Discriminative Clustering for Image Co-segmentation

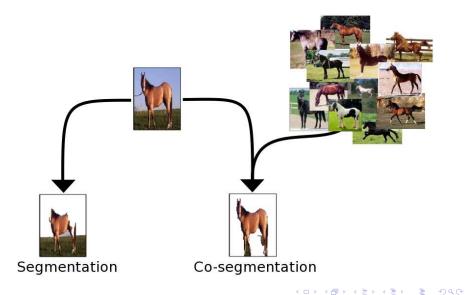
Armand Joulin Francis Bach Jean Ponce

INRIA Ecole Normale Supérieure, Paris

March 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Introduction



Introduction

- Task: dividing simultaneously q images in k different segments
 - When k = 2, this reduces to dividing images into foreground and background regions.
- Our approach considers simultaneously the object recognition and the segmentation problems
 - Semi-supervised discriminative clustering
- ▶ Well-adapted to segmentation problems for 2 reasons :
 - Re-use existing features for supervised classification
 - Introduce spatial and local color-consistency constraints.

Prior work

- ▶ Rother et al. (2006), Hochbaum and Singh (2009)
- Identical or similar objects

▶ Goal: objects are different instances from same object class

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Outline

- Problem formulation
- Local consistency through Laplacian matrices

- Discriminative clustering
- Efficient optimization
- Results

Problem Notations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Input: q images.
 - Each image *i* is reduced to a subsampled grid of *n_i* pixels
- For the *j*-th pixel (among the $\sum_{i=1}^{q} n_i$ pixels), we denote by :
 - $c^j \in \mathbb{R}^3$ its color,
 - $p^j \in \mathbb{R}^2$ its position within the corresponding image,
 - x^j an additional k-dimensional feature vector.

Problem Notations

- Input: q images.
 - Each image *i* is reduced to a subsampled grid of *n_i* pixels

For the *j*-th pixel (among the $\sum_{i=1}^{q} n_i$ pixels), we denote by :

- $c^j \in \mathbb{R}^3$ its color,
- $p^j \in \mathbb{R}^2$ its position within the corresponding image,
- ► x^j an additional k-dimensional feature vector.
- **Goal**: find y = vector of size $\sum_{i=1}^{q} n_i$ such that
 - $y_j = 1$ if the *i*-th pixel is in the foreground
 - ▶ -1 otherwise.

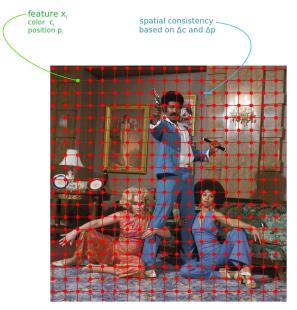
Problem Notations

Local consistency and discriminative clustering

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Co-segmenting images relies on two tasks :
 - 1. Within an image: maximize local spatial and appearance consistency (normalized cuts)
 - 2. Over all images: maximize the separability of two classes between different images (semi-supervised SVMs)

Local consistency through Laplacian matrices



Local consistency through Laplacian matrices (Shi and Malik, 2000)

- Spatial consistency within an image i is enforced through a similarity matrix Wⁱ
 - W^i is based on color features (c^j) and spatial position (p^j)
 - Similarity between two pixels *l* and *m* within an image *i*:

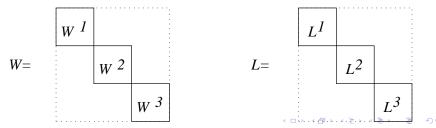
$$W_{lm}^{i} = \exp(-\lambda_{p} \|p^{m} - p^{l}\|^{2} - \lambda_{c} \|c^{m} - c^{l}\|^{2}), \qquad (1)$$

Local consistency through Laplacian matrices (Shi and Malik, 2000)

- Spatial consistency within an image i is enforced through a similarity matrix Wⁱ
 - W^i is based on color features (c^j) and spatial position (p^j)
 - Similarity between two pixels I and m within an image i:

$$W_{lm}^{i} = \exp(-\lambda_{p} \|p^{m} - p^{l}\|^{2} - \lambda_{c} \|c^{m} - c^{l}\|^{2}), \qquad (1)$$

