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Abstract

We present a novel linear clustering frameworkfERAC) which relies on a lin-
ear discriminative cost function and a convex relaxatiom @ombinatorial op-
timization problem. The large convex optimization problsnsolved through a
sequence of lower dimensional singular value decompasitid his framework
has several attractive properties: (1) although apparentiilar to K-means, it
exhibits superior clustering performance than K-meangairicular in terms of
robustness to noise. (2) It can be readily extended to neatinlustering if the
discriminative cost function is based on positive defingenels, and can then be
seen as an alternative to spectral clustering. (3) Priorinétion on the partition
is easily incorporated, leading to state-of-the-art penfince for semi-supervised
learning, for clustering or classification. We present erogi evaluations of our
algorithms on synthetic and real medium-scale datasets.

1 Introduction

Many clustering frameworks have already been proposeti, witnerous applications in machine
learning, exploratory data analysis, computer vision gmeesh processing. However, these un-
supervised learning techniques have not reached the légelpbistication of supervised learning
techniques, that is, for all methods, there are still a §icgnit number of explicit or implicit param-
eters to tune for successful clustering, most generaklyntimber of clusters and the metric or the
similarity structure over the space of configurations.

In this paper, we presentdiscriminative andlexible framework forclustering (DFFRAC), which

is aimed at alleviating some of those practical annoyan€as. framework is based on a recent
set of works [1, 2] that have used the support vector macl8wM) cost function used for linear
classification as a clustering criterion, with the intugtiyoal of looking for clusters which are most
linearly separable. This line of work has led to promisingutes; however, the large convex opti-
mization problems that have to be solved prevent appliocaticdatasets larger than few hundreds
data points. In this paper, we consider the maximum value of the reguddrlinear regression on
indicator matrices. By choosing a square loss (insteadeohthge loss), we obtain a simple cost
function which can be simply expressed in closed form andnisrable to specific efficient convex
optimization algorithms, that can deal with large datasétsize 10,000 to 50,000 data points. Our
cost function turns out to be a linear function of the “eqlémee matrix” M, which is a square
{0, 1}-matrix indexed by the data points, with value one for alrpaf data points that belong to
the same clusters, and zero otherwise. In order to minirhisecbst function with respect to/, we
follow [1] and [2] by using convex outer approximations oétbet of equivalence matrices, with a
novel constraint on the minimum number of elements per etusthich is based on the eigenvalues
of M, and essential to the success of our approach.

*Recent work [3] has looked at more efficient formulations.



In Section 2, we present a derivation of our cost functiona@tie convex relaxations. In Section 3,
we show how the convex relaxed problem can be solved effigi#mough a sequence of lower
dimensional singular value decompositions, while in Sec#t, we show how a priori knowledge
can be incorporated into our framework. Finally, in Sectiorwe present simulations comparing
our new set of algorithms to other competing approaches.

2 Discriminative clustering framework

In this section, we first assume that we are gingoointsz1, . .., z,, in R?, represented in a matrix
X € R™*4, We represent the various partitions {df, . .., n} into ¥ > 1 clusters byindicator
matricesy € {0,1}"** such thatyl, = 1,, wherel, and1,, denote the constant vectors of all
ones, of dimensions andn. We let denot&;, the set ofk-class indicator matrices.

2.1 Discriminative clustering cost
Giveny, we consider the regularized linear regression problegngifen X', which takes the form:
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where the Frobenius norm is defined for any vector or rectangoatrix as||A[2 = trAAT =
trAT A. Denotingf(z) = w'xz + b € R¥, this corresponds to a multi-label classification problem
with square loss functions [4, 5]. The main advantage of¢bi& function is the possibility of (a)
minimizing the regularized cost in closed form and (b) imithg a bias term by simply centering
the data; namely, the global optimum is attainedat= (X "1, X + nxl,) ' X "I,y andb* =
110 (y — Xw*), wherell,, = I,, — 11,1 is the usual centering projection matrix. The optimal
value is then equal to

Iy, X, k) = tryy " A(X, k), €

where then x n matrix A(X, ) is defined as:
A(X, 8)= 110, (I, - X (X TIL, X + nwl) ' X T)IL,. (3)

The matrix A(X, ) is positive semi-definite, i.e., for all € R*, u" A(X,x)u > 0, and1,, is a
singular vector ofA( X, ), i.e., A(X, k)1, = 0.

