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9.1 Naive Bayes

9.1.1 Introduction

Remarque : Contrary to its name, “Naive Bayes” is not a Bayesian method

Let’s Consider the following problem of classification x ∈ X
p 7−→ y ∈ {1, 2, . . . ,M}.

Here, x = (x1, x2, . . . , xp) is a vector of descriptors (or features) : ∀i ∈ {1, 2, . . . , p} , xi ∈
X, with X = {1, 2, . . . , K} (or X = R).

Goal : Learning p (y|x)
A very naive method will trigger off a combinatorial explosion : θ ∈ R

Kp

.
Bayes formula gets us :

p (y|x) = p (x|y) p (y)
p (x)

The Naive Bayes method consists in assuming that the features xi are all conditionally
independent from the class, hence :

p (x|y) =
p∏

i=1

p (xi|y)

Then, the Bayes formula gives us:

p (y|x) = p (y)
∏p

i=1 p (xi|y)
p (x)

=
p (y)

∏p

i=1 p (xi|y)∑
y′ p (y

′)
∏p

i=1 p (xi|y′)

We consider the case where the features take discrete values. Consequently the new
graphical model contains only discrete random variables. Then, we can write a discrete
model as an exponential family. Indeed we can write:

log p (xi = k|y = k′) = δ (xi = k, y = k′) θikk′

and

log p (y = k′) = δ (y = k′) θk′
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We can see that the dummy functions δ(xi = k, y = k′) and δ(y = k′) are the sufficient

statistics of the joint distribution model for y and the variables xi, where θikk′ and θk′ are
canonical parameters. Thus , we can write:

log p(y, x1, . . . , xp) =
∑

i,k,k′

δ(xi = k, y = k′)θikk′ +
∑

k′

δ(y = k′)θk′ − A((θikk′)i,k,k′, (θk′)k′)

Where A((θikk′)i,k,k′, (θk′)k′) is the log-partition function.

We have rewritten the joint distribution model of (y, x1, . . . , xp) as an exponential fam-
ily. Given that the maximum of likelihood estimator of an exponential family, where the
canonical parameters are not combined, is also the maximum entropy estimator; as seen in
a previous course and provided that the statistical moments of the sufficient statistics equal
their empirical moments.

Thus, if we introduce
Nikk′ = # {(xi, y) = (k, k′)}

N =
∑

i,k,k′

Nikk′,

The maximum likelihood estimator must satisfy the moment constraints

p̂ (y = k′) =

∑
i,k Nikk′

N
et p̂ (xi = k|y = k′) =

Nikk′∑
k”Nik”k′

,

which define them completly.
Then, we can write the estimators of the canonical parameters as:

θ̂ikk′ = log p̂ (xi = k|y = k′) et θ̂k′ = log p̂ (y = k′) .

However, our goal is to obtain a classification model, that is to say, a model of only
the conditional probability law. From the approximated generative model and applying the
Bayes rule we can get:

log p̂ (y = k′|x) =
p∑

i=1

log p̂ (xi|y = k′) + log p̂ (y = k′)− log
∑

k′

(
p̂ (y = k′)

p∏

i=1

p̂ (xi|y = k′)

)

We can re write the conditional model as an exponential family

log p (y|x) =
∑

i,k,k′

δ(xi = k, y = k′)θikk′ +
∑

k′

δ(y = k′)θk′ − log p(x)

Its sufficient statistics and canonical parameters are equal to those of the generative
model, but seen as functions of the random variable y, given that x is fixed (we could write
φx,i,k,k′(y) = δ(xi = k, y = k′)). As for the log-partition function, it is now equal to log p(x).

Warning: θ̂ikk′ is the maximum likelihood estimator in the generative model which, usu-
ally, is not equal to the maximum likelihood estimator in the conditional model.
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9.1.2 Advantages and Drawbacks

Advantages :

• Doable in line.

• Computationally tractable solution.

Drawbacks :

• Generative : generative models produce good estimator whenever the model is "true",
or in statistical words well specified, which means that the process that generate the real
data induce a distribution equal to the one of the generative model. When the model
is not well specified (which is the most common case) we’d better use a discriminative
method.

