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Abstract

We present a novel linear clustering framework (DIFFRAC) which relies on a lin-
ear discriminative cost function and a convex relaxation ofa combinatorial op-
timization problem. The large convex optimization problemis solved through a
sequence of lower dimensional singular value decompositions. This framework
has several attractive properties: (1) although apparently similar to K-means, it
exhibits superior clustering performance than K-means, inparticular in terms of
robustness to noise. (2) It can be readily extended to non linear clustering if the
discriminative cost function is based on positive definite kernels, and can then be
seen as an alternative to spectral clustering. (3) Prior information on the partition
is easily incorporated, leading to state-of-the-art performance for semi-supervised
learning, for clustering or classification. We present empirical evaluations of our
algorithms on synthetic and real medium-scale datasets.

1 Introduction

Many clustering frameworks have already been proposed, with numerous applications in machine
learning, exploratory data analysis, computer vision and speech processing. However, these un-
supervised learning techniques have not reached the level of sophistication of supervised learning
techniques, that is, for all methods, there are still a significant number of explicit or implicit param-
eters to tune for successful clustering, most generally, the number of clusters and the metric or the
similarity structure over the space of configurations.

In this paper, we present adiscriminative andflexible framework forclustering (DIFFRAC), which
is aimed at alleviating some of those practical annoyances.Our framework is based on a recent
set of works [1, 2] that have used the support vector machine (SVM) cost function used for linear
classification as a clustering criterion, with the intuitive goal of looking for clusters which are most
linearly separable. This line of work has led to promising results; however, the large convex opti-
mization problems that have to be solved prevent application to datasets larger than few hundreds
data points.1 In this paper, we consider the maximum value of the regularized linear regression on
indicator matrices. By choosing a square loss (instead of the hinge loss), we obtain a simple cost
function which can be simply expressed in closed form and is amenable to specific efficient convex
optimization algorithms, that can deal with large datasetsof size 10,000 to 50,000 data points. Our
cost function turns out to be a linear function of the “equivalence matrix”M , which is a square
{0, 1}-matrix indexed by the data points, with value one for all pairs of data points that belong to
the same clusters, and zero otherwise. In order to minimize this cost function with respect toM , we
follow [1] and [2] by using convex outer approximations of the set of equivalence matrices, with a
novel constraint on the minimum number of elements per cluster, which is based on the eigenvalues
of M , and essential to the success of our approach.

1Recent work [3] has looked at more efficient formulations.



In Section 2, we present a derivation of our cost function andof the convex relaxations. In Section 3,
we show how the convex relaxed problem can be solved efficiently through a sequence of lower
dimensional singular value decompositions, while in Section 4, we show how a priori knowledge
can be incorporated into our framework. Finally, in Section5, we present simulations comparing
our new set of algorithms to other competing approaches.

2 Discriminative clustering framework

In this section, we first assume that we are givenn pointsx1, . . . , xn in R
d, represented in a matrix

X ∈ R
n×d. We represent the various partitions of{1, . . . , n} into k > 1 clusters byindicator

matricesy ∈ {0, 1}n×k such thaty1k = 1n, where1k and1n denote the constant vectors of all
ones, of dimensionsk andn. We let denoteIk the set ofk-class indicator matrices.

2.1 Discriminative clustering cost

Giveny, we consider the regularized linear regression problem ofy givenX , which takes the form:

min
w∈Rd×k, b∈R1×k

1
n‖y − Xw − 1nb‖2

F + κ tr w⊤w, (1)

where the Frobenius norm is defined for any vector or rectangular matrix as‖A‖2
F = trAA⊤ =

trA⊤A. Denotingf(x) = w⊤x + b ∈ R
k, this corresponds to a multi-label classification problem

with square loss functions [4, 5]. The main advantage of thiscost function is the possibility of (a)
minimizing the regularized cost in closed form and (b) including a bias term by simply centering
the data; namely, the global optimum is attained atw∗ = (X⊤ΠnX + nκIn)−1X⊤Πny andb∗ =
1
n1⊤n (y − Xw∗), whereΠn = In − 1

n1n1⊤n is the usual centering projection matrix. The optimal
value is then equal to

J(y, X, κ) = tr yy⊤A(X, κ), (2)

where then × n matrixA(X, κ) is defined as:

A(X, κ)= 1
nΠn(In−X(X⊤ΠnX + nκI)−1X⊤)Πn. (3)

The matrixA(X, κ) is positive semi-definite, i.e., for allu ∈ R
n, u⊤A(X, κ)u > 0, and1n is a

singular vector ofA(X, κ), i.e.,A(X, κ)1n = 0.

