
Discriminative Clustering
for Image Co-segmentation

Armand Joulin Francis Bach Jean Ponce

INRIA Ecole Normale Supérieure, Paris

March 2010



Introduction



Introduction

◮ Task: dividing simultaneously q images in k different
segments

◮ When k = 2, this reduces to dividing images into foreground
and background regions.

◮ Our approach considers simultaneously the object recognition
and the segmentation problems

◮ Semi-supervised discriminative clustering

◮ Well-adapted to segmentation problems for 2 reasons :
◮ Re-use existing features for supervised classification
◮ Introduce spatial and local color-consistency constraints.



Prior work

◮ Rother et al. (2006), Hochbaum and Singh (2009)

◮ Identical or similar objects

◮ Goal: objects are different instances from same object class



Outline

◮ Problem formulation

◮ Local consistency through Laplacian matrices

◮ Discriminative clustering

◮ Efficient optimization

◮ Results



Problem Notations

◮ Input: q images.
◮ Each image i is reduced to a subsampled grid of ni pixels

◮ For the j-th pixel (among the
∑q

i=1
ni pixels), we denote by :

◮ c j ∈ R
3 its color,

◮ pj ∈ R
2 its position within the corresponding image,

◮ x j an additional k-dimensional feature vector.



Problem Notations

◮ Input: q images.
◮ Each image i is reduced to a subsampled grid of ni pixels

◮ For the j-th pixel (among the
∑q

i=1
ni pixels), we denote by :

◮ c j ∈ R
3 its color,

◮ pj ∈ R
2 its position within the corresponding image,

◮ x j an additional k-dimensional feature vector.

◮ Goal: find y = vector of size
∑q

i=1
ni such that

◮ yj = 1 if the i-th pixel is in the foreground
◮ -1 otherwise.



Problem Notations



Local consistency and discriminative clustering

◮ Co-segmenting images relies on two tasks :

1. Within an image: maximize local spatial and appearance
consistency (normalized cuts)

2. Over all images: maximize the separability of two classes
between different images (semi-supervised SVMs)



Local consistency through Laplacian matrices



Local consistency through Laplacian matrices

(Shi and Malik, 2000)

◮ Spatial consistency within an image i is enforced through a
similarity matrix W i

◮ W i is based on color features (c j) and spatial position (pj )
◮ Similarity between two pixels l and m within an image i :

W i
lm = exp(−λp‖p

m − pl‖2 − λc‖c
m − c l‖2), (1)



Local consistency through Laplacian matrices

(Shi and Malik, 2000)

◮ Spatial consistency within an image i is enforced through a
similarity matrix W i

◮ W i is based on color features (c j) and spatial position (pj )
◮ Similarity between two pixels l and m within an image i :

W i
lm = exp(−λp‖p

m − pl‖2 − λc‖c
m − c l‖2), (1)

◮ Concatenate all similarity matrices into a block-diagonal
matrix W (with Wi on its diagonal)

◮ Normalized Laplacian matrix L = In − D−1/2WD−1/2

W=

W

2W

1W

3

L=

L3

L2

L1



Local consistency through Laplacian matrices

(Shi and Malik, 2000)

◮ Concatenate all similarity matrices into a block-diagonal
matrix W (with Wi on its diagonal)

◮ Normalized Laplacian matrix L = In − D−1/2WD−1/2

W=

W

2W

1W

3

L=

L3

L2

L1

◮ Minimizing y⊤Ly segments all images independently



Discriminative clustering

◮ Generative clustering (e.g., K-means)



Discriminative clustering

◮ Generative clustering (e.g., K-means)

◮ Discriminative clustering (Xu et al., 2002, Bach and
Harchaoui, 2007)



Discriminative clustering

◮ Discriminative clustering framework based on positive definite
kernels

◮ Histograms of features ⇒ kernel matrix K based on the
χ2-distance:

Klm = exp

(

− λh

k
∑

d=1

(x l
d − xm

d )2

x l
d + xm

d

)

, (2)

◮ Equivalent to mapping each of our n k-dimensional vectors x j ,
j = 1, . . . , n into a high-dimensional Hilbert space F through
a feature map Φ, so that Kml = Φ(xm)⊤Φ(x l)



Discriminative clustering

◮ Minimize with respect to both the predictor f and the labels y

(Xu et al., 2002):

1

n

n
∑

j=1

ℓ(yj , f
⊤Φ(x j)) + λk‖f ‖

2, (3)

where ℓ is a loss function.



Discriminative clustering

◮ Minimize with respect to both the predictor f and the labels y

(Xu et al., 2002):

1

n

n
∑

j=1

ℓ(yj , f
⊤Φ(x j)) + λk‖f ‖

2, (3)

where ℓ is a loss function.

