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Clustering
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Supervised, unsupervised and semi-supervised learning

Supervised learning

Training set composed of pairs {(x1, y1), . . . , (xn, yn)}.
→ Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs {x1, . . . ,xn}.
→ Partition the data in a number of classes.
→ Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of
train data {(x1, y1), . . . , (xn, yn)} + test data {xn+1, . . . ,xn}
→ Classify all the test data

Semi-supervised learning

Data available at train time composed of
labelled data {(x1, y1), . . . , (xn, yn)} + unlabelled data
{xn+1, . . . ,xn}
→ Produce a classification rule for future points
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Clustering

Clustering is word usually used for unsupervised classification

Clustering techniques can be useful to solve semi-supervised
classification problem.

Clustering is not a well-specified problem

Classes might be impossible to infer from the distribution of X
alone

Several goals possible:

Find the modes of the distribution
Find a set of denser connected regions supporting most of the
density
Find a set of denser convex regions supporting most of the
density
Find a set of denser ellipsoidal regions supporting most of the
density
Find a set of denser round regions supporting most of the density
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K-means
Key assumption: Data composed of K “roundish” clusters of
similar sizes with centroids (µ1, · · · ,µK).

Problem can be formulated as: min
µ1,··· ,µK

1

n

n∑
i=1

min
k
‖xi − µk‖2.

Difficult (NP-hard) nonconvex problem.

K-means algorithm
1 Draw centroids at random

2 Assign each point to the closest centroid

Ck ←
{
i | ‖xi − µk‖2 = min

j
‖xi − µj‖2

}
3 Recompute centroid as center of mass of the cluster

µk ←
1

| Ck |
∑
i∈Ck

xi

4 Go to 2
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K-means properties

Three remarks:

K-means is greedy algorithm

It can be shown that K-means converges in a finite number of
steps.

The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm
with a random initialization to have chances to obtain a better
solution.

Will fail if the clusters are not round
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K-means++, (Arthur and Vassilvitskii, 2007)

Algorithm

Choose first center µ1 uniformly among data points

For k = 2...K

Let D2
i = minj<k ‖xi − µk‖22

Choose the next center among {x1, . . . , xn} with probability
∝ D2

i .

endFor

→ Solution is log(K) optimal.

See Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of

careful seeding. Proceedings of the 18th annual ACM-SIAM symposium on

Discrete algorithms.
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The Gaussian mixture model

and
the EM algorithm
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Jensen’s Inequality

Consider a function f : Rd → R
1 if f is convex and if X is a random variable, then

E
[
f(X)

]
≥ f

(
E[X]

)
2 if f is strictly convex, we have equality in the previous

inequality if and only if X is constant almost surely.
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Entropy

Let X a r.v. with values in the finite set X and p(x) = P (X = x).

Quantity of information of the observation x

I(x) := log
1

p(x)

Definition of entropy

H(X) := E [I(X)] = −
∑
x∈X

p(x) log p(x)

Remarks:

Convention: 0 log 0 = 0

H defined either with natural log or the log in base 2 (i.e. log2).

log2 is better for coding interpretations

In this course we will use the natural logarithm.
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Kullback-Leibler divergence

Definition

Let p and q be two finite distributions on X finite. The
Kullback-Leibler divergence is defined by

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)
= EX∼p

[
log

p(X)

q(X)

]
=
∑
x∈X

p(x)

q(x)

(
log

p(x)

q(x)

)
q(x) = EX∼q

[
p(X)

q(X)
log

p(X)

q(X)

]
The KL divergence is not a distance: it is not symmetric. If

∃x ∈ X with q(x) = 0 and p(x) 6= 0 then D(p ‖ q) = +∞.
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Kullback-Leibler divergence

Proposition

D(p ‖ q) ≥ 0 and equality holds if and only if p = q.

Proof.

W.l.o.g assume q(x) > 0 everywhere.

1 y 7→ y log y is convex so by Jensen’s inequality, we have

D(p ‖ q) = Eq

[
p(X)

q(X)
log

(
p(X)

q(X)

)]
≥ Eq

[
p(X)

q(X)

]
logEq

[
p(X)

q(X)

]
= 0

since

Eq

[
p(X)

q(X)

]
=
∑
x∈X

p(x)

q(x)
q(x) =

∑
x∈X

p(x) = 1.

2 D(p ‖ q) = 0 iff there is equality in Jensen’s inequality

⇒ p(x) = cq(x) q-a.s.,
⇒ but summing this last equality over x implies that c = 1,
⇒ in turn implies that p = q.
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Differential entropy and KL
Let X be a r.v. with distribution P and density p w.r.t. a measure µ.

Differential entropy:

Hdiff(p) = −
∫
X
p(x) log(p(x))dµ(x)

Differential Kullback Leibler Divergence

Ddiff(p ‖ q) =

∫
X
p(x) log

p(x)

q(x)
dµ(x)

= EX∼p

[
log

p(X)

q(X)

]

Hdiff (p) � 0

Hdiff (p) depends on the reference measure µ.

⇒ Hdiff (p) does not capture intrinsic properties of P .

