
Supervised learning for computer vision:

Theory and algorithms - Part II

Francis Bach1 & Jean-Yves Audibert2,1

1. INRIA - Ecole Normale Supérieure

2. ENPC

ECCV Tutorial - Marseille, 2008



Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f ∈ F :

n
∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

– Loss

– Function space / norm



Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

• Kernels and representer theorem

• Convex duality and optimization

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Multiple kernel learning

• Theoretical results

• Other extensions



Losses for regression (Shawe-Taylor and Cristianini, 2004)

• Response: y ∈ R, prediction ŷ = f(x),

– quadratic (square) loss ℓ(y, f(x)) = 1
2(y − f(x))2

– Not many reasons to go beyond square loss!
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Losses for regression (Shawe-Taylor and Cristianini, 2004)

• Response: y ∈ R, prediction ŷ = f(x),

– quadratic (square) loss ℓ(y, f(x)) = 1
2(y − f(x))2

– Not many reasons to go beyond square loss!

• Other convex losses “with added benefits”

– ε-insensitive loss ℓ(y, f(x)) = (|y − f(x)| − ε)+
– Hüber loss (mixed quadratic/linear): robustness to outliers
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Losses for classification (Shawe-Taylor and Cristianini, 2004)

• Label : y ∈ {−1, 1}, prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f(x)) = ℓ(yf(x))

– “True” cost: ℓ(yf(x)) = 1yf(x)<0

– Usual convex costs:
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• Differences between hinge and logistic loss: differentiability/sparsity



Image annotation ⇒ multi-class classification



Losses for multi-label classification (Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes

– “one-vs-rest” : learn k classifiers on the entire data

– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data



Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)
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Losses for multi-label classification (Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes

– “one-vs-rest” : learn k classifiers on the entire data

– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data

2. Dedicated loss functions for prediction using arg maxi∈{1,...,k} fi(x)

– Softmax regression: loss = − log(efy(x)/
∑k

i=1 e
fi(x))

– Multi-class SVM - 1: loss =
∑k

i=1(1 + fi(x)− fy(x))+
– Multi-class SVM - 2: loss = maxi∈{1,...,k}(1 + fi(x)− fy(x))+

• Strategies do not consider same predicting functions



Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)

3

2

1

3

2

1

• Dedicated loss function

3

2

1



Image retrieval ⇒ ranking



Image retrieval ⇒ outlier/novelty detection



Losses for ther tasks

• Outlier detection (Schölkopf et al., 2001; Vert and Vert, 2006)

– one-class SVM: learn only with positive examples

• Ranking

– simple trick: transform into learning on pairs (Herbrich et al.,

2000), i.e., predict {x > y} or {x 6 y}

– More general “structured output methods” (Joachims, 2002)

• General structured outputs

– Very active topic in machine learning and computer vision

– see, e.g., Taskar (2005)



Dealing with asymmetric cost or unbalanced data in

binary classification

• Two cases with similar issues:

– Asymmetric cost (e.g., spam filterting, detection)

– Unbalanced data, e.g., lots of positive examples (example:

detection)

• One number is not enough to characterize the asymmetric

properties

– ROC curves (Flach, 2003) – cf. precision-recall curves

• Training using asymmetric losses (Bach et al., 2006)

min
f∈F

C+

∑

i,yi=1

ℓ(yif(xi)) + C−

∑

i,yi=−1

ℓ(yif(xi)) + ‖f‖2



Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

• Kernels and representer theorem

• Convex duality and optimization

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Multiple kernel learning

• Theoretical results
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Regularizations

• Main goal: avoid overfitting (see earlier part of the tutorial)

• Two main lines of work:

1. Use Hilbertian (RKHS) norms

– Non parametric supervised learning and kernel methods

– Well developped theory (Schölkopf and Smola, 2001; Shawe-

Taylor and Cristianini, 2004; Wahba, 1990)

2. Use “sparsity inducing” norms

– main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|

– Perform model selection as well as regularization

– Theory “in the making”

• Goal of (this part of) the course: Understand how and when

to use these different norms



Kernel methods for machine learning

• Definition: given a set of objects X , a positive definite kernel is

a symmetric function k(x, x′) such that for all finite sequences of

points xi ∈ X and αi ∈ R,

∑

i,j αiαjk(xi, xj) > 0

(i.e., the matrix (k(xi, xj)) is symmetric positive semi-definite)

• Aronszajn theorem (Aronszajn, 1950): k is a positive definite

kernel if and only if there exists a Hilbert space F and a mapping

Φ : X 7→ F such that

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉H

• X = “input space”, F = “feature space”, Φ = “feature map”

• Functional view: reproducing kernel Hilbert spaces



Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Φ(x) = x

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Φ(x) = monomials

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)

– Φ(x) =??



