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Summary

• Discriminative clustering = find labels that optimize linear

separability

• Square loss for classification = cost function in closed form

• Optimization of the labels by convex relaxation

• Efficient optimization algorithm by partial dualization

• Application in semi-supervised learning



Classification with square loss

• n points x1, . . . , xn in R
d, represented in a matrix X ∈ R

n×d.

• Labels = partitions of {1, . . . , n} into k > 1 clusters, represented by

indicator matrices

y ∈ {0, 1}n×k such that y1k = 1n

• Regularized linear regression problem of y given X :

J(y,X, κ) = min
w∈Rd×k, b∈R1×k

1
n
‖y − Xw − 1nb‖2

F + κ tr w⊤w,

– Multi-label classification problems with square loss functions

– Solution in closed form (with Πn = In − 1
n
1n1⊤n ):

w∗ = (X⊤ΠnX + nκIn)−1X⊤Πny and b∗ =
1

n
1⊤n (y − Xw∗)



Discriminative clustering cost

• Discriminative clustering consists in finding labels such that they

lead to best linear separation by a discriminative classifier (Xu et al.,

2004, 2005)

• Use square loss for multi-class classification

• Main advantages

– minimizing the regularized cost in closed form

– including a bias term by simply centering the data

• Optimal value equal to J(y,X, κ) = tr yy⊤A(X,κ), where

A(X,κ)=
1

n
Πn(In−X(X⊤ΠnX + nκI)−1X⊤)Πn



Diffrac

• Optimization problem: minimize tr yy⊤A(X,κ) with respect to y

(indicator matrices)

• The cost function only involves the matrix M = yy⊤ ∈ R
n×n (=

k-class equivalence matrix)

• Convex outer approximation for M

– M is positive semidefinite (denoted as M < 0)

– the diagonal of M is equal to 1n (denoted as diag(M) = 1n)

– if M corresponds to at most k clusters, we have M < 1
k
1n1⊤n

• Convex set:

Ck = {M ∈ R
n×n, M = M⊤, diag(M) = 1n, M > 0, M <

1
k
1n1⊤n }



Minimum cluster sizes

• Avoid trivial solution by imposing a minimum size λ0 for each cluster,

through:

– Row sums: M1n > λ01n and M1n 6 (n − (k − 1)λ0)1n (same

constraint as Xu et al., 2005).

– Eigenvalues: The sizes of the clusters are exactly the k largest

eigenvalues of M ⇒ constraint equivalent to
∑n

i=1 1λi(M)>λ0
> k,

where λ1(M), . . . , λn(M) are the n eigenvalues of M .

∗ Non convex constraint

∗ Relaxed as
∑n

i=1 φλ0(λi(M)) > k, where φλ0(κ) = min{κ/λ0, 1}

• Final convex relaxation: minimize tr A(X,κ)M such that M =

M⊤, diag(M) = 1n, M > 0, M <
1
k
1n1⊤n ,

∑n

i=1 φλ0(λi(M)) > k



Comparison with K-means

• DIFFRAC (κ = 0): minimize

tr Πn(In − X(X⊤ΠnX)−1X⊤)Πnyy⊤

• K-Means: minimize (Zha et al., 2002, Bach & Jordan, 2004)

minµ∈Rk×d ‖X − yµ‖2
F = tr(In − y(y⊤y)−1y⊤)(ΠnX)(ΠnX)⊤
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Kernels

• The matrix A(X,κ) can be expressed only in terms of the Gram

matrix K = XX⊤.

A(K,κ) = κΠn(K̃ + nκIn)−1Πn

where K̃ = ΠnKΠn is the “centered Gram matrix” of the points X.

• Additional relaxation to kernel PCA:

1. relaxing the constraints M < 1
k
1n1⊤n into M < 0

2. relaxing diag(M) = 1n into trM = n

3. removing the constraint M > 0 and the constraints on the row

sums.

• Important constraint: diag(M) = 1



Optimization by partial dualization - I

• Optimization problem:

min trAM such that M = M⊤, M < 0, trM = n

Φλ0(M) > k

diag(M) = 1n β1

M1n 6 (n − (k − 1)λ0)1n, M1n > λ01n β2, β3

M > 0 β4

M <
1n1⊤n

k
β5, β6

• Partial dualization of constraints

– Kept constraints lead to simple spectral problem



Optimization by partial dualization - II

• Lagrangian equal to tr B(β)M − b(β) with

B(β) = A + Diag(β1)−
1
2(β2 − β3)1

⊤ − 1
21(β2 − β3)

⊤ − β4 + 1
2

β5β⊤
5

β6

b(β) = β⊤
1 1 − (n − (k − 1)λ0)β

⊤
2 1 + λ0β

⊤
3 1 + kβ6/2 + β⊤

5 1,

• Primal variable M , dual variables β1, β2, β3, β4, (β5, β6)

• Dual problem: max
β

{
min

M<0,tr M=n,Φλ0
(M)>k

tr B(β)M − b(β)

}

• Minimization with respect to M leads to convex non differentiable

spectral function in β

• Maximization with respect to β by projected subgradient or projected

gradient (after smoothing)



Computational complexity - Rounding

• Constant times the matrix-vector operation with the matrix A

• Linear complexity in the number n of data points.

• For linear kernels with dimension d: O(d2n)

• For general kernels: O(n3) or O(m2n) using an incomplete Cholesky

decomposition of rank m

• Rounding

– After the convex optimization, we obtain a low-rank matrix M ∈ Ck

which is pointwise nonnegative with unit diagonal

– Spectral clustering algorithm on the matrix M (Ng & al., 2001)

– NB : Diffrac works better than doing spectral clustering on A or

K!



Semi-supervised learning

• Equivalence matrices M allows simple inclusion of prior knowledge

(Xu et al., 2004, De Bie and Cristianini, 2006)

• “must-link” constraints (positive constraints) : Mij = 1

– With a square loss ⇒ equivalent to grouping into chuncks

• “must-not-link” constraints (negative constraints) : Mij = 0
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Simulations

• Clustering classification datasets

– Performance measured by clustering error between 0 and 100(k−1)

– Comparison with K-means and RCA (Bar-Hillel et al., 2003)

Dataset K-means Diffrac RCA
Mnist-linear 0% 5.6± 0.1 6.0 ± 0.4
Mnist-linear 20% 4.5 ± 0.3 3.6 ± 0.3 3.0± 0.2
Mnist-linear 40% 2.9 ± 0.3 2.2 ± 0.2 1.8± 0.4
Mnist-RBF 0% 5.6 ± 0.2 4.9± 0.2
Mnist-RBF 20% 4.6 ± 0.0 1.8± 0.4 4.1 ± 0.2
Mnist-RBF 40% 4.9 ± 0.0 0.9± 0.1 2.9 ± 0.1
Isolet-linear 0% 12.1± 0.6 12.3 ± 0.3
Isolet-linear 20% 10.5 ± 0.2 7.8± 0.8 9.5 ± 0.4
Isolet-linear 40% 9.2 ± 0.5 3.7± 0.2 7.0 ± 0.4
Isolet-RBF 0% 11.4 ± 0.4 11.0 ± 0.3
Isolet-RBF 20% 10.6 ± 0.0 7.5± 0.5 7.8 ± 0.5
Isolet-RBF 40% 10.0 ± 0.0 3.7± 1.0 6.9 ± 0.6



Simulations

• Semi-supervised classification

• Diffrac works with any amount of supervision

– Diffrac works with any amount of supervision

– Comparison with LDS (Chapelle & Zien, 2004)
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