Following [1] and [2], we are thus looking for/aclass indicator matriy such thatr yy " A(X, x)

is minimal, i.e., for a partition such that the clusters amstiinearly separated, where the sepa-
rability of clusters is measured through the minimum of theedminative cost with respect to all
linear classifiers. This combinatorial optimization is N&d in general [6], but efficient convex
relaxations may be obtained, as presented in the next sectio

2.2 Indicator and equivalence matrices

The cost function defined in Eq. (2) only involves the mafvix= yy ' € R™*". We let denotey,
the set of k-class equivalence matrices”, i.e., the set of matricesuch that there existsfaclass
indicator matrixy with A/ = yy T.

There are many outer convex approximations of the discets€’s, based on different properties of
matrices iry, that were used in different contexts, such as maximum altipms [6] or correlation
clustering [7]. We have the following usual properties ofieglence matrices (independentigf

if M € &, then (2)M is positive semidefinite (denoted as$ = 0), (b) M has nonnegative values
(denoted ag/ > 0), and (c) the diagonal ot/ is equal tol,, (denoted adiag(M) = 1,,).

Moreover, if M corresponds to at mostclusters, we hava/ = %1,11;, which is a consequence to
the convex outer approximation of [6] for the maximéntut problem. We thus use the following
convex outer approximation:

Ch={MeR™", M=M", diag(M)=1,, M >0, M = £1,1]} D &.

Note that wherk = 2, the constraintd/ > 0 (pointwise nonnegativity) is implied by the other
constraints.



2.3  Minimum cluster sizes

Given the discriminative nature of our cost function (angarticular thatd(X, x)1,, = 0), the
minimum value 0 is always obtained wiff = 1,,1,", a matrix of rank one, equivalent to a single
cluster. Given the number of desired clusters, we thus neadd some prior knowledge regarding
the size of those clusters. Following [1], we impose a minimgize \q for each cluster, through
row sums and eigenvalues:

Row sums If M € &, thenM1, > \ol, andM1, < (n — (k — 1)\o)1,, (the cluster must be
smaller thann — (k — 1)\o) if they are all larger thany)—this is the same constraint as in [1].

Eigenvalues WhenM < &, the sizes of the clusters are exactly thiargest eigenvalues af/ .
Thus, for a matrix i, the minimum cluster size constraint is equivalendf® ; 1, a)>x, >

k, where \; (M), ..., \,(M) are then eigenvalues ofdM. Functions of the form®(M) =
S d(A\i(M)) are referred to aspectral functionsaand are particularly interesting in machine
learning and optimization, sine® inherits from¢ many of its properties, such as differentiability
and convexity [8]. The previous constraint can be seef(@d) > k, with ¢(\) = 1x>,,, which

is not concave and thus does not lead to a convex constrairthid paper we propose to use the
concave upper envelope of this function, namgly(\) = min{\/\o, 1}, thus leading to a novel
additional constraint.

Our final convex relaxation is thus of minimizing A(X, k)M with respect toM € C, and
such thatd,, (M) > k, M1, > Xl, and M1, < (n — (k — 1)X\)1,, where®, (M) =
> min{\;(M)/No, 1}. The clustering results are empirically robust to the vaitig,. In all
our simulations we usg, = |n/2k].

2.4 Comparison with K-means

Our method bears some resemblance with the usuaieans algorithm. Indeed, in the unregular-
ized case = 0), we aim to minimize

tr I, (I, — X (X "1, X) "' X DILyy".
Results from [9] show that K-means aims at minimizing théofwing criterion with respect tg:

min HX - y/‘”%«“ = tr(l, — y(yTy)_lyT)(HnX)(HnX)T-
pERRXd

The main differences between the two cost functions argthate require an additional parameter,
namely the minimum number of elements per cluster and (2yosirfunction normalizes the data,
while the K-means distortion measure normalizes the labEftés apparently little difference has

a significant impact on the performance, as our method igievBby affine scaling of the data,

while K-means is only invariant by translation, isometréesl isotropic scaling, and is very much
dependent on how the data are presented (in particular thgimabscaling of the variables). In

Figure 1, we compare the two algorithms on a simple syntiesicwith noisy dimensions, showing
that ours is more robust to noisy features. Note that usinig@ichinative criterion based on the
square loss may lead to theasking problenid], which can be dealt with in the usual way by using
second-order polynomials or, equivalently, a polynoméhiel.

2.5 Kernels

The matrix A(X, ) in Eq. (3) can be expressed only in terms of the Gram madtix X X .
Indeed, using the matrix inversion lemma, we get:

A(K, k) = KLy (K 4 nkl,) " 'L,, 4)
where K = II,K1I, is the “centered Gram matrix” of the poinfs. We can thus apply our
framework with any positive definite kernel [5].