Reproducing kernel Hilbert spaces

• Assume k is a positive definite kernel on X × X

• Aronszajn theorem (1950): there exists a Hilbert space F and a

mapping Φ : X 7→ F such that

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉H

• X = “input space”, F = “feature space”, Φ = “feature map”

• RKHS: particular instantiation of F as a function space

– Φ(x) = k(·, x)

– function evaluation f(x) = 〈f,Φ(x)〉

– reproducing property: k(x, y) = 〈k(·, x), k(·, y)〉

• Notations : f(x) = 〈f,Φ(x)〉 = f⊤Φ(x), ‖f‖2 = 〈f, f〉



Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)

– Smooth functions



Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)

– Smooth functions

• Parameter selection? Structured domain?



Regularization and representer theorem

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, kernel k (with RKHS F)

• Minimize with respect to f : min
f∈F

∑n
i=1 ℓ(yi, f

⊤Φ(xi)) + λ
2‖f‖

2

• No assumptions on cost ℓ or n

• Representer theorem (Kimeldorf and Wahba, 1971): optimum is

reached for weights of the form

f =
∑n

j=1αjΦ(xj) =
∑n

j=1αjk(·, xj)

• α ∈ R
n dual parameters, K ∈ R

n×n kernel matrix:

Kij = Φ(xi)
⊤Φ(xj) = k(xi, xj)

• Equivalent problem: minα∈Rn
∑n

i=1 ℓ(yi, (Kα)i) + λ
2α

⊤Kα



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods

• Modularity of kernel methods

1. Work on new algorithms and theoretical analysis

2. Work on new kernels for specific data types



Representer theorem and convex duality

• The parameters α ∈ R
n may also be interpreted as Lagrange

multipliers

• Assumption: cost function is convex, ϕi(ui) = ℓ(yi, ui)

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖

2

• What about the constant term b? replace Φ(x) by (Φ(x), c), c large

ϕi(ui)

LS regression 1
2(yi − ui)

2

Logistic

regression
log(1 + exp(−yiui))

SVM (1− yiui)+



Representer theorem and convex duality

Proof

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖

2

• Define ψi(vi) = max
ui∈R

viui − ϕi(ui) as the Fenchel conjugate of ϕi

• Main trick: introduce constraint ui = f⊤Φ(xi) and associated

Lagrange multipliers αi

• Lagrangian L(α, f) =
n
∑

i=1

ϕi(ui) +
λ

2
‖f‖2 + λ

n
∑

i=1

αi(ui − f
⊤Φ(xi))

– Maximize with respect to ui ⇒ term of the form −ψi(−λαi)

– Maximize with respect to f ⇒ f =
∑n

i=1αiΦ(xi)



Representer theorem and convex duality

• Assumption: cost function is convex ϕi(ui) = ℓ(yi, ui)

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖

2

• Dual problem: max
α∈Rn

−
∑n

i=1ψi(−λαi)−
λ
2α

⊤Kα

where ψi(vi) = maxui∈R viui−ϕi(ui) is the Fenchel conjugate of ϕi

• Strong duality

• Relationship between primal and dual variables (at optimum):

f =
∑n

i=1αiΦ(xi)

• NB: adding constant term b ⇔ add constraints
∑n

i=1αi = 0



“Classical” kernel learning (2-norm regularization)

Primal problem minf∈F

(
∑

iϕi(f
⊤Φ(xi)) + λ

2 ||f ||
2
)

Dual problem maxα∈Rn

(

−
∑

iψi(λαi)−
λ
2α

⊤Kα
)

Optimality conditions f =
∑n

i=1αiΦ(xi)

• Assumptions on loss ϕi:

– ϕi(u) convex

– ψi(v) Fenchel conjugate of ϕi(u), i.e., ψi(v) = maxu∈R(vu−ϕi(u))

ϕi(ui) ψi(v)

LS regression 1
2(yi − ui)

2 1
2v

2 + vyi

Logistic

regression
log(1 + exp(−yiui))

(1+vyi) log(1+vyi)

−vyi log(−vyi)

SVM (1− yiui)+ vyi × 1−vyi∈[0,1]



Particular case of the support vector machine

• Primal problem: min
f∈F

∑n
i=1(1− yif

⊤Φ(xi))+ + λ
2‖f‖

2

• Dual problem: max
α∈Rn

(

−
∑

i

λαiyi × 1−λαiyi∈[0,1] −
λ

2
α⊤Kα

)

• Dual problem (by change of variable α← −Diag(y)α and C = 1/λ):

max
α∈Rn, 06α6C

∑n
i=1αi −

1
2α

⊤ Diag(y)K Diag(y)α



Particular case of the support vector machine

• Primal problem: min
f∈F

∑n
i=1(1− yif

⊤Φ(xi))+ + λ
2‖f‖

2

• Dual problem:

max
α∈Rn, 06α6C

∑n
i=1αi −

1
2α

⊤ Diag(y)K Diag(y)α



Particular case of the support vector machine

• Primal problem: min
f∈F

∑n
i=1(1− yif

⊤Φ(xi))+ + λ
2‖f‖

2

• Dual problem:

max
α∈Rn, 06α6C

∑n
i=1αi −

1
2α

⊤ Diag(y)K Diag(y)α

• What about the traditional picture?



Losses for classification

• Usual convex costs:
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• Differences between hinge and logistic loss: differentiability/sparsity



Support vector machine or logistic regression?

• Predictive performance is similar

• Only true difference is numerical

– SVM: sparsity in α

– Logistic: differentiable loss function

• Which one to use?

– Linear kernel ⇒ Logistic + Newton/Gradient descent

– Nonlinear kernel ⇒ SVM + dual methods or simpleSVM



Algorithms for supervised kernel methods

• Four formulations

1. Dual: maxα∈Rn−
∑

iψi(λαi)−
λ
2α

⊤Kα

2. Primal: minf∈F

∑

iϕi(f
⊤Φ(xi)) + λ

2 ||f ||
2

3. Primal + Representer: minα∈Rn
∑

iϕi((Kα)i) + λ
2α

⊤Kα

4. Convex programming

• Best strategy depends on loss (differentiable or not) and kernel

(linear or not)



Dual methods

• Dual problem: maxα∈Rn−
∑

iψi(λαi)−
λ
2α

⊤Kα

• Main method: coordinate descent (a.k.a. sequential minimal

optimization - SMO) (Platt, 1998; Bottou and Lin, 2007; Joachims,

1998)

– Efficient when loss is piecewise quadratic (i.e., hinge = SVM)

– Sparsity may be used in the case of the SVM

• Computational complexity: between quadratic and cubic in n

• Works for all kernels



Primal methods

• Primal problem: minf∈F

∑

iϕi(f
⊤Φ(xi)) + λ

2 ||f ||
2

• Only works directly if Φ(x) may be built explicitly and has small

dimension

– Example: linear kernel in small dimensions

• Differentiable loss: gradient descent or Newton’s method are very

efficient in small dimensions

• Larger scale: stochastic gradient descent (Shalev-Shwartz et al.,

2007; Bottou and Bousquet, 2008)



Primal methods with representer theorems

• Primal problem in α: minα∈Rn
∑

iϕi((Kα)i) + λ
2α

⊤Kα

• Direct optimization in α poorly conditioned (K has low-rank) unless

Newton method is used (Chapelle, 2007)

• General kernels: use incomplete Cholesky decomposition (Fine and

Scheinberg, 2001; Bach and Jordan, 2002) to obtain a square root

K = GG⊤

K

T

=
G

G
G of size n×m,

where m≪ n

– “Empirical input space” of size m obtained using rows of G

– Running time to compute G: O(m2n)



Direct convex programming

• Convex programming toolboxes ⇒ very inefficient!