9.1.3 Discriminative method

The problem that we have considered in the previous section is the generative model for
classification in K classes. How to learn, in a discriminatory way , a classifier in K classes?
Is it possible to use an exponential family?

We have already seen the logistic regression for 2 classes classification:

p (y = 1|x) = exp
(
ωTx

)

1 + exp (ωTx)

Let’s study the K-multiclass logistic regression:

p (y = k′|x) =
exp

(∑p

i=1

∑K

k=1 δ (xi = k) θikk′
)

∑M

k”=1 exp
(∑p

i=1

∑K

k=1 δ (xi = k) θikk”

)

= exp

(
p∑

i=1

K∑

k=1

δ (xi = k) θikk′ − log

(
M∑

k”=1

exp

(
p∑

i=1

K∑

k=1

δ (xi = k) θikk”

)))

= exp

(
θTk′φ (x)− log

(
M∑

k”=1

exp
(
θTk”φ (x)

)
))

=
exp

(
θTk′φ (x)

)
∑M

k”=1 exp (θ
T
k”φ (x))

Although we have built the model from different staring consideration, the resulting mod-
elling ( that is the set of possible distribution) is of the same exponential family than the
Naive Bayes model.
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Nonetheless, the fitted model in a discriminatory approach will be different from the one
fitted in a generative approach : the fitting of the K-multiclass logistic regression results from
the maximisation of the likelihood of the classes y(j) of a set of learning, given that x(j) are
fixed. In other words, the fitting is obtained by computing the maximum likelihood estimator
in the conditional model. Unlike what happens in the generative model, the estimator can’t
be obtained in a analytical form and the learning requires solving a numerical optimisation
problem.
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9.2 Bayesian Method

9.2.1 Introduction

Vocabulary :

• a priori : p (θ)

• likelihood : p (x|θ)

• marginal likelihood :
´

p (x|θ) p (θ) dθ

• a posteriori : p (θ|x)

The Bayesian formulation enables us to introduce the a priori information in the process
of estimation. For instance , let’s imagine that we play heads or tails :

• with an “unknown” coin, we’ve got the information a priori : we’ll use the uniform law
for p (θ).

• with a “normal” coin , we’ll use a distribution with an important concentration of mass
around 0,5 for p (θ).

For a Bayesian, offering a "limited" estimator, as the maximum likelihood estimator,
which gives a unique value for θ, is not enough because the estimator itself do not translate
the inherent uncertainty of the learning process. Thus, its estimator will be the density a
posteriori, obtained from the Bayes rule, which is written in continuous notations as :

p (θ|x) = p (x|θ) p (θ)
´

p (x|θ) p (θ) dθ

The Bayesian specifies the uncertainty with distributions that form its estimator, rather
than combining an estimator with confidence intervals.

If the Bayesian is forced to produce a limited estimator, he uses the expectation of the
underlying quantity under the a posteriori distribution; for instance for θ:

µpost = E [θ|D] = E [θ|x1, x2, . . . , xn] =

ˆ

θp (θ|x1, x2, . . . , xn) dθ

9.2.2 a posteriori Maximum (PAM)

θMAP = argmax
θ

p (θ|x1, x2, . . . , xn)

= argmax
θ

p (x1, x2, . . . , xn|θ) p (θ)

Because, with the Bayes rule:
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p (θ|x1, x2, . . . , xn) =
p (x1, x2, . . . , xn|θ) p (θ)

p (x)

The a posteriori maximum is not really Bayesian, it’s rather a slight modification brought
to the frequentist estimator.