Following [1] and [2], we are thus looking for ak-class indicator matrixy such thattr yy⊤A(X, κ)
is minimal, i.e., for a partition such that the clusters are most linearly separated, where the sepa-
rability of clusters is measured through the minimum of the discriminative cost with respect to all
linear classifiers. This combinatorial optimization is NP-hard in general [6], but efficient convex
relaxations may be obtained, as presented in the next section.

2.2 Indicator and equivalence matrices

The cost function defined in Eq. (2) only involves the matrixM = yy⊤ ∈ R
n×n. We let denoteEk

the set of “k-class equivalence matrices”, i.e., the set of matricesM such that there exists ak-class
indicator matrixy with M = yy⊤.

There are many outer convex approximations of the discrete setsEk, based on different properties of
matrices inEk, that were used in different contexts, such as maximum cut problems [6] or correlation
clustering [7]. We have the following usual properties of equivalence matrices (independent ofk):
if M ∈ Ek, then (a)M is positive semidefinite (denoted asM < 0), (b) M has nonnegative values
(denoted asM > 0) , and (c) the diagonal ofM is equal to1n (denoted asdiag(M) = 1n).

Moreover, ifM corresponds to at mostk clusters, we haveM <
1
k1n1⊤n , which is a consequence to

the convex outer approximation of [6] for the maximumk-cut problem. We thus use the following
convex outer approximation:

Ck = {M ∈ R
n×n, M = M⊤, diag(M) = 1n, M > 0, M <

1
k1n1⊤n } ⊃ Ek.

Note that whenk = 2, the constraintsM > 0 (pointwise nonnegativity) is implied by the other
constraints.



2.3 Minimum cluster sizes

Given the discriminative nature of our cost function (and inparticular thatA(X, κ)1n = 0), the
minimum value 0 is always obtained withM = 1n1⊤n , a matrix of rank one, equivalent to a single
cluster. Given the number of desired clusters, we thus need to add some prior knowledge regarding
the size of those clusters. Following [1], we impose a minimum sizeλ0 for each cluster, through
row sums and eigenvalues:

Row sums If M ∈ Ek, thenM1n > λ01n andM1n 6 (n − (k − 1)λ0)1n (the cluster must be
smaller than(n − (k − 1)λ0) if they are all larger thanλ0)–this is the same constraint as in [1].

Eigenvalues WhenM ∈ Ek, the sizes of the clusters are exactly thek largest eigenvalues ofM .
Thus, for a matrix inEk, the minimum cluster size constraint is equivalent to

∑n
i=1 1λi(M)>λ0

>

k, whereλ1(M), . . . , λn(M) are then eigenvalues ofM . Functions of the formΦ(M) =∑n
i=1 φ(λi(M)) are referred to asspectral functionsand are particularly interesting in machine

learning and optimization, sinceΦ inherits fromφ many of its properties, such as differentiability
and convexity [8]. The previous constraint can be seen asΦ(M) > k, with φ(λ) = 1λ>λ0

, which
is not concave and thus does not lead to a convex constraint. In this paper we propose to use the
concave upper envelope of this function, namelyφλ0

(λ) = min{λ/λ0, 1}, thus leading to a novel
additional constraint.

Our final convex relaxation is thus of minimizingtrA(X, κ)M with respect toM ∈ Ck and
such thatΦλ0

(M) > k, M1n > λ01n and M1n 6 (n − (k − 1)λ0)1n, whereΦλ0
(M) =∑n

i=1 min{λi(M)/λ0, 1}. The clustering results are empirically robust to the valueof λ0. In all
our simulations we useλ0 = ⌊n/2k⌋.

2.4 Comparison with K-means

Our method bears some resemblance with the usualK-means algorithm. Indeed, in the unregular-
ized case (κ = 0), we aim to minimize

tr Πn(In − X(X⊤ΠnX)−1X⊤)Πnyy⊤.

Results from [9] show that K-means aims at minimizing the following criterion with respect toy:

min
µ∈Rk×d

‖X − yµ‖2
F = tr(In − y(y⊤y)−1y⊤)(ΠnX)(ΠnX)⊤.