• May use special structure of the problem

– e.g., SVM and sparsity in α

• Active set method for the SVM: SimpleSVM (Vishwanathan et al.,

2003; Loosli et al., 2005)

– Cubic complexity in the number of support vectors

• Full regularization path for the SVM (Hastie et al., 2005; Bach et al.,

2006)

– Cubic complexity in the number of support vectors

– May be extended to other settings (Rosset and Zhu, 2007)
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Kernel design

• Principle: kernel on X = space of functions on X + norm

• Two main design principles

1. Constructing kernels from kernels by algebraic operations

2. Using usual algebraic/numerical tricks to perform efficient kernel

computation with very high-dimensional feature spaces

• Operations: k1(x, y)=〈Φ1(x),Φ1(y)〉, k2(x, y)=〈Φ2(x),Φ2(y)〉

– Sum = concatenation of feature spaces:

k1(x, y) + k2(x, y) =
〈

(Φ1(x)
Φ2(x)

)

,
(Φ1(y)
Φ2(y)

)

〉

– Product = tensor product of feature spaces:

k1(x, y)k2(x, y) =
〈

Φ1(x)Φ2(x)
⊤,Φ1(y)Φ2(y)

⊤
〉



Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)

– Smooth functions

• Data are not always vectors!



Efficient ways of computing large sums

• Goal: Φ(x) ∈ R
p high-dimensional, compute

p
∑

i=1

Φi(x)Φi(y) in o(p)

• Sparsity: many Φi(x) equal to zero (example: pyramid match kernel)

• Factorization and recursivity: replace sums of many products by

product of few sums (example: polynomial kernel, graph kernel)

(1 + x⊤y)d =
∑

α1+···+αk6d

(

d

α1, . . . , αk

)

(x1y1)
α1 · · · (xkyk)

αk



Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

i min(hi, h
′
i), chi-square: exp

(

−α
∑

i
(hi−h′

i)
2

hi+h′
i

)



Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

i min(hi, h
′
i), chi-square: exp

(

−α
∑

i
(hi−h′

i)
2

hi+h′
i

)

• Pyramid match (Grauman and Darrell, 2007): efficiently introducing

localization

– Form a regular pyramid on top of the image

– Count the number of common elements in each bin

– Give a weight to each bin

– Many bins but most of them are empty

⇒ use sparsity to compute kernel efficiently



Pyramid match kernel

(Grauman and Darrell, 2007; Lazebnik et al., 2006)

• Two sets of points

• Counting matches at several scales: 7, 5, 4



Kernels from segmentation graphs

• Goal of segmentation: extract objects of interest

• Many methods available, ....

– ... but, rarely find the object of interest entirely

• Segmentation graphs

– Allows to work on “more reliable” over-segmentation

– Going to a large square grid (millions of pixels) to a small graph

(dozens or hundreds of regions)

• How to build a kernel over segmenation graphs?

– NB: more generally, kernelizing existing representations?



Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments



Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments



Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

⇒



Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

• Difficulties

– Extremely high-dimensional labels

– Planar undirected graph

– Inexact matching

• Graph kernels (Gärtner et al., 2003; Kashima et al., 2004; Harchaoui

and Bach, 2007) provide an elegant and efficient solution



Kernels between structured objects

Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

• Numerous applications (text, bio-informatics, speech, vision)

• Common design principle: enumeration of subparts (Haussler,

1999; Watkins, 1999)

– Efficient for strings

– Possibility of gaps, partial matches, very efficient algorithms

• Most approaches fails for general graphs (even for undirected trees!)

– NP-Hardness results (Ramon and Gärtner, 2003)

– Need specific set of subparts



Paths and walks

• Given a graph G,

– A path is a sequence of distinct neighboring vertices

– A walk is a sequence of neighboring vertices

• Apparently similar notions



Paths



Walks



Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

• Wp
G

(resp. Wp
H
) denotes the set of walks of length p in G (resp. H)

• Given basis kernel on labels k(ℓ, ℓ′)

• p-th order walk kernel:

kp
W(G,H) =

∑

(r1, . . . , rp) ∈ W
p
G

(s1, . . . , sp) ∈ W
p
H

p
∏

i=1

k(ℓG(ri), ℓH(si)).