◮ Square loss function: ℓ(a, b) = (a − b)2, solution f in closed
form (Bach and Harchaoui, 2007)

g(y) = min
f

1

n

n
∑

j=1

ℓ(yj , f
⊤Φ(x j)) + λk‖f ‖

2 = tr(Ayy⊤)

where A = λk(I − 1

n
11⊤)(nλk I + K )−1(I − 1

n
11⊤).

◮ Linear in Y = yy⊤ ∈ R
n×n



Discriminative semi-supervised clustering

Diffrac (Bach and Harchaoui, 2007)

◮ Minimize with respect to the labels y :

g(y) = min
f

1

n

n
∑

j=1

ℓ(yj , f
⊤Φ(x j)) + λk‖f ‖

2 = tr(Ayy⊤)

where A = λk(I − 1

n
11⊤)(nλk I + K )−1(I − 1

n
11⊤).

◮ Linear in Y = yy⊤ ∈ R
n×n



Discriminative semi-supervised clustering

Diffrac (Bach and Harchaoui, 2007)

◮ Minimize with respect to the labels y :

g(y) = min
f

1

n

n
∑

j=1

ℓ(yj , f
⊤Φ(x j)) + λk‖f ‖

2 = tr(Ayy⊤)

where A = λk(I − 1

n
11⊤)(nλk I + K )−1(I − 1

n
11⊤).

◮ Linear in Y = yy⊤ ∈ R
n×n

◮ Adding supervision on Y (positive and negative constraints)

◮ Semi-supervised method that is applicable to
◮ High supervision (close to regular supervised learning)
◮ Low supervision (close to clustering)



Diffrac - Semi-supervised classification

◮ Equivalence matrices Y allow simple inclusion of prior
knowledge (Xu et al., 2004, De Bie and Cristianini, 2006)

◮ “must-link” constraints (positive constraints): Yij = 1
◮ “must-not-link” constraints (negative constraints): Yij = −1

◮ Diffrac “works” with any amount of supervision

◮ Comparison with LDS (Chapelle & Zien, 2004)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Number of labelled training points

T
es

t e
rr

or

Learning curve on Coil100

 

 

DIFFRAC
LDS

0 50 100 150
0.25

0.3

0.35

0.4

0.45

0.5

Number of labelled training points

T
es

t e
rr

or

Learning curve on BCI

 

 

DIFFRAC

LDS

0 50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

Number of labelled training points
T

es
t e

rr
or

Learning curve on Text

 

 

DIFFRAC
LDS



Cluster size constraints

◮ Putting all pixels into a single class leads to perfect separation
◮ Constrain the number of elements in each class (Xu et al.,

2002)



Cluster size constraints

◮ Putting all pixels into a single class leads to perfect separation
◮ Constrain the number of elements in each class (Xu et al.,

2002)

◮ Multiple images:
◮ constrain the number of elements of each class in each image

to be upper bounded by λ1 and lower bounded by λ0.
◮ Denote δi ∈ R

n the indicator vector of the i-th image



Problem formulation

◮ Combining:
◮ spatial consistency through Laplacian matrix L
◮ discriminative cost through matrix A and cluster size

constraints

min
y∈{−1,1}n

y⊤
(

A +
µ

n
L
)

y ,

subject to ∀i , λ01 6 (yy⊤ + 11⊤)δi 6 λ11.

◮ Combinatorial optimization problem
◮ Convex relaxation with semi-definite programming (Goemans

and Williamson, 1995)



Optimization - Convex Relaxation

min
y∈{−1,1}n

tr(
(

A +
µ

n
L
)

yy⊤),

subject to ∀i , λ01 6 (yy⊤ + 11⊤)δi 6 λ11.

◮ Reparameterize problem with Y = yy⊤

◮ Y referred to as the equivalence matrix

◮ Yij = 1 if points i and j belong to the same cluster
◮ Yij = −1 if points i and j do not belong to the same cluster

◮ Y is symmetric, positive semidefinite, with diagonal equal to
one, and unit rank.



Optimization - Convex Relaxation

◮ Denote by E the elliptope, i.e., the convex set defined by:

E = {Y ∈ R
n×n , Y = Y⊤ , diag(Y ) = 1 , Y � 0},

◮ Reformulated optimization problem :

min
Y∈E

tr
(

Y
(

A +
µ

n
L
))

,

subject to ∀i , λ01 6 (Y + 11⊤)δi 6 λ11

rank(Y ) = 1

◮ Rank constraint is not convex

◮ Convex relaxation by removing the rank constraint



Optimization

min
Y∈E

tr
(

Y
(

A +
µ

n
L
))

,

subject to ∀i , λ01 6 (Y + 11⊤)δi 6 λ11

◮ SDP: semidefinite program (Boyd and Vandenberghe, 2002)

◮ General purpose toolboxes would solve this problem in O(n7)

◮ Bach and Harchaoui (2007) considers a partial dualization
technique that scales up to thousands of data points.