9.2.3 Predictive probability

In the Bayesian paradigm, the probability of a future observation x∗ will be estimated by
the Predictive probability :

p (x∗|D) = p (x∗|x1, x2, . . . , xn)

=

ˆ

p (x∗|θ) p (θ|x1, x2, . . . , xn) dθ

p (θ|x1, x2, . . . , xn) ∝ p (xn|θ) p (x1|θ) p (x2|θ) . . . p (xn−1|θ) p (θ)
∝ p (xn|θ) p (θ|x1, x2, . . . , xn−1) p (x1, x2, . . . , xn−1)

∝ p (xn|θ) p (θ|x1, x2, . . . , xn−1)
p (x1, x2, . . . , xn−1)

p (x1, x2, . . . , xn)

A sequential calculus is possible since:

p (θ|x1, x2, . . . , xn) =
p (xn|θ) p (θ|x1, x2, . . . , xn−1)

p (xn|x1, x2, . . . , xn−1)

Vocabulary :

• a priori information : p (θ|x1, x2, . . . , xn−1)

• likelihood : p (xn|θ)

• a posteriori information : p (θ|x1, x2, . . . , xn)

p (x1, x2, . . . , xn) =

ˆ n∏

i=1

p (xi|θ) p (θ) dθ

9.2.4 Exchangeable situations

9.2.4.1 Exchangeablility

The random variables X1, X2, . . . , Xn are exchangeable if they have the same distribution
as XΣ̂(1),XΣ̂(2), . . . , XΣ̂(n) for any permutation of indices Σ̂.
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9.2.4.2 de Finetti’s theorem

Si X1, X2, . . . , Xn are exchangeable, then it exists a stochastic process G such that :

p (x1, x2, . . . , xn) =

ˆ n∏

i=1

p (xi|G) dµ(G)

Where dµ(G) is the generalisation of "p (G) dG" for a stochastic process.

9.2.4.3 Why do we care about exchangeable situations?

The i.i.d variables are a particular case of the situation of exchangeable variables, that we
see in practice. However when the i.i.d data are combined with non scalar observations,
the different components are no longer independent. In some cases, those components are
nonetheless exchangeable. For instance in a text, words are shown as sequences that are not
exchangeable because of the syntax. But if we forget the order of the words as in the "bag
of word" model, then the components are exchangeable. It’s the basic principle used in the
LDA model.

9.2.5 Example of model

9.2.5.1 Bernoulli variable

let’s consider random variables Xi ∈ {0, 1}. We’ll assume that the Xi i.i.d. conditionally to
θ.

p (x|θ) = θx (1− θ)1−x

9.2.5.2 Priors

let’s introduce the distribution Beta whose density on [0, 1] is

p(θ;α, β) =
1

B(α, β)
θα−1(1− θ)β−1

Where B(α, β) is the alias of the Beta function :

∀α > 0, ∀β > 0, B (α, β) =

ˆ 1

0

θα−1 (1− θ)β−1
dθ

And the Gamma function :

Γ (x) =

ˆ +∞

0

tx−1 exp (−t) dt
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We can show that :

B (α, β) =
Γ (α) Γ (β)

Γ (α + β)

We choose as the prior distribution on θ the Beta distribution:

p (θ) ∝ θα−1 (1− θ)β−1

p (θ) =
θα−1 (1− θ)β−1

B (α, β)

9.2.5.3 A posteriori

p (θ|x) = p (x, θ)

p (x)
∝ p (x, θ)

But :

p (x, θ) = θx (1− θ)1−x θα−1 (1− θ)β−1

B (α, β)

Hence :

p (θ|x) ∝ θx+α−1 (1− θ)1−x+β−1

B (α, β)

p (θ|x) = θx+α−1 (1− θ)1−x+β−1

B (x+ α, 1− x+ β)

Thus, if instead of considering a unique variable , we observe an i.i.d sample of data, the
joint distribution can be written as :

θα−1 (1− θ)β−1
n∏

i=1

θxi (1− θ)1−xi .

Let’s introduce :

k =
n∑

i=1

xi

Then we get :

p (θ|x1, x2, . . . , xn) =
θk+α−1 (1− θ)n−k+β−1

B (k + α, n− k + β)
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9.2.6 Distributions

θ ∼ Beta (α, β)

For α = β = 1, we’ve got a uniform prior.
For α = β > 1, we’ve got a bell curve.
For α = β < 1, we’ve got a U curve.
E [θ] = α

α+β

V [θ] = αβ

(α+β)2(α+β+1)
= α

(α+β)
× β

(α+β)
× 1

(α+β+1)

For α > 1 and β > 1, we’ve got the mode : α−1
α+β−2

.
In the case, let’s write D for the data:

θpost = E [θ|D] =
α + k

α+ β + n
=

α

(α+ β)
× (α + β)

(α+ β + n)
+

n

(α + β + n)
× k

n

We can see that the a posteriori expectation of the parameter is a convex combination
of the maximum likelihood estimator and the prior expectation. It converges asymptotically
to the maximum likelihood estimator .