G

1

s3

2s

s 1r
2

3r
H

r



Dynamic programming for the walk kernel

• Dynamic programming in O(pdGdHnGnH)

• kp
W(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kp
W(G,H, r, s)=k(ℓG(r), ℓH(s))

∑

r′ ∈ NG(r)

s′ ∈ NH(s)

kp−1
W (G,H, r′, s′).

G
s

r

H



Dynamic programming for the walk kernel

• Dynamic programming in O(pdGdHnGnH)

• kp
W(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kp
W(G,H, r, s)=k(ℓG(r), ℓH(s))

∑

r′ ∈ NG(r)

s′ ∈ NH(s)

kp−1
W (G,H, r′, s′)

• Kernel obtained as kp,α
T (G,H) =

∑

r∈VG,s∈VH

kp,α
T (G,H, r, s)



Extensions of graph kernels

• Main principle: compare all possible subparts of the graphs

• Going from paths to subtrees

– Extension of the concept of walks ⇒ tree-walks (Ramon and

Gärtner, 2003)

• Similar dynamic programming recursions (Harchaoui and Bach, 2007)

• Need to play around with subparts to obtain efficient recursions

– Do we actually need positive definiteness?



Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes



Performance on Corel14 (Harchaoui & Bach, 2007)

Error rates

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
(wTW)

• MKL (M) H W TW wTW M
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Kernel methods - Summary

• Kernels and representer theorems

– Clear distinction between representation/algorithms

• Algorithms

– Two formulations (primal/dual)

– Logistic or SVM?

• Kernel design

– Very large feature spaces with efficient kernel evaluations
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Why ℓ1-norms lead to sparsity?

• Minimize quadratic objective subjet to constraint

‖w‖1 =
∑p

i=1 |wi| 6 T

– coupled soft thresolding

• Geometric interpretation with p = 2



ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

n
∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1

Error on data + Regularization

• Including a constant term b? Penalizing or constraining?

• Assumptions on loss:

– convex and differentiable in the second variable

– NB: with the square loss⇒ basis pursuit (signal processing) (Chen

et al., 2001), Lasso (statistics/machine learning) (Tibshirani, 1996)



Nonsmooth optimization

• Simple methods do not always work!

– Coordinate/steepest descent might not converge to a local

minimum

– Be careful!

• Optimization algorithms

– First order methods: good for large scale/low precision

– Second order methods: good for small scale/high precision

• Books: Boyd and Vandenberghe (2003), Bonnans et al. (2003),

Nocedal and Wright (2006), Borwein and Lewis (2000)



Algorithms for ℓ1-norms:

Gaussian hare vs. Laplacian tortoise



Two simple algorithms: one good, one (very) bad

• Coordinate descent (Wu and Lange, 2008)

– Globaly convergent here under reasonable assumptions!

– very fast updates (thresholding)

• Quadratic programming formulation for the square loss: minimize

1

2

n
∑

i=1

(yi−w
⊤xi)

2+λ

p
∑

j=1

(w+
j +w−

j ) s.t. w = w+−w−, w+
> 0, w−

> 0

– generic toolboxes ⇒ very slow



Algorithm: Lars/Lasso for the square loss

(Efron et al., 2004)

• Goal: Get all solutions for all possible values of the regularization

parameter λ

• Property: the regularization path is piecewise linear

• Simply need to find break points and directions

• Generalizable to many problems (Rosset and Zhu, 2007)



Lasso in action

• Piecewise linear paths

• When is it supposed to work?

– Simulations with random Gaussians, regularization parameter

estimated by cross-validation

– sparsity is expected or not



Lasso in action
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Comparing Lasso and other strategies for linear

regression and subset selection

• Compared methods to reach the least-square solution (Hastie et al.,

2001)

– Ridge regression: minw
1
2

∑n
i=1(yi − w

⊤xi)
2 + λ

2‖w‖
2
2

– Lasso: minw
1
2

∑n
i=1(yi − w

⊤xi)
2 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to wOLS



Lasso in action
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Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

• Kernels and representer theorem

• Convex duality and optimization

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Multiple kernel learning

• Theoretical results

• Other extensions



Kernel learning with convex optimization

• Kernel methods work...

...with the good kernel!

⇒ Why not learn the kernel directly from data?