◮ To gain another order of magnitude: optimization through
low-rank matrices (Journée et al, 2008)



Efficient low-rank optimization (Journée et al, 2008)

◮ Replace constraints by penalization ⇒ optimization of a
convex function f (Y ) on the elliptope E .

◮ Empirically: global solution has low rank r

◮ Property: a local minimum of f (Y ) over the rank constrained
elliptope

Ed = {Y ∈ E , rank(Y ) = d}

is a global minimum of f (Y ) over E , if d > r .



Efficient low-rank optimization (Journée et al, 2008)

◮ Replace constraints by penalization ⇒ optimization of a
convex function f (Y ) on the elliptope E .

◮ Empirically: global solution has low rank r

◮ Property: a local minimum of f (Y ) over the rank constrained
elliptope

Ed = {Y ∈ E , rank(Y ) = d}

is a global minimum of f (Y ) over E , if d > r .

◮ Adaptive procedure to automatically find r

◮ Manifold-based trust-region method for a given d (Absil et al.,
2008)



Low-rank optimization (Journée et al., 2008)

◮ Final (combinatorial) goal: minimize f (Y ) over the rank-one
constrained elliptope E1 = {Y ∈ E , rank(Y ) = 1}

◮ Convex relaxation: minimize f (Y ) over the unconstrained
elliptope E

◮ Subproblems: minimize f (Y ) over the rank-d constrained
elliptope Ed = {Y ∈ E , rank(Y ) = d} for d > 2

◮ It is a Riemanian manifold for d > 2
◮ If d is large enough, there is no local minima
◮ Find a local minimum with trust-region method

◮ Adaptive procedure:
◮ Start with d = 2
◮ Find local minimum over Ed = {Y ∈ E , rank(Y ) = d}
◮ Check global optimality condition
◮ Stop or augment d



Preclustering

◮ Cost function f uses a full n × n matrix A + (µ/n)L
⇒ memory issues

◮ To reduce the total number of pixels
◮ superpixels obtained from an oversegmentation of our images

(watershed, Meyer, 2001)



Rounding

◮ In order to retrieve y ∈ {−1, 1} from our relaxed solution Y ,
we compute the largest eigenvector e ∈ R

n of Y .

◮ Final clustering is y = sign(e).

◮ Other techniques could be used (e.g., randomized rounding)

◮ Additional post-processing to remove some artefacts



Method overview (co-segmentation on two bear images)

◮ From left to right: input images, over-segmentations, scores
obtained by our algorithm and co-segmentations.



Results

Results on two different problems :

◮ Simple problems: images with foreground objects which are
identical or very similar in appearance and with few images to
co-segment

◮ Hard problems: images whose foreground objects exhibit
higher appearance variations and with more images to
co-segment (up to 30).



Results - similar objects



Results - similar objects



Results - similar objects



Results - similar classes - Faces



Results - similar classes - Cows



Results - similar classes - Horses



Results - similar classes - Cats



Results - similar classes - Bikes



Results - similar classes - Planes



Comparison with MN-cut (Cour, Bénézit, and Shi, 2005)

◮ Segmentation accuracies on the Weizman horses and MSRC
databases.

class # cosegm. independent Ncut uniform

Cars (front) 6 87.65 ±0.1 89.6 ±0.1 51.4 ±1.8 64.0 ±0.1
Cars (back) 6 85.1 ±0.2 83.7 ±0.5 54.1±0.8 71.3 ±0.2

Face 30 84.3 ±0.7 72.4 ±1.3 67.7 ±1.2 60.4 ±0.7
Cow 30 81.6 ±1.4 78.5 ±1.8 60.1 ±2.6 66.3 ±1.7
Horse 30 80.1 ±0.7 77.5 ±1.9 50.1 ±0.9 68.6 ±1.9
Cat 24 74.4 ±2.8 71.3 ±1.3 59.8 ±2.0 59.2 ±2.0

Plane 30 73.8 ±0.9 62.5 ±1.9 51.9 ±0.5 75.9 ±2.0
Bike 30 63.3 ±0.5 61.1 ±0.4 60.7 ±2.6 59.0 ±0.6



Comparing co-segmentation with independent

segmentations

◮ From left to right: original image, multiscale normalized cut,
our algorithm on a single image, our algorithm on 30 images.



Conclusion

◮ Co-segmentation through semi-supervised discriminative
clustering

1. Within an image: maximize local spatial and appearance
consistency (normalized cuts)

2. Over all images: maximize the separability of two classes
between different images (semi-supervised SVMs)



Conclusion

◮ Co-segmentation through semi-supervised discriminative
clustering

1. Within an image: maximize local spatial and appearance
consistency (normalized cuts)

2. Over all images: maximize the separability of two classes
between different images (semi-supervised SVMs)

◮ Future work
◮ Add negative images
◮ More than 2 classes
◮ Feature selection
◮ Scale up to hundred of thousands
◮ Change the loss function


