we have divided byλ2, which leaves the problem unchanged), whereµ is a fixed small
constant:

minα F (α, λ) whereF (α, λ) =
∑

i
1

λ2ψi(λαi) −
µ
2λ

∑

j log(d2
j − α>Kjα) (8)

Forλ fixed,α 7→ F (α, λ) isC∞ and strictly convex in its domain{α, ∀j, α>Kjα < d2
j},

and thus the global minimum is uniquely defined by∂F
∂α = 0. If we defineηj(α) =

µ/(d2
j − α>Kjα), then we have∂F

∂αi
= 1

λψ
′
i(λαi) + 1

λ

∑

j ηj(α)(Kjα)i, and thus, the
optimality condition for the problem with the log-barrier is exactly equivalent to the one in
Eq. (6). But now instead of havingηj(d

2
j − α>Kjα) = 0 (which would define an optimal

solution of the numerically unregularized problem), we have ηj(d
2
j − α>Kjα) = µ. Any
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Figure 2: Examples of variation ofη along the regularization path for linear regression
(left) and logistic regression (right).

dual-feasible variablesη andα (not necessarily linked through a functional relationship)
define primal-dual variables and the quantityηj(d

2
j−α

>Kjα) is exactly theduality gap [9],
i.e., the difference between the primal and dual objectives. Thus the parameterµ holds fixed
the duality gap we are willing to pay. In simulations, we usedµ = 10−3.

We can apply the techniques of Section 3.2 to follow the path for a fixedµ, for the variables
α only, sinceη is now a function ofα. The corrector steps, are not only Newton steps for
solving a system of nonlinear equations, they are also Newton-Raphson steps to minimize
a strictly convex function, and are thus globally convergent [9].

3.4 Path following algorithm

Our path following algorithm is simply a succession of predictor-corrector steps, described
in Section 3.2, withJ(α, σ) = ∂F

∂α (α, σ) defined in Section 3.3, whereσ = log(λ). The
initialization presented in Section 2.3 is used.

In Figure 2, we show simple examples of the values of the kernel weights η along the
path for a toy problem with a small number of kernels, for kernel linear regression and
kernel logistic regression. It is worth noting that the weights are not even approximately
monotonic functions ofλ; also the behavior of those weights asλ approaches zero (orσ
grows unbounbed) is very specific: they become constant for linear regression and they
grow up to infinity for logistic regression. In Section 4, we show (a) why these behaviors
occur and (b) what the consequences are regarding the performance of the multiple kernel
learning problem. In the remaining of this section, we review some important algorithmic
issues3.

Step size selection A major issue in path following methods is the choice of the steph:
if h is too big, the predictor will end up very far from the path andmany Newton steps have
to be performed, while ifh is too small, progress is too slow. We chose a simple adaptive
scheme where at each predictor step we select the biggesth so that the predictor step stays
in the domain|J(α, σ)| 6 ε. The precision parameterε is itself adapted at each iteration:
if the number of corrector steps at the previous iteration isgreater than 8 thenε is decreased
whereas if this number is less than 4, it is increased.

Running time complexity Between each kink, the path is smooth, thus there is a bounded
number of steps [8, 9]. Each of those steps has complexityO(n3 + mn2). We have
observed empirically that the overall number of those stepsisO(m), thus the total empirical
complexity isO(mn3 + m2n2). The complexity of solving the optimization problem in
Eq. (5) using an interior point method for only one value of the regularization parameter is
O(mn3) [2], thus ifm 6 n, the empirical complexity of our algorithm, which yields the
entire regularization path, is a constant times the complexity of obtaining only one point in
the path using an interior point method. This makes intuitive sense, as both methods follow
a path, by varyingµ in the case of the interior point method, and by varyingλ in our case.
The difference is that every point along our path is meaningful, not just the destination.

3A Matlab implementation can be downloaded fromwww.cs.berkeley.edu/˜fbach .
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Figure 3: Varying the weights(dj): (left) classification on the Liver dataset, (right) regres-
sion on the Boston dataset ; for each dataset, two different values ofγ, (left) γ = 0 and
(right) γ = 1 . (Top) training set accuracy in bold, testing set accuracy in dashed, (bottom)
number of kernels in the conic combination.