The main differences between the two cost functions are that(1) we require an additional parameter,
namely the minimum number of elements per cluster and (2) ourcost function normalizes the data,
while the K-means distortion measure normalizes the labels. This apparently little difference has
a significant impact on the performance, as our method is invariant by affine scaling of the data,
while K-means is only invariant by translation, isometriesand isotropic scaling, and is very much
dependent on how the data are presented (in particular the marginal scaling of the variables). In
Figure 1, we compare the two algorithms on a simple synthetictask with noisy dimensions, showing
that ours is more robust to noisy features. Note that using a discriminative criterion based on the
square loss may lead to themasking problem[4], which can be dealt with in the usual way by using
second-order polynomials or, equivalently, a polynomial kernel.

2.5 Kernels

The matrixA(X, κ) in Eq. (3) can be expressed only in terms of the Gram matrixK = XX⊤.
Indeed, using the matrix inversion lemma, we get:

A(K, κ) = κΠn(K̃ + nκIn)−1Πn, (4)

whereK̃ = ΠnKΠn is the “centered Gram matrix” of the pointsX . We can thus apply our
framework with any positive definite kernel [5].

2.6 Additional relaxations

Our convex optimization problem can be further relaxed. An interesting relaxation is obtained by
(1) relaxing the constraintsM <

1
k1n1⊤n into M < 0, (2) relaxingdiag(M) = 1n into trM = n,
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Figure 1: Comparison with K-means, on a two-dimensional dataset composed of two linearly sep-
arable bumps (100 data points, plotted in the left panel), with additional random independent noise
dimensions (with normal distributions with same marginal variances as the 2D data). The clustering
performance is plotted against the number of irrelevant dimensions, for regular K-means and our
DIFFRAC approach (right panel, averaged over 50 replications with the standard deviation in dotted
lines) . The clustering performance is measured by a metric between partitions defined in Section 5,
which is always between 0 and 1.

and (3) removing the constraintM > 0 and the constraints on the row sums. A short calculation
shows that this relaxation leads to an eigenvalue problem: let A =

∑n
i=1 aiuiu

⊤
i be an eigenvalue

decomposition ofA, wherea1 6 · · · 6 an are the sorted eigenvalues. The minimal value of the
relaxed convex optimization problem is attained atM =

∑j
i=1 uiu

⊤
i + (n − λ0j)uj+1u

⊤
j+1, with

j = ⌊n/λ0⌋. This additional relaxation into an eigenvalue problem is the basis of our efficient
optimization algorithm in Section 3.

In the kernel formulation, since the smallest eigenvectorsof A = 1
nΠn(K̃ + nκIn)−1Πn are the

same as the largest eigenvectors ofK̃, the relaxed problem is thus equivalent to kernel principal
component analysis [10, 5] in the kernel setting, and in the linear setting to regular PCA (followed by
our rounding procedure presented in Section 3.3). In the linear setting, since PCA has no clustering
effects in general2, it is clear that the constraints that were removed are essential to the clustering
performance. In the kernel setting, experiments have shownthat the most important constraint to
keep in order to achieve the best embedding and clustering isthe constraintdiag(M) = 1n.

3 Optimization

Sinceφλ0
(λ) = 1

2λ0

(λ + λ0 − |λ − λ0|), and the sum of singular values can be represented as a
semidefinite program (SDP), our problem is an SDP. It can thusbe solved to any given accuracy in
polynomial time by general purpose interior-point methods[12]. However, the number of variables
is O(n2) and thus the complexity of general purpose algorithms will be at leastO(n7); this remains
much too slow for medium scale problems, where the number of data points is between 1,000 and
10,000. We now present an efficient approximate method that uses the specificity of the problem to
reduce the computational load.

3.1 Optimization by partial dualization

We saw earlier that by relaxing some of the constraints, we get back an eigenvalue problem. Eigen-
value decompositions are among the most important tools in numerical algebra and algorithms and
codes are heavily optimized for these, and it is thus advantageous to rely on a sequence of eigenvalue
decompositions for large scale algorithms.

We can dualize some constraints while keeping others; this leads to the following proposition:

2Recent results show however that it does have an effect when clusters are spherical Gaussians [11].