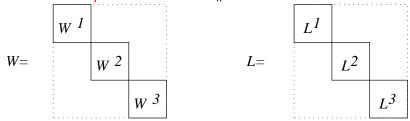
- Concatenate all similarity matrices into a block-diagonal matrix W (with W_i on its diagonal)
- ► Normalized Laplacian matrix $L = I_n D^{-1/2}WD^{-1/2}$



Local consistency through Laplacian matrices (Shi and Malik, 2000)

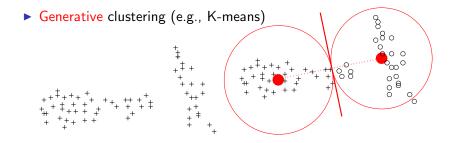
 Concatenate all similarity matrices into a block-diagonal matrix W (with W_i on its diagonal)

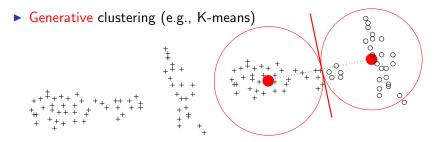
▶ Normalized Laplacian matrix $L = I_n - D^{-1/2}WD^{-1/2}$



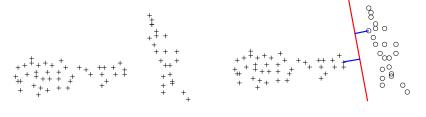
▲日▼▲□▼▲□▼▲□▼ □ のので

• Minimizing $y^{\top}Ly$ segments all images independently





 Discriminative clustering (Xu et al., 2002, Bach and Harchaoui, 2007)



- ∢ ∰ ▶ - ∢ ≣

- Discriminative clustering framework based on positive definite kernels
- Histograms of features \Rightarrow kernel matrix K based on the χ^2 -distance:

$$K_{lm} = \exp\left(-\lambda_h \sum_{d=1}^k \frac{(x_d^l - x_d^m)^2}{x_d^l + x_d^m}\right),$$
 (2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivalent to mapping each of our *n* k-dimensional vectors x^j, j = 1,..., n into a high-dimensional Hilbert space *F* through a feature map Φ, so that K_{ml} = Φ(x^m)^TΦ(x^l)

Minimize with respect to both the predictor f and the labels y (Xu et al., 2002):

$$\frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^{\top} \Phi(x^j)) + \lambda_k \|f\|^2,$$
 (3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where ℓ is a loss function.

Minimize with respect to both the predictor f and the labels y (Xu et al., 2002):

$$\frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^{\top} \Phi(x^j)) + \lambda_k \|f\|^2,$$
 (3)

where ℓ is a loss function.

Square loss function: ℓ(a, b) = (a − b)², solution f in closed form (Bach and Harchaoui, 2007)

$$g(y) = \min_{f} \frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^{\top} \Phi(x^j)) + \lambda_k \|f\|^2 = \operatorname{tr}(Ayy^{\top})$$

where $A = \lambda_k (I - \frac{1}{n} \mathbf{1} \mathbf{1}^\top) (n \lambda_k I + K)^{-1} (I - \frac{1}{n} \mathbf{1} \mathbf{1}^\top).$ Linear in $Y = yy^\top \in \mathbb{R}^{n \times n}$ Discriminative semi-supervised clustering Diffrac (Bach and Harchaoui, 2007)

Minimize with respect to the labels y:

$$g(y) = \min_{f} \frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^{\top} \Phi(x^j)) + \lambda_k \|f\|^2 = \operatorname{tr}(Ayy^{\top})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

where
$$A = \lambda_k (I - \frac{1}{n} 11^\top) (n\lambda_k I + K)^{-1} (I - \frac{1}{n} 11^\top)$$
.
Linear in $Y = yy^\top \in \mathbb{R}^{n \times n}$

Discriminative semi-supervised clustering Diffrac (Bach and Harchaoui, 2007)

Minimize with respect to the labels y:

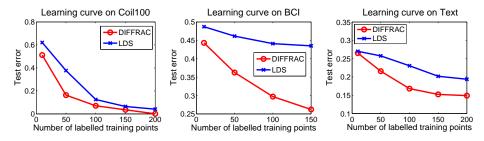
$$g(y) = \min_{f} \frac{1}{n} \sum_{j=1}^{n} \ell(y_j, f^{\top} \Phi(x^j)) + \lambda_k \|f\|^2 = \operatorname{tr}(Ayy^{\top})$$

where
$$A = \lambda_k (I - \frac{1}{n} 11^\top) (n \lambda_k I + K)^{-1} (I - \frac{1}{n} 11^\top)$$
.
Linear in $Y = yy^\top \in \mathbb{R}^{n \times n}$

- Adding supervision on Y (positive and negative constraints)
- Semi-supervised method that is applicable to
 - High supervision (close to regular supervised learning)
 - Low supervision (close to clustering)

Diffrac - Semi-supervised classification

- Equivalence matrices Y allow simple inclusion of prior knowledge (Xu et al., 2004, De Bie and Cristianini, 2006)
 - "must-link" constraints (positive constraints): $Y_{ij} = 1$
 - "must-not-link" constraints (negative constraints): $Y_{ij} = -1$
- Diffrac "works" with any amount of supervision
- Comparison with LDS (Chapelle & Zien, 2004)

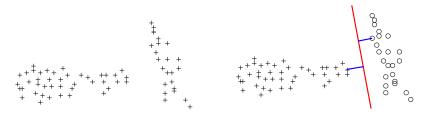


Cluster size constraints

Putting all pixels into a single class leads to perfect separation

Constrain the number of elements in each class (Xu et al., 2002)

Cluster size constraints



Putting all pixels into a single class leads to perfect separation

- Constrain the number of elements in each class (Xu et al., 2002)
- Multiple images:
 - constrain the number of elements of each class in each image to be upper bounded by λ₁ and lower bounded by λ₀.
 - Denote $\delta_i \in \mathbb{R}^n$ the indicator vector of the *i*-th image

Problem formulation

Combining:

- spatial consistency through Laplacian matrix L
- discriminative cost through matrix A and cluster size constraints

$$\begin{split} \min_{y \in \{-1,1\}^n} y^\top \big(A + \frac{\mu}{n} L \big) y, \\ \text{subject to} \quad \forall i, \ \lambda_0 1 \leqslant \big(y y^\top + 11^\top \big) \delta_i \leqslant \lambda_1 1. \end{split}$$

- Combinatorial optimization problem
 - Convex relaxation with semi-definite programming (Goemans and Williamson, 1995)

Optimization - Convex Relaxation

$$\begin{split} \min_{y \in \{-1,1\}^n} \operatorname{tr}(\big(A + \frac{\mu}{n}L\big)yy^{\top}\big),\\ \text{subject to} \quad \forall i, \ \lambda_0 \mathbf{1} \leqslant (yy^{\top} + \mathbf{1}\mathbf{1}^{\top})\delta_i \leqslant \lambda_1 \mathbf{1}. \end{split}$$

- Reparameterize problem with $Y = yy^{\top}$
- Y referred to as the equivalence matrix
 - Y_{ij} = 1 if points i and j belong to the same cluster
 - $Y_{ij} = -1$ if points *i* and *j* do not belong to the same cluster

 Y is symmetric, positive semidefinite, with diagonal equal to one, and unit rank.

Optimization - Convex Relaxation

• Denote by \mathcal{E} the *elliptope*, i.e., the convex set defined by:

$$\mathcal{E} = \{Y \in \mathbb{R}^{n imes n} \;,\; Y = Y^ op$$
 , $\mathsf{diag}(Y) = 1 \;,\; Y \succeq 0\},$

Reformulated optimization problem :

$$\begin{split} \min_{\boldsymbol{Y}\in\mathcal{E}} \mathsf{tr}\big(\boldsymbol{Y}\big(\boldsymbol{A}+\frac{\mu}{n}\boldsymbol{L}\big)\big),\\ \text{subject to} \quad \forall i, \ \lambda_0 \mathbf{1} \leqslant (\boldsymbol{Y}+\mathbf{1}\mathbf{1}^\top)\delta_i \leqslant \lambda_1 \mathbf{1}\\ \operatorname{rank}(\boldsymbol{Y}) = \mathbf{1} \end{split}$$

- Rank constraint is not convex
- Convex relaxation by removing the rank constraint