Kernel learning with convex optimization

• Kernel methods work...

...with the good kernel!

⇒ Why not learn the kernel directly from data?

• Proposition (Lanckriet et al., 2004b; Bach et al., 2004a):

G(K) = min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) + λ
2‖f‖

2

= max
α∈Rn

−
∑n

i=1ψi(λαi)−
λ
2α

⊤Kα

is a convex function of the Gram (a.k.a. kernel) matrix K

• Theoretical learning bounds (Lanckriet et al., 2004b)



MKL framework

• Minimize with respect to the kernel matrix K

G(K) = max
α∈Rn

−
∑n

i=1ψi(λαi)−
λ
2α

⊤Kα

• Optimization domain:

– K positive semi-definite in general : very large set!

– The set of kernel matrices is a cone ⇒ conic representation

K(η) =
∑m

j=1 ηjKj, η > 0

– Trace constraints: trK =
∑m

j=1 ηj trKj = 1

• Optimization:

– In most cases, representation in terms of SDP, QCQP or SOCP

– Optimization by generic toolbox is costly (Lanckriet et al., 2004b)



MKL - “reinterpretation” (Bach et al., 2004a)

• Framework limited to K =
∑m

j=1 ηjKj, η > 0

• Summing kernels is equivalent to concatenating feature spaces

– m “feature maps” Φj : X 7→ Fj, j = 1, . . . ,m.

– Minimization with respect to f1 ∈ F1, . . . , fm ∈ Fm

– Predictor: f(x) = f1
⊤Φ1(x) + · · ·+ fm

⊤Φm(x)

x

Φ1(x)
⊤ f1

ր ... ... ց

−→ Φj(x)
⊤ fj −→

ց ... ... ր

Φm(x)⊤ fm

f⊤1 Φ1(x) + · · ·+ f⊤mΦm(x)

– Which regularization?



Regularization for multiple kernels

• Summing kernels is equivalent to concatenating feature spaces

– m “feature maps” Φj : X 7→ Fj, j = 1, . . . ,m.

– Minimization with respect to f1 ∈ F1, . . . , fm ∈ Fm

– Predictor: f(x) = f1
⊤Φ1(x) + · · ·+ fm

⊤Φm(x)

• Regularization by
∑m

j=1 ‖fj‖
2 is equivalent to using K =

∑m
j=1Kj



Regularization for multiple kernels

• Summing kernels is equivalent to concatenating feature spaces

– m “feature maps” Φj : X 7→ Fj, j = 1, . . . ,m.

– Minimization with respect to f1 ∈ F1, . . . , fm ∈ Fm

– Predictor: f(x) = f1
⊤Φ1(x) + · · ·+ fm

⊤Φm(x)

• Regularization by
∑m

j=1 ‖fj‖
2 is equivalent to using K =

∑m
j=1Kj

• Regularization by
∑m

j=1 ‖fj‖ should impose sparsity at the group

level

• Main questions when regularizing by block ℓ1-norm:

1. Equivalence with previous formulations

2. Algorithms

3. Analysis of sparsity inducing properties (Bach, 2008c)



MKL - equivalence with general kernel learning

(Bach et al., 2004a)

• Block ℓ1-norm problem:

∑n
i=1ϕi(f

⊤
1 Φ1(xi) + · · ·+ f⊤mΦm(xi)) + λ

2 (‖f1‖+ · · ·+ ‖fm‖)
2

• Proposition: It is equivalence to minimize with respect to η the

optimal value G(K(η)) of the supervised learning problem (Bach

et al., 2004a)

• Kernel weights obtained from optimality conditions and Lagrange

multipliers

• Single optimization problem for learning both weights η and

classifier α



Algorithms for MKL

• (very) costly optimization with SDP, QCQP ou SOCP

– n > 1, 000− 10, 000, m > 100 not possible

– “loose” required precision ⇒ first order methods

• Dual coordinate ascent (SMO) with smoothing (Bach et al., 2004a)

• Optimization of G(K) by cutting planes (Sonnenburg et al., 2006)

• Optimization of G(K) with steepest descent with smoothing

(Rakotomamonjy et al., 2008)

• Regularization path (Bach et al., 2004b)



Applications

• Several applications

– Bioinformatics (Lanckriet et al., 2004a)