2.6 Additional relaxations

Our convex optimization problem can be further relaxed. Bteriesting relaxation is obtained by
(1) relaxing the constraintd/ = +1,1, into M = 0, (2) relaxingdiag(M) = 1,, into trM = n,
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Figure 1. Comparison with K-means, on a two-dimensionaskttcomposed of two linearly sep-
arable bumps (100 data points, plotted in the left paneth adlditional random independent noise
dimensions (with normal distributions with same margiraiances as the 2D data). The clustering
performance is plotted against the number of irrelevantedgisions, for regular K-means and our
DIFFRAC approach (right panel, averaged over 50 replications wighstandard deviation in dotted
lines) . The clustering performance is measured by a mettiwden partitions defined in Section 5,
which is always between 0 and 1.

and (3) removing the constraidt > 0 and the constraints on the row sums. A short calculation
shows that this relaxation leads to an eigenvalue problet k= Y7 | a;u;u; be an eigenvalue
decomposition ofA, wherea; < --- < a,, are the sorted‘eigenvalues. The minimal value of the

relaxed convex optimization problem is attainedvat= >"7_, uu, + (n — /\oj)ujﬂujll, with
j = |n/Xo]. This additional relaxation into an eigenvalue problemhis basis of our efficient

optimization algorithm in Section 3.

In the kernel formulation, since the smallest eigenveatbrd = %Hn(f( + nkl,) 1L, are the

same as the largest eigenvectorgiof the relaxed problem is thus equivalent to kernel principal
componentanalysis [10, 5] in the kernel setting, and initiealr setting to regular PCA (followed by
our rounding procedure presented in Section 3.3). In tleatisetting, since PCA has no clustering
effects in generd) it is clear that the constraints that were removed are @ssémthe clustering
performance. In the kernel setting, experiments have shbainthe most important constraint to
keep in order to achieve the best embedding and clusterihg isonstraintliag(M) = 1,,.

3 Optimization

Sincegy, (A) = ﬁ()\ + Ao — |A — Aol), and the sum of singular values can be represented as a
semidefinite program (SDP), our problem is an SDP. It can bieusolved to any given accuracy in
polynomial time by general purpose interior-point methdd§. However, the number of variables

is O(n?) and thus the complexity of general purpose algorithms wveilableasO(n"); this remains
much too slow for medium scale problems, where the numbeat points is between 1,000 and
10,000. We now present an efficient approximate method #es the specificity of the problem to
reduce the computational load.

3.1 Optimization by partial dualization

We saw earlier that by relaxing some of the constraints, wéaek an eigenvalue problem. Eigen-
value decompositions are among the most important toolsmmemical algebra and algorithms and
codes are heavily optimized for these, and it is thus adgamas to rely on a sequence of eigenvalue
decompositions for large scale algorithms.

We can dualize some constraints while keeping others;ehidd to the following proposition:

’Recent results show however that it does have an effect wheters are spherical Gaussians [11].



Proposition 1 The solution of the convex optimization problem defined oti@e 2.3 can be ob-
tained my maximizing'(3) = N L0t M=n, By, (M) >k trB(3)M — b(3) with respect tg3, where

.
(B2 — Ba)1" — %1(ﬁ2—ﬁ3)T—ﬁ4+%55ﬁi‘5

b(B) =B 1= (n— (k—1)Ao)Bs 1+ AofB3 1+ kBs/2+ 5 1,
andg; € R™, B2 € R%, B3 € R}, B4 € RT*",35 € R™, 5 € Ry

B(p) = A+ Diag(61) —

N =

The variables3;, 52, (s, B4, (85, 06) correspond to the respective dualizations of the congsrain
T
diag(M) = 1,, M1,, < (n — (k — 1)Ao)1n, M1, = Noln, M >0, andM 3 12la

The functionJ(B) = MDA 50, M=n, 5, (M) >k tTBM is a spectral convex function and may be
computed in closed form through an eigenvalue decompasitidoreover, a subgradient may be
easily computed, readily leading to a numerically efficeutbgradient method in fewer dimensions
thann?. Indeed, if we subsample the pointwise positivity constrai > 0 (so that3, has only a
size smaller than'/2 x n'/?), then the set of dual variablgswe are trying to maximize has linear
size inn (instead of the primal variabl&/ being quadratic im).

More refined optimization schemes, based on smoothing ofsgiectral functionJ(B) by
minM?OMM:n@AO(M»k[trBM—l-EtrMQ] are also used to speed up convergence (steepest descent

of a smoothed function is generally faster than subgradiersttions) [13].