Proposition 1 The solution of the convex optimization problem defined in Section 2.3 can be ob-
tained my maximizingF (β) = minM<0,trM=n,Φλ0

(M)>k trB(β)M −b(β) with respect toβ, where

B(β) = A + Diag(β1) −
1

2
(β2 − β3)1

⊤ −
1

2
1(β2 − β3)

⊤ − β4 +
1

2

β5β
⊤
5

β6

b(β) = β⊤
1 1 − (n − (k − 1)λ0)β

⊤
2 1 + λ0β

⊤
3 1 + kβ6/2 + β⊤

5 1,

andβ1 ∈ R
n, β2 ∈ R

n
+, β3 ∈ R

n
+, β4 ∈ R

n×n
+ ,β5 ∈ R

n, β6 ∈ R+.

The variablesβ1, β2, β3, β4, (β5, β6) correspond to the respective dualizations of the constraints

diag(M) = 1n, M1n 6 (n − (k − 1)λ0)1n, M1n > λ01n, M > 0, andM <
1n1⊤

n

k .

The functionJ(B) = minM<0,trM=n,Φλ0
(M)>k trBM is a spectral convex function and may be

computed in closed form through an eigenvalue decomposition. Moreover, a subgradient may be
easily computed, readily leading to a numerically efficientsubgradient method in fewer dimensions
thann2. Indeed, if we subsample the pointwise positivity constraint N > 0 (so thatβ4 has only a
size smaller thann1/2 × n1/2), then the set of dual variablesβ we are trying to maximize has linear
size inn (instead of the primal variableM being quadratic inn).

More refined optimization schemes, based on smoothing of thespectral functionJ(B) by
minM<0,trM=n,Φλ0

(M)>k[trBM +εtrM2] are also used to speed up convergence (steepest descent
of a smoothed function is generally faster than subgradientiterations) [13].

3.2 Computational complexity

The running time complexity can be splitted into initialization procedures and per iteration com-
plexity. The per iteration complexity depends directly on the cost of our eigenvalue problems, which
themselves are linear in the matrix-vector operation with the matrixA (we only require a fixed small
number of eigenvalues). In all situations, we manage to keepa linear complexity in the numbern
of data points. Note, however, that the number of descent iterations cannot be bounded a priori; in
simulations we limit the number of those iterations to 200.

For linear kernels with dimensiond, the complexity of initialization isO(d2n), while the complexity
of each iteration is proportional to the cost of performing amatrix-vector operation withA, that is,
O(dn). For general kernels, the complexity of initialization isO(n3), while the complexity of each
iteration isO(n2). However, using an incomplete Cholesky decomposition [5] makes all costs linear
in n.

3.3 Rounding

After the convex optimization, we obtain a low-rank matrixM ∈ Ck which is pointwise nonnegative
with unit diagonal, of the formUU⊤ whereU ∈ R

n×m. We need to project it back to the discrete
Ek. We have explored several possibilities, all with similar results. We propose the following pro-
cedure: we first projectM back to the set of matrices of rankk and unit diagonal, by computing
an eigendecomposition, rescaling the firstk eigenvectors to unit norms and then perform K-means,
which is equivalent to performing the spectral clustering algorithm of [14] on the matrixM .

4 Semi-supervised learning

Working with equivalence matricesM allows to easily include prior knowledge on the clus-
ters [2, 15, 16], namely, “must-link” constraints (also referred to a positive constraints) for which we
constrain an element ofM to be one, and “must-not-link” constraints (also referred to as negative
constraints), for which we constrain an element ofM to be zero. Those two constraints are linear in
M and can thus easily be included in our convex formulation.

We assume throughout this section that we have a set of “must-link” pairs P+ and a set of “must-
not-link” pairsP−. Moreover, we assume that the set of positive constraints isclosed, i.e., that if
there is a path of positive constraints between two data points, then these two data points are already
forming a pair inP+. If the set of positive pairs does not satisfy this assumption, a larger set of pairs
can be obtained by transitive closure.



0 20 40

0

0.5

1

noise dimension

cl
us

te
rin

g 
er

ro
r

20 %  x  n

 

 

0 20 40

0

0.5

1

40 %  x  n

noise dimension

K−means

diffrac

Figure 2: Comparison with K-means in the semi-supervised setting, with data taken from Figure 1:
clustering performance (averaged over 50 replications, with standard deviations in dotted) vs. num-
ber of irrelevant dimensions, with20% × n and40% × n random matching pairs used for semi-
supervision.