– Speech processing (Longworth and Gales, 2008)

– Image annotation (Harchaoui and Bach, 2007; Varma and Ray,

2007; Bosch et al., 2008)

• Two potential uses

– Fusion of heterogeneous data sources

– Learning hyperparameters

– Sparsity in non-linear settings



Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes



Performance on Corel14 (Harchaoui and Bach, 2007)

Error rates

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
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Caltech101 database (Fei-Fei et al., 2006)



Kernel combination for Caltech101 (Varma and Ray, 2007)

Classification accuracies

1- NN SVM (1 vs. 1) SVM (1 vs. rest)

Shape GB1 39.67 ± 1.02 57.33 ± 0.94 62.98 ± 0.70

Shape GB2 45.23 ± 0.96 59.30 ± 1.00 61.53 ± 0.57

Self Similarity 40.09 ± 0.98 55.10 ± 1.05 60.83 ± 0.84

PHOG 180 32.01 ± 0.89 48.83 ± 0.78 49.93 ± 0.52

PHOG 360 31.17 ± 0.98 50.63 ± 0.88 52.44 ± 0.85

PHOWColour 32.79 ± 0.92 40.84 ± 0.78 43.44 ± 1.46

PHOWGray 42.08 ± 0.81 52.83 ± 1.00 57.00 ± 0.30

MKL Block ℓ1 77.72 ± 0.94 83.78 ± 0.39

(Varma and Ray, 2007) 81.54 ± 1.08 89.56 ± 0.59

• See also Bosch et al. (2008)



Part II - Outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbert norms (kernel methods)

• Kernels and representer theorem

• Convex duality and optimization

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Multiple kernel learning

• Theoretical results

• Other extensions



Learning on matrices

• Example 1: matrix completion

– Given a matrix M ∈ R
n×p and a subset of observed entries,

estimate all entries

– Many applications: graph learning, collaborative filtering (Breese

et al., 1998; Heckerman et al., 2000; Salakhutdinov et al., 2007)

• Example 2: multi-task learning (Obozinski et al., 2007; Pontil et al., 2007)

– Common features for m learning problems ⇒ m different weights,

i.e., W = (w1, . . . , wm) ∈ R
p×m

– Numerous applications

• Example 3: image denoising (Elad and Aharon, 2006; Mairal et al., 2008)

– Simultaneously denoise all patches of a given image



Three natural types of sparsity for matrices M ∈ R
n×p

1. A lot of zero elements

• does not use the matrix structure!

2. A small rank

• M = UV ⊤ where U ∈ R
n×m and V ∈ R

n×m, m small

• Trace norm

U=
V

M

T



Three natural types of sparsity for matrices M ∈ R
n×p

1. A lot of zero elements

• does not use the matrix structure!

2. A small rank

• M = UV ⊤ where U ∈ R
n×m and V ∈ R

n×m, m small

• Trace norm (Srebro et al., 2005; Fazel et al., 2001; Bach, 2008d)

3. A decomposition into sparse (but large) matrix ⇒ redundant

dictionaries

• M = UV ⊤ where U ∈ R
n×m and V ∈ R

n×m, U sparse

• Dictionary learning (Elad and Aharon, 2006; Mairal et al., 2008)



Trace norm (Srebro et al., 2005; Bach, 2008d)

• Singular value decomposition: M ∈ R
n×p can always be decomposed

into M = U Diag(s)V ⊤, where U ∈ R
n×m and V ∈ R

n×m have

orthonormal columns and s is a positive vector (of singular values)

• ℓ0 norm of singular values = rank

• ℓ1 norm of singular values = trace norm

• Similar properties than the ℓ1-norm

– Convexity

– Solutions of penalized problem have low rank

– Algorithms



Dictionary learning

(Elad and Aharon, 2006; Mairal et al., 2008)

