DIFFRAC : a discriminative and flexible framework for clustering

Francis Bach INRIA - Ecole Normale Supérieure Zaïd Harchaoui *Telecom Paris*

école nationale supérieure des télécommunications

NIPS - November 2007

Summary

- **Discriminative clustering** = find labels that optimize linear separability
- Square loss for classification = cost function in closed form
- Optimization of the labels by **convex relaxation**
- Efficient optimization algorithm by **partial dualization**
- Application in semi-supervised learning

Classification with square loss

- n points x_1, \ldots, x_n in \mathbb{R}^d , represented in a matrix $X \in \mathbb{R}^{n \times d}$.
- Labels = partitions of $\{1, \ldots, n\}$ into k > 1 clusters, represented by *indicator matrices*

$$y \in \{0,1\}^{n \times k}$$
 such that $y1_k = 1_n$

• Regularized linear regression problem of y given X :

$$J(y, X, \kappa) = \min_{w \in \mathbb{R}^{d \times k}, \ b \in \mathbb{R}^{1 \times k}} \frac{1}{n} \|y - Xw - 1_n b\|_F^2 + \kappa \ \text{tr} \ w^\top w,$$

- Multi-label classification problems with square loss functions

- Solution in closed form (with $\Pi_n = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^\top$):

$$w^* = (X^{\top} \Pi_n X + n\kappa I_n)^{-1} X^{\top} \Pi_n y$$
 and $b^* = \frac{1}{n} 1_n^{\top} (y - Xw^*)$

Discriminative clustering cost

- **Discriminative clustering** consists in finding labels such that they lead to best linear separation by a discriminative classifier (Xu et al., 2004, 2005)
- Use square loss for multi-class classification
- Main advantages
 - minimizing the regularized cost in closed form
 - including a bias term by simply centering the data
- Optimal value equal to $J(y, X, \kappa) = \operatorname{tr} yy^{\top}A(X, \kappa)$, where

$$A(X,\kappa) = \frac{1}{n} \Pi_n (I_n - X(X^\top \Pi_n X + n\kappa I)^{-1} X^\top) \Pi_n$$

Diffrac

- Optimization problem: minimize $\operatorname{tr} yy^{\top}A(X,\kappa)$ with respect to y (indicator matrices)
- The cost function only involves the matrix $M = yy^{\top} \in \mathbb{R}^{n \times n}$ (= k-class equivalence matrix)
- \bullet Convex outer approximation for M
 - M is positive semidefinite (denoted as $M \geq 0$)
 - the diagonal of M is equal to 1_n (denoted as $\operatorname{diag}(M) = 1_n$)
 - if M corresponds to at most k clusters, we have $M \geq \frac{1}{k} 1_n 1_n^{\top}$
- Convex set:

 $\mathcal{C}_k = \{ M \in \mathbb{R}^{n \times n}, \ M = M^\top, \ \operatorname{diag}(M) = 1_n, \ M \ge 0, \ M \ge \frac{1}{k} 1_n 1_n^\top \}$

Minimum cluster sizes

- Avoid trivial solution by imposing a minimum size λ_0 for each cluster, through:
 - Row sums: $M1_n \ge \lambda_0 1_n$ and $M1_n \le (n (k 1)\lambda_0)1_n$ (same constraint as Xu et al., 2005).
 - **Eigenvalues**: The sizes of the clusters are exactly the k largest eigenvalues of $M \Rightarrow$ constraint equivalent to $\sum_{i=1}^{n} 1_{\lambda_i(M) \ge \lambda_0} \ge k$, where $\lambda_1(M), \ldots, \lambda_n(M)$ are the n eigenvalues of M.
 - * Non convex constraint
 - * Relaxed as $\sum_{i=1}^{n} \phi_{\lambda_0}(\lambda_i(M)) \ge k$, where $\phi_{\lambda_0}(\kappa) = \min\{\kappa/\lambda_0, 1\}$
- Final convex relaxation: minimize tr $A(X,\kappa)M$ such that $M = M^{\top}$, diag $(M) = 1_n$, $M \ge 0$, $M \ge \frac{1}{k} 1_n 1_n^{\top}$, $\sum_{i=1}^n \phi_{\lambda_0}(\lambda_i(M)) \ge k$

Comparison with K-means

• **DIFFRAC** ($\kappa = 0$): minimize

$$\text{tr } \Pi_n (I_n - X(X^\top \Pi_n X)^{-1} X^\top) \Pi_n y y^\top$$

• K-Means: minimize (Zha et al., 2002, Bach & Jordan, 2004)

 $\min_{\mu \in \mathbb{R}^{k \times d}} \| X - y\mu \|_F^2 = \operatorname{tr}(I_n - y(y^\top y)^{-1}y^\top)(\Pi_n X)(\Pi_n X)^\top$

Kernels

• The matrix $A(X,\kappa)$ can be expressed only in terms of the Gram matrix $K = XX^{\top}$.

$$A(K,\kappa) = \kappa \Pi_n (\widetilde{K} + n\kappa I_n)^{-1} \Pi_n$$

where $\widetilde{K} = \prod_n K \prod_n$ is the "centered Gram matrix" of the points X.