Positive constraints Given our closure assumption onP+, we get a partition of{1, . . . , n} into
p “chunks” of size greater or equal to 1. The singletons in thispartition correspond to data points
that are not involved in any positive constraints, while other subsets corresponds to chunks of data
points that must occur together in the final partition. We letCj , j = 1, . . . , p denote those groups,
and letP denote then × p {0, 1}-matrix defined such that each column (indexed byj) is equal to
one for rows inCj and zero otherwise. Forcing those groups is equivalent to consideringM of the
form M = PMP P⊤, whereMP is an equivalence matrix of sizep. Note that the positive constraint
Mij = 1 is in fact turned into the equality of columns (and thus rows by symmetry)i andj of M ,
which is equivalent whenM ∈ Ek, but much stronger forM ∈ Ck.

In our linear clustering framework, this is in fact equivalent to (a) replacing each chunk by its
mean, (b) adding a weight equal to the number of elements in the group into the discriminative cost
function and (c) modifying the regularization matrix to take into account the inner variance within
each chunk. Positive constraints can be similarly includedinto K-means, to form a reduced weighted
K-means problem, which is simpler than other approaches to deal with positive constraints [17].

In Figure 2, we compare constrained K-means and the DIFFRAC framework under the same setting
as in Figure 1, with different numbers of randomly selected positive constraints.

Negative constraints After the chunks corresponding to positive constraints have been collapsed
to one point, we extend the set of negative constraints to those collapsed points (if the constraints
were originally consistent, the negative constraints can be uniquely extended). In our optimization
framework, we simply add a penalty function of the form1

ε|P−|

∑
(i,j)∈P−

M2
ij . The K-means

rounding procedure also has to be constrained, e.g., using the procedure of [17].

5 Simulations

In this section, we apply the DIFFRAC framework to various clustering problems and situa-
tions. In all our simulations, we use the following distancebetween partitionsB = B1 ∪
· · · ∪ Bk andB′ = B′

1 ∪ · · · ∪ B′
k′ into k andk′ disjoints subsets of{1, . . . , n}: d(B, B′) =

(
k + k′ − 2

∑
i,i′

Card(Bi∩B′

i′
)2

Card(Bi)Card(B′

i′
)

)1/2

. d(B, B′) defines a distance over the set of partitions [9]

which is always between0 and(k + k′ − 2)1/2. When comparing partitions, we use the squared
distance1

2d(B, B′)2, which is always between0 and k+k′

2 − 1 (and between0 andk − 1, if the two
partitions have the same number of clusters).

5.1 Clustering classification datasets

We looked at the Isolet dataset (26 classes, 5,200 data points) from the UCI repository and the
MNIST datasets of handwritten digits (10 classes, 5,000 data points). For each of those datasets,
we compare the performances of K-means, RCA [18] and DIFFRAC, for linear and Gaussian ker-
nels (referred to as “rbf”), for fixed value of the regularization parameter, with different levels of
supervision. Results are presented in Table 1: on unsupervised problems, K-means and DIFFRAC



Dataset K-means DIFFRAC RCA
Mnist-linear0% 5.6± 0.1 6.0 ± 0.4
Mnist-linear20% 4.5 ± 0.3 3.6 ± 0.3 3.0± 0.2
Mnist-linear40% 2.9 ± 0.3 2.2 ± 0.2 1.8± 0.4
Mnist-RBF0% 5.6 ± 0.2 4.9± 0.2
Mnist-RBF20% 4.6 ± 0.0 1.8± 0.4 4.1 ± 0.2
Mnist-RBF40% 4.9 ± 0.0 0.9± 0.1 2.9 ± 0.1
Isolet-linear0% 12.1± 0.6 12.3 ± 0.3
Isolet-linear20% 10.5 ± 0.2 7.8± 0.8 9.5 ± 0.4
Isolet-linear40% 9.2 ± 0.5 3.7± 0.2 7.0 ± 0.4
Isolet-RBF0% 11.4 ± 0.4 11.0± 0.3
Isolet-RBF20% 10.6 ± 0.0 7.5± 0.5 7.8 ± 0.5
Isolet-RBF40% 10.0 ± 0.0 3.7± 1.0 6.9 ± 0.6

Table 1: Comparison of K-means, RCA and linear DIFFRAC, using the clustering metric defined in
Section 5 (averaged over 10 replications), for linear and “rbf” kernels and various levels of supervi-
sion.

have similar performance, while on semi-supervised problems, and in particular for nonlinear ker-
nels, DIFFRAC outperforms both K-means and RCA. Note that all algorithms work on the same
data representation (linear or kernelized) and that differences are due to the underlying clustering
frameworks.