• Given X ∈ R
n×p, i.e., n vectors in R

p, find

– m dictionary elements in R
p: V = (v1, . . . , vm) ∈ R

p×m

– m set of decomposition coefficients: U =∈ R
n×m

– such that U is sparse and small reconstruction error, i.e.,

‖X − UV ⊤‖2F =
∑n

i=1 ‖X(i, :)− U(i, :)V ⊤‖22 is small

• NB: Opposite view, i.e., not sparse in term of ranks, sparse in terms

of decomposition coefficients

• Minimize with respect to U and V , such that ‖V (:, i)‖2 = 1,

1

2
‖X − UV ⊤‖2F + λ

N
∑

i=1

‖U(i, :)‖1

– non convex, alternate minimization



Dictionary learning - Denoising (Mairal et al., 2008)

Dictionary

Original Noisy Denoised



Dictionary learning - Inpainting (Mairal et al., 2008)

Original Missing pixels Denoised



Theory: model consistency of the Lasso

• Sparsity-inducing norms often used heuristically

• If the responses y1, . . . , yn are such that yi = w
⊤xi + εi where εi are

i.i.d. and w is sparse, do we get back the correct pattern of zeros?

• Intuitive answer: yes if and ony if some consistency condition on

the generating covariance matrices is satisfied (Zhao and Yu, 2006;

Yuan and Lin, 2007; Zou, 2006; Wainwright, 2006)

‖ΣJcJΣ
−1
JJ

sign(wJ)‖∞ 6 1

where J = indices of relevant variables, w = true loading vector

• What if condition not satisfied?

– Adaptive versions (Zou, 2006) or resampling methods (Bach, 2008a)



High-dimensional setting

• If consistency condition is satisfied, the Lasso is indeed consistent as

long as log(p)≪ n

• A lot of on-going work (Meinshausen and Yu, 2008; Wainwright,

2006; Lounici, 2008)



High-dimensional setting (Lounici, 2008)

• Assumptions

– yi = w
⊤xi + εi, ε i.i.d. normal with mean zero and variance σ2

– Q = X⊤X/n with unit diagonal and cross-terms less than 1
14s

– Theorem: if ‖w‖0 6 s, and A > 81/2, then

P

(

‖ŵ −w‖∞ 6 5Aσ

(

log p

n

)1/2
)

6 1− p1−A2/8

• Get the correct sparsity pattern if minj,wj 6=0 |wj| > Cσ
(

log p
n

)1/2

• Can have a lot of irrelevant variables!



High-dimensional setting

• If consistency condition is satisfied, the Lasso is indeed consistent as

long as log(p)≪ n

• A lot of on-going work (Meinshausen and Yu, 2008; Wainwright,

2006; Lounici, 2008)

• Link with compressed sensing (Baraniuk, 2007; Candès and Wakin, 2008)

– Goal of compressed sensing: recover a signal w ∈ R
p from only n

measurements y = Xw ∈ R
n

– Assumptions: the signal is k-sparse, k ≪ p

– Algorithm: minw∈Rp ‖w‖1 such that y = Xw

– X is not given but may be chosen (deterministic or random)!



Summary - sparsity-inducing norms

• Sparsity through non Euclidean norms

• Alternative approaches to sparsity

– greedy approaches - Bayesian approaches

• Important (often non treated) question: when does sparsity actually

help?

• Current research directions

– Algorithms, algorithms, algorithms!

– Structured norm for structured situations (variables are usually not

created equal) ⇒ hierarchical Lasso or MKL (Zhao et al., 2008;

Bach, 2008b)



Conclusion - Course Outline

1. Theory

• Probabilistic model and universal consistency

• Local averaging methods

• Empirical risk minimization

2. Algorithms

• Losses for particular machine learning tasks

• Regularization by Hilbert norms (kernel methods)

– Algorithms

– Kernel design

• Regularization by sparsity-inducing norms

– ℓ1-norm regularization

– Multiple kernel learning
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Code

• SVM and other supervised learning techniques

www.shogun-toolbox.org

http://gaelle.loosli.fr/research/tools/simplesvm.html

http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html

• ℓ1-penalization: Matlab/C/R codes available from

www.dsp.ece.rice.edu/cs

• Multiple kernel learning:

asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html

www.stat.berkeley.edu/~gobo/SKMsmo.tar



Conclusion - Interesting problems

• Kernel design for computer vision

– Benefits of “kernelizing” existing representations

– Combining kernels

• Sparsity and computer vision

– Going beyond image denoising

• Large numbers of classes

– Theoretical and algorithmic challenges

• Structured output