- Additional relaxation to kernel PCA:
 - 1. relaxing the constraints $M \succcurlyeq \frac{1}{k} \mathbf{1}_n \mathbf{1}_n^\top$ into $M \succcurlyeq 0$
 - 2. relaxing $\operatorname{diag}(M) = 1_n$ into $\operatorname{tr} M = n$
 - 3. removing the constraint $M \geqslant 0$ and the constraints on the row sums.
- Important constraint: diag(M) = 1

Optimization by partial dualization - I

• Optimization problem:

 $\begin{array}{ll} \min \operatorname{tr} AM \quad \text{such that} & M = M^{\top}, \ M \succcurlyeq 0, \ \operatorname{tr} M = n \\ & \Phi_{\lambda_0}(M) \geqslant k \\ & \operatorname{diag}(M) = 1_n \\ & M 1_n \leqslant (n - (k - 1)\lambda_0)1_n, \ M 1_n \geqslant \lambda_0 1_n \\ & M \geqslant 0 \\ & M \succcurlyeq \frac{1_n 1_n^{\top}}{k} \end{array} \right. \begin{array}{ll} \beta_1 \\ & \beta_2, \beta_3 \\ & \beta_4 \\ & \beta_5, \beta_6 \end{array}$

- Partial dualization of constraints
 - Kept constraints lead to simple spectral problem

Optimization by partial dualization - II

• Lagrangian equal to $\operatorname{tr} B(\beta)M - b(\beta)$ with

$$B(\beta) = A + \text{Diag}(\beta_1) - \frac{1}{2}(\beta_2 - \beta_3)1^{\top} - \frac{1}{2}1(\beta_2 - \beta_3)^{\top} - \beta_4 + \frac{1}{2}\frac{\beta_5\beta_5^{\top}}{\beta_6}$$
$$b(\beta) = \beta_1^{\top}1 - (n - (k - 1)\lambda_0)\beta_2^{\top}1 + \lambda_0\beta_3^{\top}1 + k\beta_6/2 + \beta_5^{\top}1,$$

• Primal variable M, dual variables β_1 , β_2 , β_3 , β_4 , (β_5, β_6)

• Dual problem:
$$\max_{\beta} \left\{ \min_{\substack{M \succcurlyeq 0, \text{tr } M = n, \Phi_{\lambda_0}(M) \geqslant k}} \text{tr } B(\beta)M - b(\beta) \right\}$$

- \bullet Minimization with respect to M leads to convex non differentiable spectral function in β
- Maximization with respect to β by projected subgradient or projected gradient (after smoothing)

Computational complexity - Rounding

- \bullet Constant times the matrix-vector operation with the matrix A
- Linear complexity in the number n of data points.
- For linear kernels with dimension d: $O(d^2n)$
- \bullet For general kernels: ${\cal O}(n^3)$ or ${\cal O}(m^2n)$ using an incomplete Cholesky decomposition of rank m
- Rounding
 - After the convex optimization, we obtain a low-rank matrix $M \in C_k$ which is pointwise nonnegative with unit diagonal
 - Spectral clustering algorithm on the matrix M (Ng & al., 2001)
 - NB : Diffrac works better than doing spectral clustering on A or K!

Semi-supervised learning

- Equivalence matrices *M* allows simple inclusion of prior knowledge (Xu et al., 2004, De Bie and Cristianini, 2006)
- "must-link" constraints (positive constraints) : $M_{ij} = 1$
 - With a square loss \Rightarrow equivalent to grouping into chuncks
- "must-not-link" constraints (negative constraints) : $M_{ij} = 0$

Simulations

- Clustering classification datasets
 - Performance measured by clustering error between 0 and $100(k\!-\!1)$
 - Comparison with K-means and RCA (Bar-Hillel et al., 2003)

Dataset	K-means	DIFFRAC	RCA
Mnist-linear 0%	5.6 ± 0.1	6.0 ± 0.4	
Mnist-linear 20%	4.5 ± 0.3	3.6 ± 0.3	3.0 ± 0.2
Mnist-linear 40%	2.9 ± 0.3	2.2 ± 0.2	$\boldsymbol{1.8\pm0.4}$
Mnist-RBF 0%	5.6 ± 0.2	4.9 ± 0.2	
Mnist-RBF 20%	4.6 ± 0.0	1.8 ± 0.4	4.1 ± 0.2
Mnist-RBF 40%	4.9 ± 0.0	0.9 ± 0.1	2.9 ± 0.1
Isolet-linear 0%	12.1 ± 0.6	12.3 ± 0.3	
lsolet-linear 20%	10.5 ± 0.2	7.8 ± 0.8	9.5 ± 0.4
lsolet-linear 40%	9.2 ± 0.5	3.7 ± 0.2	7.0 ± 0.4
Isolet-RBF 0%	11.4 ± 0.4	11.0 ± 0.3	
lsolet-RBF 20%	10.6 ± 0.0	7.5 ± 0.5	7.8 ± 0.5
lsolet-RBF 40%	10.0 ± 0.0	3.7 ± 1.0	6.9 ± 0.6

Simulations

- Semi-supervised classification
- Diffrac works with any amount of supervision
 - Diffrac works with any amount of supervision
 - Comparison with LDS (Chapelle & Zien, 2004)