5.2 Semi-supervised classification

To demonstrate the effectiveness of our method in a semi-supervised learning (SSL) context, we
performed experiments on some benchmarks datasets for SSL described in [19]. We considered the
following datasets: COIL, BCI and Text. We carried out the experiments in a transductive setting,
i.e., the test set coincides with the set of unlabelled samples. This allowed us to conduct a fair
comparison with the low density separation (LDS) algorithmof [19], which is an enhanced version
of the so-called Transductive SVM. However, deriving “out-of-sample” extensions for our method
is straightforward.

A primary goal in semi-supervised learning is to take into account a large number of labelled points
in order to dramatically reduce the number of labelled points required to achieve a competitive
classification accuracy. Henceforth, our experimental setting consists in observing how fast the
classification accuracy collapses as the number of labelledpoints increases. The less labelled points
a method needs to achieve decent classification accuracy, the more it is relevant for semi-supervised
learning tasks. As shown in Figure 3, our method yields competitive classification accuracy with
very few labelled points on the three datasets. Moreover, DIFFRAC reaches unexpectedly good re-
sults on the Text dataset, where most semi-supervised learning methods usually show disappointing
performance. One explanation might be that DIFFRAC acts as an “augmented”-clustering algorithm,
whereas most semi-supervised learning algorithms are built as “augmented”-versions of traditional
supervised learning algorithms such as LDS which is built onSVMs for instance. Hence, for datasets
exhibiting multi-class structure such as Text, DIFFRAC is more able to utilize unlabelled points
since it based on a multi-class clustering algorithm ratherthan algorithms based on binary SVMs,
where multi-class extensions are currently unclear. Thus,our experiments support the fact that semi-
supervised learning algorithms built on clustering algorithms augmented with labelled data acting
as hints on clusters are worth for investigation and furtherresearch.

6 Conclusion

We have presented a discriminative framework for clustering based on the square loss and penaliza-
tion through spectral functions of equivalence matrices. Our formulation enables the easy incorpora-
tion of semi-supervised constraints, which leads to state-of-the-art performance in semi-supervised
learning. Moreover, our discriminative framework should allow to use existing methods for learn-
ing the kernel matrix from data [20]. Finally, we are currently investigating the use of DIFFRAC in
semi-supervised image segmentation. In particular, earlyexperiments on estimating the number of
clusters using variation rates of our discriminative costsare very promising.
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Figure 3: Semi-supervised classification.

References

[1] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. InAdv. NIPS, 2004.

[2] T. De Bie and N. Cristianini. Fast SDP relaxations of graph cut clustering, transduction, and other com-
binatorial problems.J. Mac. Learn. Res., 7:1409–1436, 2006.

[3] K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. InProc. ICML,
2007.

[4] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer-Verlag, 2001.

[5] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Camb. Univ. Press, 2004.

[6] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and MAX BISECTION.
In Integer Programming and Combinatorial Optimization, volume 920, pages 1–13. Springer, 1995.

[7] C. Swamy. Correlation clustering: maximizing agreements via semidefinite programming. InACM-SIAM
Symp. Discrete algorithms, 2004.

[8] A. S. Lewis and H. S. Sendov. Twice differentiable spectral functions. SIAM J. Mat. Anal. App.,
23(2):368–386, 2002.

[9] F R. Bach and M I. Jordan. Learning spectral clustering, with application to speech separation.J. Mac.
Learn. Res., 7:1963–2001, 2006.

[10] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural Comp., 10(3):1299–1319, 1998.

[11] N. Srebro, G. Shakhnarovich, and S. Roweis. An investigation of computational and informational limits
in gaussian mixture clustering. InProc. ICML, 2006.

[12] S. Boyd and L. Vandenberghe.Convex Optimization. Camb. Univ. Press, 2003.
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[17] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained K-means clustering with background
knowledge. InProc. ICML, 2001.

[18] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using equivalence
relations. InProc. ICML, 2003.

[19] O. Chapelle and A. Zien. Semi-supervised classification by low density separation. InProc. AISTATS,
2004.

[20] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiplekernel learning, conic duality, and the SMO
algorithm. InProc. ICML, 2004.


