Linear and logistic regression

Guillaume Obozinski

Ecole des Ponts - ParisTech

École des Ponts

ParisTech

Master MVA 2014-2015

Outline

(1) Linear regression
(2) Logistic regression
(3) Fisher discriminant analysis

Linear regression

Generative models vs conditional models

- X is the input variable
- Y is the output variable

A generative model is a model of the joint distribution $p(x, y)$.
A conditional model is a model of the conditional distribution $p(y \mid x)$.

Conditional models vs Generative models

- CM make fewer assumptions about the data distribution
- CM require fewer parameters
- CM are typically computationally harder to learn
- CM can typically not handle missing data or latent variables

Probabilistic version of linear regression

Modeling the conditional distribution of Y given X by

$$
Y \mid X \sim \mathcal{N}\left(\boldsymbol{w}^{\top} X+b, \sigma^{2}\right)
$$

or equivalently $Y=\boldsymbol{w}^{\top} X+b+\epsilon \quad$ with $\quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
The offset can be ignored up to a reparameterization.

$$
Y=\tilde{\boldsymbol{w}}^{\top}\binom{x}{1}+\epsilon .
$$

Likelihood for one pair

$$
p\left(y_{i} \mid \mathbf{x}_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{1}{2} \frac{\left(y_{i}-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)^{2}}{\sigma^{2}}\right)
$$

Negative log-likelihood

$$
-\ell\left(\boldsymbol{w}, \sigma^{2}\right)=-\sum_{i=1}^{n} \log p\left(y_{i} \mid \mathbf{x}_{i}\right)=\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)^{2}}{\sigma^{2}}
$$

Probabilistic version of linear regression

$$
\min _{\sigma^{2}, \boldsymbol{w}} \frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)^{2}}{\sigma^{2}}
$$

The minimization problem in \boldsymbol{w}

$$
\min _{\boldsymbol{w}} \frac{1}{2 \sigma^{2}}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}
$$

that we recognize as the usual linear regression, with

- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ and
- \boldsymbol{X} the design matrix with rows equal to \mathbf{x}_{i}^{\top}.

Optimizing over σ^{2}, we find:

$$
\widehat{\sigma}_{M L E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{\boldsymbol{w}}_{M L E}^{\top} \mathbf{x}_{i}\right)^{2}
$$

Logistic regression

Logistic regression

Classification setting:

$$
\mathcal{X}=\mathbb{R}^{p}, \mathcal{Y} \in\{0,1\}
$$

Key assumption:

$$
\log \frac{\mathbb{P}(Y=1 \mid X=\mathbf{x})}{\mathbb{P}(Y=0 \mid X=\mathbf{x})}=\boldsymbol{w}^{\top} \mathbf{x}
$$

Implies that

$$
\mathbb{P}(Y=1 \mid X=\mathbf{x})=\sigma\left(\boldsymbol{w}^{\top} \mathbf{x}\right)
$$

for

$$
\sigma: z \mapsto \frac{1}{1+e^{-z}}
$$

the logistic function.

- The logistic function is part of the family of sigmoid functions.
- Often called "the" sigmoid function.

Properties:

$$
\begin{array}{rll}
\forall z \in \mathbb{R}, & \sigma(-z) & =1-\sigma(z), \\
\forall z \in \mathbb{R}, & \sigma^{\prime}(z) & =\sigma(z)(1-\sigma(z)) \\
& & =\sigma(z) \sigma(-z) .
\end{array}
$$

Likelihood for logistic regression

Let $\eta:=\sigma\left(\boldsymbol{w}^{\top} \mathbf{x}+b\right)$. W.l.o.g. we assume $b=0$.
By assumption: $Y \mid X=\mathbf{x} \sim \operatorname{Ber}(\eta)$.