Efficient implementation Because of our numerical regularization, none of theηj ’s are
equal to zero (in fact eachηj is lower bounded byµ/d2

j ). We thus would have to use all
kernels when computing the various derivatives. We circumvent this by truncating thoseηj

that are close to their lower bound to zero: we thus only use the kernels that are numerically
present in the combination.

Second-order predictor step The implicit function theorem also allows to compute
derivative of the path of higher orders. By using a second-order approximation of the path,
we can reduce significantly the number of predictor-corrector steps required for the path.

4 Simulations

We have performed simulations on the Boston dataset (regression, 13 variables, 506 data
points) and Liver dataset (classification, 6 variables, 345data points) from the UCI reposi-
tory, with the following kernels: linear kernel on all variables, linear kernels on single vari-
ables, polynomial kernels (with 4 different orders), Gaussian kernels on all variables (with
7 different kernel widths), Gaussian kernels on subsets of variables (also with 7 different
kernel widths), and the identity matrix. This makes110 kernels for the Boston dataset and
54 for the Liver dataset. All kernel matrices were normalized to unit trace.

Intuitively, the regularization weightdj for kernelKj should be an increasing function of
the rank ofKj , i.e., we should penalize more feature spaces of higher dimensions. In order
to explore the effect ofdj on performance, we setdj as follows: we compute the number
pj of eigenvalues ofKj that are greater than1

2n (remember that because of the unit trace
constraint, thesen eigenvalues sum to 1), and we takedj = pγ

j . If γ = 0, then alldj ’s are
equal to one, and whenγ increases, kernel matrices of high rank such as the identitymatrix
have relatively higher weights, noting that a higher weightimplies a heavier regularization.

In Figure 3, for the Boston and liver datasets, we plot the number of kernels in the conic
combination as well as the training and testing errors, forγ = 0 andγ = 1. We can make
the following simple observations:

Number of kernels The number of kernels present in the sparse conic combination
is a non monotonic function of the regularization parameter. When the blocks are one-
dimensional, a situation equivalent to variable selectionwith a 1-norm penalty, this number
is usually a nearly monotonic function of the regularization parameter [4].

Local minima Validation set performance may exhibit local minima, and thus algorithms



based on hill-climbing might exhibit poor performance by being trapped in a local mini-
mum, whereas our approach where we compute the entire path would avoid that.

Behavior for small λ For all values ofγ, asλ goes to zero, the number of kernels remains
the same, the training error goes to zero, while the testing error remains constant. What
changes whenγ changes is the value ofλ at which this behavior appears; in particular, for
small values ofγ, it happens before the testing error goes back up, leading toan unusual
validation performance curve (an usual cross-validation curve would diverge to large values
when the regularization parameter goes to zero). It is thus crucial to use weightsdj that
grow with the “size” of the kernel, and not simply constant.

This behavior can be confirmed by a detailed analysis of the optimality conditions, which
show that if one of the kernel has a flat spectrum (such as the identity matrix), then, asλ
goes to zero,α tends to a limit,η tends to a limit for linear regression and goes to infinity
as log(1/λ) for logistic regression. Also, once in that limiting regime, the training error
goes to zero quickly, while the testing error remains constant.

5 Conclusion

We have presented an algorithm to compute entire regularization paths for the problem
of multiple kernel learning. Empirical results using this algorithm have provided us with
insight into the effect of regularization for such problems. In particular we showed that the
behavior of the block 1-norm regularization differs notably from traditional (non-block)
1-norm regularization.

As presented, the empirical results suggest that our algorithm scales quadratically in the
number of kernels, but cubically in the number of data points. Indeed, the main computa-
tional burden (for both predictor and corrector steps) is the inversion of a Hessian. In order
to make the computation of entire paths efficient for problems involving a large number of
data points, we are currently investigating inverse Hessian updating, a technique which is
commonly used in quasi-Newton methods [10].
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