However, Ddiff (p ‖ q) does not depend on µ.
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Gaussian mixture model

K components

z component indicator

z = (z1, . . . , zK)> ∈ {0, 1}K
z ∼M(1, (π1, . . . , πK))

p(z) =

K∏
k=1

πzkk

p(x|z; (µk,Σk)k) =

K∑
k=1

zkN (x;µk,Σk)

p(x) =
K∑
k=1

πkN (x;µk,Σk)

Estimation: argmax
µk,Σk

log

[
K∑
k=1

πkN (x;µk,Σk)

]

xn

zn

N

µ Σ

π
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Applying maximum likelihood to the Gaussian mixture
Let Z = {z ∈ {0, 1}K |∑K

k=1 zk = 1}

p(x) =
∑
z∈Z

p(x, z) =
∑
z∈Z

K∏
k=1

[
πkN (x;µk,Σk)

]zk
=

K∑
k=1

πkN (x;µk,Σk)

Issue

The marginal log-likelihood ˜̀(θ) =
∑

i log(p(x(i))) with
θ =

(
π, (µk,Σk)1≤k≤K

)
is now complicated

No hope to find a simple solution to the maximum likelihood
problem

By contrast the complete log-likelihood has a rather simple form:

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i, k

z
(i)
k logN (x(i);µk,Σk)+

∑
i,k

z
(i)
k log(πk),
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Applying ML to the multinomial mixture

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i,k

z
(i)
k logN (x(i);µk,Σk)+

∑
i,k

z
(i)
k log(πk),

If we knew z(i) we could maximize ˜̀(θ).
If we knew θ =

(
π, (µk,Σk)1≤k≤K

)
, we could find the best z(i)

since we could compute the true a posteriori on z(i) given x(i):

p(z
(i)
k = 1 | x; θ) =

πkN (x(i);µk,Σk)∑K
j=1 πj N (x(i);µj ,Σj)

→ Seems a chicken and egg problem...
In addition, we want to solve

max
θ

∑
i

log

(∑
z(i)

p(x(i), z(i))

)
and not max

θ,
z(1),...,z(M)

∑
i

log p(x(i), z(i))

Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?

EM 19/27



Principle of the Expectation-Maximization Algorithm

log p(x;θ) = log
∑
z

p(x, z;θ) = log
∑
z

q(z)
p(x, z;θ)

q(z)

≥
∑
z

q(z) log
p(x, z;θ)

q(z)

= Eq[log p(x, z;θ)] +H(q) =: L(q,θ)

This shows that L(q,θ) ≤ log p(x;θ)

Moreover: θ 7→ L(q,θ) is a concave function.

Finally it is possible to show that

L(q,θ) = log p(x;θ)−KL(q||p(·|x;θ))

So that if we set q(z) = p(z | x;θ(t)) then

L(q,θ(t)) = p(x; θ(t)).

θold θnew

L (q, θ)

ln p(X|θ)
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A graphical idea of the EM algorithm

θold θnew

L (q, θ)

ln p(X|θ)
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Expectation Maximization algorithm

Initialize θ = θ0

WHILE (Not converged)

Expectation step

1 q(z) = p(z | x;θ(t−1))

2 L(q,θ) = Eq
[

log p(x, z;θ)
]

+H(q)

Maximization step

1 θ(t) = argmax
θ

Eq
[

log p(x, z;θ)
]

ENDWHILE

θold θnew

L (q, θ)

ln p(X|θ)

θold = θ(t−1)

θnew = θ(t)
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Expected complete log-likelihood

With the notation: q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z

(i)
k

]
, we have

Eq(t)
[
˜̀(θ)

]
= Eq(t)

[
log p(X,Z;θ)

]
= Eq(t)

[ M∑
i=1

log p(x(i), z(i);θ)

]
= Eq(t)

[∑
i,k

z
(i)
k logN (x(i),µk,Σk) +

∑
i,k

z
(i)
k log(πk)

]
=

∑
i, k

E
q
(t)
i

[
z

(i)
k

]
logN (x(i),µk,Σk) +

∑
i,k

E
q
(t)
i

[
z

(i)
k

]
log(πk)

=
∑
i, k

q
(t)
ik logN (x(i),µk,Σk) +

∑
i,k

q
(t)
ik log(πk)

EM 23/27



Expectation step for the Gaussian mixture

We computed previously q
(t)
i (z(i)), which is a multinomial

distribution defined by

q
(t)
i (z(i)) = p(z(i)|x(i);θ(t−1))

Abusing notation we will denote (q
(t)
i1 , . . . , q

(t)
iK) the corresponding

vector of probabilities defined by

q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z

(i)
k

]

q
(t)
ik = p(z

(i)
k = 1 | x(i);θ(t−1)) =

π
(t−1)
k logN (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j logN (x(i),µ

(t−1)
j ,Σ

(t−1)
j )
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Maximization step for the Gaussian mixture

(
πt, (µ

(t)
k ,Σ

(t)
k )1≤k≤K

)
= argmax

θ
Eq(t)

[
˜̀(θ)

]

This yields the updates:

µ
(t)
k =

∑
i x

(i) q
(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ(t)

k

)(
x(i) − µ(t)

k

)>
q

(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i,k′ q
(t)
ik′

EM 25/27



Final EM algorithm for the Multinomial mixture model
Initialize θ = θ0

WHILE (Not converged)

Expectation step

q
(t)
ik ←

π
(t−1)
k logN (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j logN (x(i),µ

(t−1)
j ,Σ

(t−1)
j )

Maximization step

µ
(t)
k =

∑
i x

(i) q
(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ(t)

k

)(
x(i) − µ(t)

k

)>
q

(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i,k′ q
(t)
ik′

ENDWHILE
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EM Algorithm for the Gaussian mixture model III

p(x|z) p(z|x)
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