Likelihood

$$
p(Y=y \mid X=\mathbf{x})=\eta^{y}(1-\eta)^{1-y}=\sigma\left(\boldsymbol{w}^{\top} \mathbf{x}\right)^{y} \sigma\left(-\boldsymbol{w}^{\top} \mathbf{x}\right)^{1-y} .
$$

Log-likelihood

$$
\begin{aligned}
\ell(\boldsymbol{w}) & =y \log \sigma\left(\boldsymbol{w}^{\top} \mathbf{x}\right)+(1-y) \log \sigma\left(-\boldsymbol{w}^{\top} \mathbf{x}\right) \\
& =y \log \eta+(1-y) \log (1-\eta) \\
& =y \log \frac{\eta}{1-\eta}+\log (1-\eta) \\
& =y \boldsymbol{w}^{\top} \mathbf{x}+\log \sigma\left(-\boldsymbol{w}^{\top} \mathbf{x}\right)
\end{aligned}
$$

Maximizing the log-likelihood

Log-likelihood of a sample

Given an i.i.d. training set $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$

$$
\ell(\boldsymbol{w})=\sum_{i=1}^{n} y_{i} \boldsymbol{w}^{\top} \mathbf{x}_{i}+\log \sigma\left(-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)
$$

The log-likelihood is differentiable and concave.
\Rightarrow Its global maxima are its stationary points.
Gradient of ℓ

$$
\begin{aligned}
\nabla \ell(\boldsymbol{w}) & =\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}-\mathbf{x}_{i} \frac{\sigma\left(-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right) \sigma\left(\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)}{\sigma\left(-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)} \\
& =\sum_{i=1}^{n}\left(y_{i}-\eta_{i}\right) \mathbf{x}_{i} \quad \text { with } \quad \eta_{i}=\sigma\left(\boldsymbol{w}^{\top} \mathbf{x}_{i}\right)
\end{aligned}
$$

Thus, $\quad \nabla \ell(\boldsymbol{w})=0 \Leftrightarrow \sum_{i=1}^{n} \mathbf{x}_{i}\left(y_{i}-\sigma\left(\theta^{\top} \mathbf{x}_{i}\right)\right)=0$.
No closed form solution!

Second order Taylor expansion

Need an iterative method to solve $\quad \sum_{i=1}^{n} \mathbf{x}_{i}\left(y_{i}-\sigma\left(\theta^{\top} \mathbf{x}_{i}\right)\right)=0$.
\rightarrow Gradient descent (aka steepest descent)
\rightarrow Newton's method
Hessian of ℓ

$$
\begin{aligned}
H \ell(\boldsymbol{w}) & =\sum_{i=1}^{n} \mathbf{x}_{i}\left(0-\sigma^{\prime}\left(\boldsymbol{w}^{\top} \mathbf{x}_{i}\right) \sigma^{\prime}\left(-\boldsymbol{w}^{\top} \mathbf{x}_{i}\right) \mathbf{x}_{i}^{\top}\right) \\
& =\sum_{i=1}^{n}-\eta_{i}\left(1-\eta_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}=-\boldsymbol{X}^{\top} \operatorname{Diag}\left(\eta_{i}\left(1-\eta_{i}\right)\right) \boldsymbol{X}
\end{aligned}
$$

where \boldsymbol{X} is the design matrix.
\rightarrow Note that $-H \ell$ is p.s.d. $\Rightarrow \ell$ is concave.

Newton's method

Use the Taylor expansion

$$
\ell\left(\boldsymbol{w}^{t}\right)+\left(\boldsymbol{w}-\boldsymbol{w}^{t}\right)^{\top} \nabla \ell\left(\boldsymbol{w}^{t}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{t}\right)^{\top} H \ell\left(\boldsymbol{w}^{t}\right)\left(\boldsymbol{w}-\boldsymbol{w}^{t}\right) .
$$

and minimize w.r.t. \boldsymbol{w}. Setting $\boldsymbol{h}=\boldsymbol{w}-\boldsymbol{w}^{t}$, we get

$$
\max _{\boldsymbol{h}} \boldsymbol{h}^{\top} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w})+\frac{1}{2} \boldsymbol{h}^{\top} H \ell(\boldsymbol{w}) \boldsymbol{h} .
$$

