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Summary

e Discriminative clustering = find labels that optimize linear
separability

cost function in closed form

e Square loss for classification
e Optimization of the labels by convex relaxation
e Efficient optimization algorithm by partial dualization

e Application in semi-supervised learning



Classification with square loss
e n points z1,...,x, in R? represented in a matrix X € R**¢,

e Labels = partitions of {1,...,n} into k > 1 clusters, represented by
indicator matrices

y € {0, 1}””~C such that yl1, =1,

e Regularized linear regression problem of y given X :

_ - 1 2 T
J(y, X, k) = weRdglrbleRlxk “ly — Xw — 1,07 + 5 tr w'w,

— Multi-label classification problems with square loss functions

— Solution in closed form (with IT,, = I,, — %Lnl;br):

1
w* = (X', X +nkl,) ' X',y and b*==1'(y — Xw*)
n



Discriminative clustering cost

e Discriminative clustering consists in finding labels such that they

lead to best linear separation by a discriminative classifier (Xu et al.,
2004, 2005)

e Use square loss for multi-class classification

e Main advantages

— minimizing the regularized cost in closed form
— including a bias term by simply centering the data

e Optimal value equal to J(y, X, k) = tr yy' A(X, k), where

1
AX, k) =—11,,(I,- X (X "I, X +nxl)~' X "I,
n




Diffrac

e Optimization problem: minimize tryy' A(X, ) with respect to y
(indicator matrices)

e The cost function only involves the matrix M = yy' € R**" (=
k-class equivalence matrix)

e Convex outer approximation for M

— M is positive semidefinite (denoted as M = 0)
— the diagonal of M is equal to 1,, (denoted as diag(M) = 1,,)

— if M corresponds to at most k clusters, we have M = +1,,1!

1
~ Ekntn

e Convex set:

Cr={MeR"" M=M" diag(M)=1, M >0, M = +1,1}}



Minimum cluster sizes

e Avoid trivial solution by imposing a minimum size A\ for each cluster,
through:

— Row sums: M1, > A\gl,, and M1, < (n — (k—1)X\g)1, (same
constraint as Xu et al., 2005).

— Eigenvalues: The sizes of the clusters are exactly the k largest
eigenvalues of M = constraint equivalent to Z?:l Ly, (any=xg 2= K,
where A1 (M), ..., A\, (M) are the n eigenvalues of M.

* Non convex constraint
+ Relaxed as > " édx,(Ai(M)) = k, where ¢, (k) = min{x/Ag, 1}

e Final convex relaxation: minimize tr A(X,x)M such that M =
M?', diag(M) =1,, M >0, M = £1,1,, 3201 dag(Ai(M)) > k



Comparison with K-means
e DIFFRAC (x = 0): minimize

tr I, (I, — X(X 'TI,X) "' X DIL,yy "

e K-Means: minimize (Zha et al., 2002, Bach & Jordan, 2004)

min, cgixa | X — ypllz = tr(l —y(y 'y) 'y " ILX)(T,X) 1
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Kernels

e The matrix A(X, k) can be expressed only in terms of the Gram
matrix K = XX .

A(K, k) = k(K + nkl,) I,

where K = II,,K1I,, is the “centered Gram matrix’ of the points X.

e Additional relaxation to kernel PCA:

1. relaxing the constraints M = %L,Ll,z into M >0

2. relaxing diag(M) = 1,, intotr M =n

3. removing the constraint M > 0 and the constraints on the row
sums.

e Important constraint: diag(M) =1



Optimization by partial dualization - |

e Optimization problem:

mintr AM suchthat M =M'", M =0, tr M =n
¢y, (M) >k
diag(M) =1,
M1, < (n—(k—1)\)1,, M1,
M >0

.
1,1
M 3 tnln

e Partial dualization of constraints

— Kept constraints lead to simple spectral problem

=

AOln
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Optimization by partial dualization - 1|

e Lagrangian equal to tr B(8)M — b(/3) with

B(8) = A+ Diag(fh) — §(82 — Bs)17 — 11(82 — B3)T — fa + 4252
b(B) = B 1—(n—(k—1)X)Bs 1+ XofBs 1+ kBs/2 + 5 1,

e Primal variable M, dual variables 31, 82, (3, B4, (85, B6)

e Dual problem: mgx {M;O,tr er:n?igl%o(M»]€ tr B(8)M — b(ﬁ)}

e Minimization with respect to M leads to convex non differentiable
spectral function in

e Maximization with respect to 5 by projected subgradient or projected
gradient (after smoothing)



Computational complexity - Rounding

e Constant times the matrix-vector operation with the matrix A
e Linear complexity in the number n of data points.
e For linear kernels with dimension d: O(d*n)

e For general kernels: O(n?) or O(m?n) using an incomplete Cholesky
decomposition of rank m

e Rounding

— After the convex optimization, we obtain a low-rank matrix M € C;
which is pointwise nonnegative with unit diagonal
— Spectral clustering algorithm on the matrix M (Ng & al., 2001)

— NB : Diffrac works better than doing spectral clustering on A or
K



Semi-supervised learning

e Equivalence matrices M allows simple inclusion of prior knowledge
(Xu et al., 2004, De Bie and Cristianini, 2006)

e “must-link” constraints (positive constraints) : M;; =1

— With a square loss = equivalent to grouping into chuncks

e “must-not-link” constraints (negative constraints) : M;; =0

20% X n 40 % X n

034 —— K—means
—t— diffrac
0.5

clustering error
o
o1

0 20 40 0 20 40
noise dimension noise dimension



Simulations

e Clustering classification datasets

— Performance measured by clustering error between 0 and 100(k—1)
— Comparison with K-means and RCA (Bar-Hillel et al., 2003)

Dataset K-means | DIFFRAC RCA
Mhnist-linear 0% | 5.6 £0.1| 6.04+0.4
Mnist-linear 20%| 4.54+0.3 | 3.64+0.3 | 3.0£0.2
Mnist-linear 40%| 2.94+0.3 | 22402 |1.84+04
Mnist-RBF 0% 56+0.2] 49+0.2
Mnist-RBF 20% | 4.64+00| 1.84+04| 4.1+0.2
Mnist-RBF 40% | 49+0.0] 0.94+0.1] 2.940.1
Isolet-linear 0% |12.1 +0.6| 12.3 +0.3
Isolet-linear 20% | 10.54+0.2| 7.8 0.8 | 9.5+ 0.4
Isolet-linear 40% | 9.24+0.5| 3.74+0.2| 7.0+ 04
Isolet-RBF 0% 1144+04(11.0 £+ 0.3
Isolet-RBF 20% | 10.6 =0.0| 7.5+ 05| 7.8 £ 0.5
Isolet-RBF 40% | 10.04+0.0| 3.74+1.0| 6.9+ 0.6




Simulations

e Semi-supervised classification

e Diffrac works with any amount of supervision

— Diffrac works with any amount of supervision
— Comparison with LDS (Chapelle & Zien, 2004)
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