3.2 Computational complexity

The running time complexity can be splitted into initialiva procedures and per iteration com-
plexity. The per iteration complexity depends directly ba tost of our eigenvalue problems, which
themselves are linear in the matrix-vector operation withrhatrixA (we only require a fixed small
number of eigenvalues). In all situations, we manage to kelapear complexity in the number

of data points. Note, however, that the number of descenattites cannot be bounded a priori; in
simulations we limit the number of those iterations to 200.

For linear kernels with dimensiaf) the complexity of initialization i€ (d?n), while the complexity
of each iteration is proportional to the cost of performingaitrix-vector operation witd, that is,
O(dn). For general kernels, the complexity of initializationd$n?), while the complexity of each
iteration isO(n?). However, using an incomplete Cholesky decomposition [@es all costs linear
in n.

3.3 Rounding

After the convex optimization, we obtain a low-rank matkik € C;, which is pointwise nonnegative
with unit diagonal, of the forni/UU T wherelUU € R™*™. We need to project it back to the discrete
&r. We have explored several possibilities, all with similesults. We propose the following pro-
cedure: we first projecd/ back to the set of matrices of ratkand unit diagonal, by computing
an eigendecomposition, rescaling the firgtigenvectors to unit norms and then perform K-means,
which is equivalent to performing the spectral clusterifygpathm of [14] on the matrix\/.

4 Semi-supervised learning

Working with equivalence matricesd/ allows to easily include prior knowledge on the clus-
ters[2, 15, 16], namely, “must-link” constraints (alsoae€d to a positive constraints) for which we
constrain an element gff to be one, and “must-not-link” constraints (also referr@é@s$ negative
constraints), for which we constrain an elemeni6to be zero. Those two constraints are linear in
M and can thus easily be included in our convex formulation.

We assume throughout this section that we have a set of “limk&tpairs P, and a set of “must-
not-link” pairs P_. Moreover, we assume that the set of positive constrairtdkoged i.e., that if
there is a path of positive constraints between two datagdimen these two data points are already
forming a pair inP,.. If the set of positive pairs does not satisfy this assunmpidarger set of pairs
can be obtained by transitive closure.
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Figure 2: Comparison with K-means in the semi-supervisétthge with data taken from Figure 1:
clustering performance (averaged over 50 replicationt, standard deviations in dotted) vs. num-
ber of irrelevant dimensions, witt0% x n and40% x n random matching pairs used for semi-
supervision.

Positive constraints Given our closure assumption @, we get a partition of 1, ...,n} into

p “chunks” of size greater or equal to 1. The singletons in gadition correspond to data points
that are not involved in any positive constraints, whileestbubsets corresponds to chunks of data
points that must occur together in the final partition. We(letj = 1, ..., p denote those groups,
and letP denote ther x p {0, 1}-matrix defined such that each column (indexedjpis equal to
one for rows inC; and zero otherwise. Forcing those groups is equivalentrisidering)! of the
formM = PMpPT, whereMp is an equivalence matrix of size Note that the positive constraint
M;; = 1lis in fact turned into the equality of columns (and thus rowsypmmetry) and;j of M,
which is equivalent whed/ € &, but much stronger fok/ € Cy.

In our linear clustering framework, this is in fact equivaléo (a) replacing each chunk by its
mean, (b) adding a weight equal to the number of elementsigitbup into the discriminative cost
function and (c) modifying the regularization matrix to ¢akito account the inner variance within
each chunk. Positive constraints can be similarly includarK-means, to form a reduced weighted
K-means problem, which is simpler than other approachesabwlith positive constraints [17].

In Figure 2, we compare constrained K-means and tire®nc framework under the same setting
as in Figure 1, with different numbers of randomly selectesifive constraints.

Negative constraints After the chunks corresponding to positive constraintehasen collapsed
to one point, we extend the set of negative constraints tsetltollapsed points (if the constraints
were originally consistent, the negative constraints cantfiquely extended). In our optimization
frameyvork, we simply add a penalty fungtion of the fc-)@% Z(m.)epf ij The K-means
rounding procedure also has to be constrained, e.g., usingrocedure of [17].

5 Simulations

In this section, we apply the IBFRAC framework to various clustering problems and situa-
tions. In all our simulations, we use the following distarteetween partitions3 = B; U
---UBpandB' = Bj{ U---U By, into k andk’ disjoints subsets of1,...,n}: d(B,B’) =

(k +E =237 %)1/2. d(B, B’) defines a distance over the set of partitions [9]
which is always betweef and (k 4 &’ — 2)'/2. When comparing partitions, we use the squared
distance}d(B, B')?, which is always betwee(mand“T’“/ —1 (and betweef andk — 1, if the two
partitions have the same number of clusters).