I.e., for logistic regression, writing $\boldsymbol{D}_{\boldsymbol{\eta}}=\operatorname{Diag}\left(\left(\eta_{i}\left(1-\eta_{i}\right)\right)_{i}\right)$

$$
\min _{\boldsymbol{h}} \quad \boldsymbol{h}^{\top} \boldsymbol{X}^{\top}(\boldsymbol{y}-\boldsymbol{\eta})-\frac{1}{2} \boldsymbol{h}^{\top} \boldsymbol{X}^{\top} \boldsymbol{D}_{\boldsymbol{\eta}} \boldsymbol{X} \boldsymbol{h}
$$

Modified normal equations

$$
\boldsymbol{X}^{\top} \boldsymbol{D}_{\boldsymbol{\eta}} \boldsymbol{X} \boldsymbol{h}-\boldsymbol{X}^{\top} \tilde{\boldsymbol{y}} \quad \text { with } \quad \tilde{\boldsymbol{y}}=\boldsymbol{y}-\boldsymbol{\eta} .
$$

Iterative Reweighted Least Squares (IRLS)

Assuming $\boldsymbol{X}^{\top} \boldsymbol{D}_{\boldsymbol{\eta}} \boldsymbol{X}$ is invertible, the algorithm takes the form

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}+\left(\boldsymbol{X}^{\top} \boldsymbol{D}_{\boldsymbol{\eta}^{(t)}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{y}-\boldsymbol{\eta}^{(t)}\right)
$$

This is called iterative reweighted least squares because each step is equivalent to solving the reweighted least squares problem:

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{1}{\tau_{i}^{2}}\left(\mathbf{x}_{i}^{\top} \boldsymbol{h}-\check{y}_{i}\right)^{2}
$$

with

$$
\tau_{i}^{2}=\frac{1}{\eta_{i}^{(t)}\left(1-\eta_{i}^{(t)}\right)} \quad \text { and } \quad \check{y}_{i}=\tau_{i}^{2}\left(y_{i}-\eta_{i}^{(t)}\right)
$$

Alternate formulation of logistic regression

If $y \in\{-1,1\}$, then

$$
\mathbb{P}(Y=y \mid X=\mathbf{x})=\sigma\left(y \boldsymbol{w}^{\top} \mathbf{x}\right)
$$

Log-likelihood

$$
\ell(\boldsymbol{w})=\log \sigma\left(y \boldsymbol{w}^{\top} \mathbf{x}\right)=-\log \left(1+\exp \left(-y \boldsymbol{w}^{\top} x\right)\right)
$$

Log-likelihood for a training set

$$
\ell(\boldsymbol{w})=-\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \boldsymbol{w}^{\top} x_{i}\right)\right)
$$

Fisher discriminant analysis

Generative classification

$X \in \mathbb{R}^{p}$ and $Y \in\{0,1\}$. Instead of modeling directly $p(y \mid \mathbf{x})$ model $p(y)$ and $p(\mathbf{x} \mid y)$ and deduce $p(y \mid \mathbf{x})$ using Bayes rule. In classification $\mathbb{P}(Y=1 \mid X=\mathbf{x})=$

$$
\frac{\mathbb{P}(X=\mathbf{x} \mid Y=1) \mathbb{P}(Y=1)}{\mathbb{P}(X=\mathbf{x} \mid Y=1) \mathbb{P}(Y=1)+\mathbb{P}(X=\mathbf{x} \mid Y=0) \mathbb{P}(Y=0)}
$$

For example one can assume

- $\mathbb{P}(Y=1)=\pi$
- $\mathbb{P}(X=\mathbf{x} \mid Y=1) \sim \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$
- $\mathbb{P}(X=\mathbf{x} \mid Y=0) \sim \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right)$.

Fisher's discriminant aka Linear Discriminant Analysis (LDA)

Previous model with the constraint $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{0}=\boldsymbol{\Sigma}$. Given a training set, the different model parameters can be estimated using the maximum likelihood principle, which leads to

$$
\left(\widehat{\pi}, \widehat{\boldsymbol{\mu}}_{1}, \widehat{\boldsymbol{\mu}}_{0}, \widehat{\boldsymbol{\Sigma}}_{1}, \widehat{\boldsymbol{\Sigma}}_{0}\right)
$$