If we use a uniform prior distribution, E|D [θ] = k+1
n+2

. Laplace proposed to correct the
frequentist estimator, it seemed odd to him that he was not defined in the absence of data.
He proposed to add two virtual observation (0 and 1) such that in the absence of data the
estimator equals 1

2
. This correction is known as Laplace’s correction.

The variance of the a posteriori distribution decrease in 1
n

.

V [θ|D] = θM (1− θM )
1

(α + β + n)

We have chosen a sharper distribution around θM , in the same way than in a frequen-
tist approach, the confidence intervals narrow around the estimator when the number of
observations increase.

9.2.7 Playful propriety

p (x1, x2, . . . , xn) =
B (k + α, n− k + β)

B (α, β)
=

Γ (α+ k) Γ (β + n− k) Γ (α + β)

Γ (α+ β + n) Γ (α) Γ (β)
(9.1)

let’s use the propriety of the Gamma function:

Γ (n+ 1) = n!

and ∀x > −1, Γ (x+ 1) = xΓ (x)

such that
Γ (α + k) = (α + k − 1) (α + k − 2) . . . αΓ (α)

let’s write α[k] = α (α + 1) . . . (α + k − 1) and simplify the expression 9.1 :
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p (x1, x2, . . . , xn) =
α[k]β [n−k]

(α + β)[n]

We shall note the analogy with the Polya urn model: let us consider (α + β) balls of
colour : α are black, β are white. When drawing a first black ball, the probability of the
event is :

P (X1 = 1) =
α

α + β

After the drawing, we put back the ball in the urn and we add a ball of the same colour.
Let’s imagine that we draw again a black ball then the probability of this event is:

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1|X1 = 1) =
α

α + β
× α + 1

α + β + 1

However :

P (X1 = 1, X2 = 0) =
α

α + β
× β

α + β + 1

In more general case , we show by recurrence that the marginal probability of obtaining
some sequence of colours by drawing from a Polya urn is exactly the marginal probability of
obtaining the same result from the marginal model, obtained by integrating on a priori theta.
First, this show that drawings from a Polya urn are exchangeable; Secondly, the mechanism
of this type of urn, and its exchangeability, we’ll be useful for the Gibbs sampling and for
the same type of Bayesian models.

9.2.8 Conjugate priors

Let F be a set. We assume that p (x|θ) known, we deduce from that : p (θ) ∈ F such taht
p (θ|x) ∈ F. We say that p (θ) is conjugated to the model p (x|θ).

9.2.8.1 Exponential model

Let’s consider:

p (x|θ) = exp (〈θ, φ (x)〉 −A (θ))

p (θ) = exp (〈α, θ〉 − τA (θ)−B (α, τ))

For p (x|θ), θ is the canonical parameter. For p (θ), α is the canonical parameter and θ

is the sufficient statistic. Let us note that B do not stand for the Beta distribution.

p (θ|x) ∝ p (x|θ) p (θ) ∝ exp (〈θ, φ (x)〉 − A (θ) + 〈α, θ〉 − τA (θ)−B (α, τ))

Let us define :

φ̄ =
1

n

n∑

i=1

φ (xi)
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Then :

p (θ|xi) ∝ exp (〈θ, α + φ (xi)〉 − (τ + 1)A (θ)−B (α + φ (xi) , τ + 1))

p (θ|x1, x2, . . . , xn) ∝ exp
(〈
θ, α + nφ̄

〉
− (τ + n)A (θ)− B

(
α + nφ̄, τ + n

))

p (x1, x2, . . . , xn) ∝ exp
(
B (α, τ)− B

(
α + nφ̄, τ + n

))