Optimization

$$\begin{split} \min_{\boldsymbol{Y}\in\mathcal{E}} \mathsf{tr}\big(\boldsymbol{Y}\big(\boldsymbol{A}+\frac{\mu}{n}\boldsymbol{L}\big)\big),\\ \text{subject to} \quad \forall i, \ \lambda_0 \mathbf{1} \leqslant (\boldsymbol{Y}+\mathbf{1}\mathbf{1}^\top)\delta_i \leqslant \lambda_1 \mathbf{1} \end{split}$$

- SDP: semidefinite program (Boyd and Vandenberghe, 2002)
- General purpose toolboxes would solve this problem in $O(n^7)$
- Bach and Harchaoui (2007) considers a partial dualization technique that scales up to thousands of data points.
- To gain another order of magnitude: optimization through low-rank matrices (Journée et al, 2008)

Efficient low-rank optimization (Journée et al, 2008)

- ▶ Replace constraints by penalization ⇒ optimization of a convex function f(Y) on the elliptope E.
- Empirically: global solution has low rank r
- Property: a local minimum of f(Y) over the rank constrained elliptope

$$\mathcal{E}_d = \{Y \in \mathcal{E}, \operatorname{rank}(Y) = d\}$$

is a global minimum of f(Y) over \mathcal{E} , if d > r.

Efficient low-rank optimization (Journée et al, 2008)

- ▶ Replace constraints by penalization ⇒ optimization of a convex function f(Y) on the elliptope E.
- Empirically: global solution has low rank r
- Property: a local minimum of f(Y) over the rank constrained elliptope

$$\mathcal{E}_d = \{Y \in \mathcal{E}, \operatorname{rank}(Y) = d\}$$

is a global minimum of f(Y) over \mathcal{E} , if d > r.

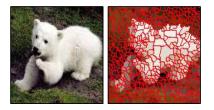
- Adaptive procedure to automatically find r
- Manifold-based trust-region method for a given d (Absil et al., 2008)

Low-rank optimization (Journée et al., 2008)

- ► Final (combinatorial) goal: minimize f(Y) over the rank-one constrained elliptope E₁ = {Y ∈ E, rank(Y) = 1}
- ► Convex relaxation: minimize f(Y) over the unconstrained elliptope *E*
- Subproblems: minimize f(Y) over the rank-d constrained elliptope E_d = {Y ∈ E, rank(Y) = d} for d ≥ 2
 - It is a Riemanian manifold for $d \ge 2$
 - If d is large enough, there is no local minima
 - Find a local minimum with trust-region method
- Adaptive procedure:
 - Start with d = 2
 - ▶ Find local minimum over $\mathcal{E}_d = \{Y \in \mathcal{E}, \operatorname{rank}(Y) = d\}$

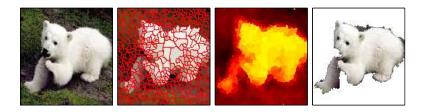
- Check global optimality condition
- Stop or augment d

Preclustering



- ► Cost function f uses a full n × n matrix A + (µ/n)L ⇒ memory issues
- To reduce the total number of pixels
 - superpixels obtained from an oversegmentation of our images (watershed, Meyer, 2001)

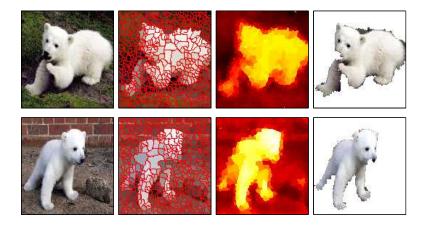
Rounding



- In order to retrieve y ∈ {−1,1} from our relaxed solution Y, we compute the largest eigenvector e ∈ ℝⁿ of Y.
- Final clustering is y = sign(e).
- Other techniques could be used (e.g., randomized rounding)

Additional post-processing to remove some artefacts

Method overview (co-segmentation on two bear images)



From left to right: input images, over-segmentations, scores obtained by our algorithm and co-segmentations.