5.1 Clustering classification datasets

We looked at the Isolet dataset (26 classes, 5,200 dataspdiotn the UCI repository and the
MNIST datasets of handwritten digits (10 classes, 5,008 gaints). For each of those datasets,
we compare the performances of K-means, RCA [18] ame-RAc, for linear and Gaussian ker-
nels (referred to as “rbf”), for fixed value of the regulatina parameter, with different levels of
supervision. Results are presented in Table 1: on unswgeghygroblems, K-means anddbRAC



Dataset K-means | DIFFRAC RCA
Mnist-linear0% | 5.6 £0.1| 6.0+ 0.4
Mnist-linear20%| 4.5+0.3| 3.6+0.3|3.0£0.2
Mnist-lineard0%| 2.9+03| 22+02|1.8+04
Mnist-RBF 0% 56+0.2]49+0.2
Mnist-RBF20% | 4.6+0.0|1.8+04| 4.1+0.2
Mnist-RBF40% | 4.9+0.0|09+0.1| 2.94+0.1
Isolet-linear0% |12.1 +0.6/12.3+0.3
Isolet-linear20% | 10.5+0.2| 7.8 £0.8| 9.5+ 0.4
Isolet-lineard0% | 9.24+0.5|3.7+£0.2| 7.0£04
Isolet-RBF0% 114+04(11.0+0.3
Isolet-RBF20% | 10.6 +0.0| 7.5+ 0.5| 7.8 £ 0.5
Isolet-RBF40% | 10.0+0.0{ 3.7+1.0| 6.9+0.6

Table 1: Comparison of K-means, RCA and linearfRAC, using the clustering metric defined in
Section 5 (averaged over 10 replications), for linear abd"kernels and various levels of supervi-
sion.

have similar performance, while on semi-supervised prablend in particular for nonlinear ker-
nels, DFFRAC outperforms both K-means and RCA. Note that all algorithneskwon the same
data representation (linear or kernelized) and that diffees are due to the underlying clustering
frameworks.

5.2 Semi-supervised classification

To demonstrate the effectiveness of our method in a seng@rsiged learning (SSL) context, we
performed experiments on some benchmarks datasets for &Skilged in [19]. We considered the
following datasets: COIL, BCI and Text. We carried out th@enments in a transductive setting,
i.e., the test set coincides with the set of unlabelled sampliThis allowed us to conduct a fair
comparison with the low density separation (LDS) algorithffil9], which is an enhanced version
of the so-called Transductive SVM. However, deriving “afitsample” extensions for our method
is straightforward.

A primary goal in semi-supervised learning is to take intocamt a large number of labelled points
in order to dramatically reduce the number of labelled pongiquired to achieve a competitive
classification accuracy. Henceforth, our experimentdlrgeonsists in observing how fast the
classification accuracy collapses as the number of labptigds increases. The less labelled points
a method needs to achieve decent classification accuraaydre it is relevant for semi-supervised
learning tasks. As shown in Figure 3, our method yields cditiyee classification accuracy with
very few labelled points on the three datasets. MoreoverERAC reaches unexpectedly good re-
sults on the Text dataset, where most semi-supervisedmgamethods usually show disappointing
performance. One explanation might be thatERAC acts as an “augmented”-clustering algorithm,
whereas most semi-supervised learning algorithms aredsifaugmented”-versions of traditional
supervised learning algorithms such as LDS which is buiB¥iMs for instance. Hence, for datasets
exhibiting multi-class structure such as TextiFERAC is more able to utilize unlabelled points
since it based on a multi-class clustering algorithm rathan algorithms based on binary SVMs,
where multi-class extensions are currently unclear. Towisexperiments support the fact that semi-
supervised learning algorithms built on clustering altionis augmented with labelled data acting
as hints on clusters are worth for investigation and furtbeearch.

6 Conclusion

We have presented a discriminative framework for clustebiased on the square loss and penaliza-
tion through spectral functions of equivalence matricas. formulation enables the easy incorpora-
tion of semi-supervised constraints, which leads to sté&tfre-art performance in semi-supervised
learning. Moreover, our discriminative framework shoulldw to use existing methods for learn-
ing the kernel matrix from data [20]. Finally, we are curtgmvestigating the use of BFRAC in
semi-supervised image segmentation. In particular, eaheriments on estimating the number of
clusters using variation rates of our discriminative cesesvery promising.
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Figure 3: Semi-supervised classification.
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