Since the family is an exponential one,

νpost = E [θ|D] = ∇αB
(
α+ nφ̄, τ + n

)

θMAP results from :
∇θp (θ|x1, x2, . . . , xn) = 0

α + nφ̄ = (τ + n)∇θA (θ) = (τ + n)µ (θ)

Thus we get µMAP = µ (θ) in the previous equation. Consequently:

µMAP =
α + nφ̄

τ + n
=

α

τ
× τ

τ + n
+

n

τ + n
φ̄

9.2.8.2 Univariate Gaussian

With and a priori on µ but not on σ2

p
(
x|µ, σ2

)
=

1√
2πσ2

exp

(
−1

2

(x− µ)2

σ2

)

p
(
µ|µ0, τ

2
)
=

1√
2πτ 2

exp

(
−1

2

(µ− µ0)
2

τ 2

)

Thus :

p
(
D|µ, σ2

)
= p

(
x1, x2, . . . , xn|µ, σ2

)

=

(
1√
2πσ2

)n

exp

(
−1

2

n∑

i=1

(xi − µ)2

σ2

)
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p (µ|D) = p (µ|x1, x2, . . . , xn)

= exp

(
−1

2

(
(µ− µ0)

2

τ 2
+

n∑

i=1

(xi − µ)2

σ2

))

= exp

(
−1

2

(
µ2 − 2µµ0 + µ2

0

τ 2
+

n∑

i=1

µ2 − 2µxi + x2
i

σ2

))

= exp

(
−1

2

(
µ2Λ− 2µη +

(
µ2
0

τ 2
+

n∑

i=1

x2
i

σ2

)))

Whre:

Λ =
1

τ 2
+

n

σ2

η =
µ0

τ 2
+

nx

σ2

x =
1

n

n∑

i=1

xi

Thus :

µpost = E [µ|D]

=
η

Λ

=
µ0

τ2
+ nx

σ2

1
τ2

+ n
σ2

=
σ2µ0 + nτ 2x

σ2 + nτ 2

=
σ2

σ2 + nτ 2
µ0 +

nτ 2

σ2 + nτ 2
x

And :

Σ̂2
post = V [µ|D]

=
1

Λ

=
σ2τ 2

σ2 + nτ 2

Indeed, the variance decreases in 1
n
.

With an a priori on σ2 but not onµ We get p (σ2) as an Inverse Gamma form.
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With ans a priori on µ and σ2 Gaussian a priori on x and µ, Inverse Gamma a priori
on σ2. Please refer to the chapter 9 of the course handout.

9.2.8.3 Generalisation of the Beta distribution

Dirichlet is the conjugate of the Multinomial law.

p (θ1, θ2, . . . , θk) =
Γ (α1 + α2 + . . .+αk)

Γ (α1) Γ (α2) . . .Γ (αk)
θα1−1
1 θα2−1

2 . . . θαk−1
k dµ (θ)

Where µ stands for the uniform measure on
{
s ∈ R

k |
∑

i si = 1 ; ∀i, si ≥ 0
}

(simplex).
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9.3 Model Selection

9.3.1 Introduction

Let’s consider two models M1 ⊂ M2 with Θ1 ⊂ Θ2. We define:

Θ̂Mi
= argmax

θ∈Θi

log (pθ (x1, x2, . . . , xn))

where i ∈ {1, 2}.
We can’t use the maximum likelihood as a score since we have by definition:

log
(
pΘ̂M2

)
≥ log

(
pΘ̂M1

)

.
We are interested in the capacity of the generalisation of the model: we’d like to avoid

over-fitting. Commonly, one way of dealing with that task is to select the size of the model
by cross-validation. Here, we’ll not develop it furthermore.

In this part we present the Bayes factors, which gives us the main Bayes principal for
selecting models. Also we will show the link with the penalised version BIC, (Bayesian
Information Criterion) which is used by the frequentists so as to "correct" the maximum
likelihood and which has good proprieties. The issue with the selection model ask is the
issue with the selection of the variables which are an active topic of research. There are
others ways of penalising the maximum likelihood and of selecting models.