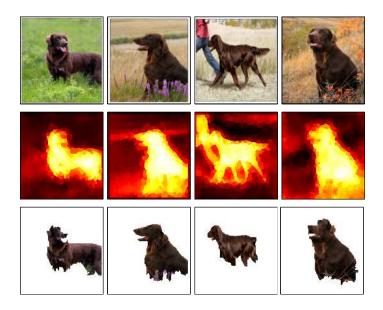
Results

Results on two different problems :

 Simple problems: images with foreground objects which are identical or very similar in appearance and with few images to co-segment

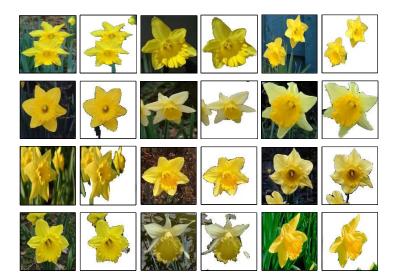
 Hard problems: images whose foreground objects exhibit higher appearance variations and with more images to co-segment (up to 30).

Results - similar objects



Results - similar objects

Results - similar objects



Results - similar classes - Faces

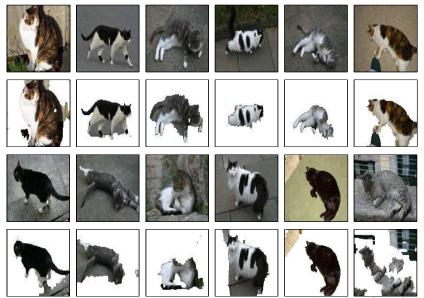
イロト (部) (市) (市)

Results - similar classes - Cows

SQC.

Results - similar classes - Horses

Results - similar classes - Cats



うくぐ

Results - similar classes - Bikes

Results - similar classes - Planes

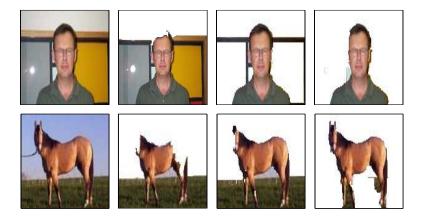
ヘロン 人間 とくほ とくほ

Comparison with MN-cut (Cour, Bénézit, and Shi, 2005)

Segmentation accuracies on the Weizman horses and MSRC databases.

class	#	cosegm.	independent	Ncut	uniform
Cars (front)	6	87.65 ± 0.1	$\textbf{89.6} \pm \textbf{0.1}$	$51.4\ \pm 1.8$	$64.0\ \pm0.1$
Cars (back)	6	$\textbf{85.1} \pm \textbf{0.2}$	$83.7\ \pm0.5$	$54.1{\pm}0.8$	$71.3\ \pm0.2$
Face	30	$\textbf{84.3} \pm \textbf{0.7}$	$72.4\ \pm1.3$	$67.7\ \pm1.2$	$60.4\ \pm0.7$
Cow	30	$\textbf{81.6} \pm \textbf{1.4}$	$78.5\ \pm1.8$	60.1 ± 2.6	66.3 ± 1.7
Horse	30	$\textbf{80.1} \pm \textbf{0.7}$	$77.5\ \pm 1.9$	$50.1 \ \pm 0.9$	$68.6\ \pm 1.9$
Cat	24	$\textbf{74.4} \pm \textbf{2.8}$	$71.3 \ \pm 1.3$	59.8 ± 2.0	$59.2~{\pm}2.0$
Plane	30	73.8 ± 0.9	62.5 ± 1.9	$51.9\ {\pm}0.5$	$\textbf{75.9} \pm \textbf{2.0}$
Bike	30	$\textbf{63.3} \pm \textbf{0.5}$	$61.1\ \pm0.4$	$60.7\ \pm 2.6$	$59.0\ \pm0.6$

Comparing co-segmentation with independent segmentations



From left to right: original image, multiscale normalized cut, our algorithm on a single image, our algorithm on 30 images.

Conclusion

- Co-segmentation through semi-supervised discriminative clustering
 - 1. Within an image: maximize local spatial and appearance consistency (normalized cuts)
 - 2. Over all images: maximize the separability of two classes between different images (semi-supervised SVMs)

Conclusion

 Co-segmentation through semi-supervised discriminative clustering

- 1. Within an image: maximize local spatial and appearance consistency (normalized cuts)
- 2. Over all images: maximize the separability of two classes between different images (semi-supervised SVMs)

- Future work
 - Add negative images
 - More than 2 classes
 - Feature selection
 - Scale up to hundred of thousands
 - Change the loss function