If p0 is the distribution of the real data, we wish to choose between difference models
(Mi)i∈I by maximising Ep0 [log (pMi

(X∗|D))], where X∗ is a new test sample distributed as
p0 (in fact, it’s still the maximum likelihood principle but we take the expectation on new
data).

In the Bayesian framework, we can compute the marginal probability of data for a given
model

ˆ

p (x1, x2, . . . , xn|θ) p (θ|Mi) dθ = p (D|Mi)

and, by applying the Bayes rule, compute the aposteriori probability of the model:

p (Mi|D) =
p (D|Mi) p (Mi)

p (D)

9.3.2 Bayes Factor

Let’s introduce the Bayes factors, which enables us to compare two models :

p (M1|D)

p (M2|D)
=

p (D|M1) p (M1)

p (D|M2) p (M2)
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The marginal probability of data

p (D|Mi) = p (x1, x2, . . . , xn|Mi)

can decompose itself in a sequential way by using:

p (xn|x1, x2, . . . , xn−1,M) =

ˆ

p (xn|θ) p (θ|x1, x2, . . . , xn−1,M) dθ.

Indeed, we get:

p(D|M) = p(xn|x− 1, . . . , xn−1,M) p(xn−1|x− 1, . . . , xn−2,M) . . . p(x1|M)

Such as

1

n
log p (D|Mi) =

1

n

n∑

i=1

log p(xi|x1, . . . , xi−1,M) ≃ Ep0 [log pM (X|D)]

9.3.3 Proposition

the Bayesian score is approximated by the BIC (“Bayesian information criterion”).

log p (D|M) = log p
θ̂MV

(D)− K

2
log (n) +O (1)

With p
θ̂MV

(D) the data’s distribution when the parameter is the maximum likelihood esti-

mator θ̂MV , K is the number of parameters of the model and n the number of observations.
In the following section, we outline the proof of this result in the case of an exponential

family given by p (x|θ) = exp (〈θ, φ (X)〉 − A (θ)).

9.3.4 Laplace’s Method

p (D|M) =

ˆ n∏

i=1

p (xi|θ) p (θ) dθ

=

ˆ

exp
(〈
θ, nφ̄

〉
− nA (θ)

)
p (θ) dθ

〈θ, nφ̄〉 − nA(θ) = 〈θ̂, nφ̄〉 − nA(θ̂) + 〈θ − θ̂, nφ̄〉

− n(θ − θ̂)T∇θA(θ̂)−
1

2
(θ − θ̂)Tn∇2

θA(θ̂)(θ − θ̂)

+ Rn

where Rn is a negligible rest.
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But the maximum likelihood is the dual of the maximum entropy : maxH(pθ) such that
µ(θ) = φ̄.

µ(θ̂) = φ̄

p(D|M) ≃ exp(〈θ̂, nφ̄〉 − nA(θ̂))×
ˆ

exp

(
−1

2
(θ − θ̂)TnΣ̂(θ − θ̂)

)
p(θ)dθ

However :

1. the information of fisher is equal to Σ̂−1

2.

ˆ

exp

(
−1

2

(
θ − θ̂

)T
nΣ̂
(
θ − θ̂

))
p (θ) dθ ≃ c

√√√√(2π)k

∣∣∣∣∣
Σ̂−1

n

∣∣∣∣∣

Thus :

log p (D|M) = log p
θ̂
(X) +

1

2
log

(
(2π)k

∣∣∣∣∣
Σ̂−1

n

∣∣∣∣∣

)

= log p
θ̂
(X) +

k

2
log (2π) +

1

2
log

((
1

n

)k ∣∣∣Σ̂−1
∣∣∣
)

= log p
θ̂
(X) +

k

2
log (2π)− k

2
log (n) +

1

2
log
(∣∣∣Σ̂−1

∣∣∣
)

The principale reason why presenting the BIC is that a theorem proove the consistancy
of the BIC. In other words, when the number of observations is sufficient, thanks to this
criterion we choose with a probability that converges to 0, a model that satisfies :

Mk ∈ ArgmaxM Ep0

[
log
(
p
θ̂MV

(X ; M)
)]
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