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Abstract— The popular Sudoku puzzle bears structural
resemblance to the problem of decoding linear error
correction codes: solution is over a discrete set, and several
constraints apply. We express the constraint satisfaction
using a Tanner graph. The belief propagation algorithm is
applied to this graph. Unlike conventional computer-based
solvers, which rely on humanly specified tricks for solution,
belief propagation is generally applicable, and requires no
human insight to solve a problem. The presence of short
cycles in the graph creates biases so that not every puzzle
is solved by this method. However, all puzzles are at least
partly solved by this method. The Sudoku application thus
demonstrates the potential effectiveness of BP algorithms
on a general class of constraint satisfaction problems.

I. INTRODUCTION

The belief propagation (BP) paradigm (also known
as message passing (MP)) realizes Bayesian inference
on graphs without cycles [1], [2], [3], and performs
nearly Bayesian belief propagation on graphs with cy-
cles [4], [5]. BP algorithms can be used to describe a
variety of algorithms, including fast Hadamard trans-
forms, the Kalman filter, fast Fourier transforms, MAP
decoding algorithms (including decoding algorithms for
turbo codes), and the Viterbi algorithm. Most relevant
to the current consideration, BP algorithms are also the
means by which low density parity check (LDPC) codes
are decoded [6]. In LDPC decoding, information about
received bits that is implied collectively by the set of
parity constraints is combined together in a (nearly)
Bayesian way with information from the received data
to provide information about the bits that were originally
transmitted. In this paper, we demonstrate how the BP
paradigm — borrowed closely from LDPC decoding
— can be applied to a problem with multiple local
combinatorial constraints, namely, the popular Sudoku
puzzle. While there are other methods of solving Sudoku
puzzles, the BP method is very general and does not
require any human insight or tricks, nor does it require
building solution trees. It is thus potentially applicable
to a broad variety of problems as a general tool.

Easy Sudoku puzzles can be solved by simple elimina-
tion. Difficult Sudoku puzzles are actually NP-complete
[7]. These puzzles are thus well-scoped examples worthy
of studying the general class of NP-complete problems.

The error correction decoding problem is also NP-
complete [8], but very effective sub-optimal decoding
algorithms exist. Even for codes with not particular
structure, message passing algorithms can be somewhat
effective, but not perfect [9]. In this paper, we present
progress toward a solution, but do not provide a solution
that works in all cases.

Interestingly, the algorithm works from general rules
of inference, not from particular special cases and tricks,
which are probably employed in the Sudoku puzzle
posers and solvers which are widespread. It is thus
applicable to a wide variety of constraint satisfaction
problems.

In applying BP methods, the problem is mapped to
a graph and messages representing Bayes probabilities
are passed among the nodes of the graph. For the
Sudoku puzzle, evidence about the contents of cells of
the Sudoku puzzle is learned in a soft (probabilistic) way
from the degree to which the cell contents satisfy the
constraints of the puzzle. This application thus demon-
strates application of BP to problems with multiple local
constraints.

BP is Bayesian optimal for graphs without cycles, but
suffers from biases for graphs with cycles. The graph
associated with Sudoku, like the graphs for LDPC codes,
does have cycles. Every node in the Sudoku graph lies
on two cycles of length four. The biases introduced by
these short cycles cause failure of the BP method for
more difficult puzzles.

Unlike the LDPC case, in which the combinatorial
complexity of the marginalizations can be efficiently
treated using a lattice structure, the marginalization as-
sociated with Sudoku still retains combinatorial com-
plexity. However, it is localized only to individual con-
straints, so that a search over the global set of constraints
is avoided.

Despite these shortcomings, the application reveals the
possibility of applying BP techniques to multiconstraint
problems, at least to eliminate many of the possibilities,
perhaps leaving the problem sufficiently small that a
global search may be possible.1-4244-0166-6/06/$20.00 (c)2006IEEE



II. PUZZLE DESCRIPTION AND NOTATION

In a 9 × 9 Sudoku puzzle, the problem is to place
integers from 1 to 9 in a 9 × 9 array in such a way
that each integer appears once on each row, once in
each column, and once in each of the nine 3× 3 blocks
partitioning the array. The puzzle is seeded with some
cells filled in. The difficulty of the puzzle generally
increases as the number of seed values decreases. An
example Sudoku puzzle is shown here.

4 9 6 7
7 6 9

3

1 7 4
6 4 1 8

2 1 6

1
4 3 2

6 2 9 4

(1)

We refer to the elements of the matrix as “cells,” and
denote the contents of cell n by Sn ∈ {1, 2, . . . , 9}
for n = 1, 2, . . . , 81. Cells are numbered in row-scan
order. The constraints of the puzzle can be described as
follows. Each constraint involves nine cells. A constraint
is satisfied if all nine cells associated with it — all nine
arguments to the constraint function — are distinct. A
constraint function Cm : {1, . . . , 9}9 → {0, 1} is defined
as

Cm(s1, s2, . . . , s9) =

{

1 s1, s2, . . . , s9 are all distinct
0 otherwise.

Let C1 through C9 denote the constraints associated with
the rows of the puzzle, C10 through C18 the constraints
associated with the columns, and C19 through C27 the
constraints associated with the 3 × 3 blocks. Generally
we denote cell indices with n or n′ and denote constraint
indices with m or m′.

We can associate a bipartite graph with the Sudoku
puzzle, consisting of a set containing 81 nodes corre-
sponding to the cells Sn of the puzzle, and another set
containing 27 nodes corresponding to the constraints Cm

of the puzzle. The graph has an edge between cell node
Sn and a constraint node Cm if and only if Sn is involved
in constraint Cm. Figure 1 diagrams the graph. In the
error correction coding literature, such a graph is referred
to as a Tanner graph [10]. (In the error correction coding
application, the constraint functions are parity check
functions.) The Tanner graph for the Sudoku puzzle
reveals that structurally, the LDPC decoding problem is
similar to solving the Sudoku puzzle.

We denote the set of indices of the cells (that is, the
n values) that participate in constraint Cm by Nm, and

S1 S2 S9 S10 S81

C1 C2 C9 C10 C11 C19 C27

10 11 27191 2 9

1 2 9 10 81

Fig. 1. Tanner graph associated with Sudoku puzzle

the set of indices of the constraints (the m values) that
associate with cell Sn by Mn. For example,

N1 = {1, 2, 3, 4, 5, 6, 7, 8, 9},

N10 = {1, 10, 19, 28, 37, 46, 55, 44, 73},

N19 = {1, 2, 3, 10, 11, 12, 19, 20, 21},

M1 = {1, 10, 19} M2 = {1, 11, 19}.

We use a double subscript notation to indicate that
elements are removed from these sets. For example,
Nm,n = Nm\n denotes the cells involved in constraint
m, except for cell n. For example,

N10,19 = {1, 10, 28, 37, 46, 55, 44, 73}.

III. BELIEF PROPAGATION FORMULATION

In the belief propagation algorithm, the nodes in
the Tanner graph send messages to each other, rep-
resenting local information about the nodes. For the
Sudoku puzzle, a constraint node sends a message about
the probability that the constraint is satisfied, which it
computes using information from the cell nodes about
the probabilities of the cell contents. A cell node, on
the other hand, sends a message about the probabilities
of the various cell contents, given information about the
constraints associated with that cell. For a graph with
cycles, nodes in the graph send information to each other
until the messages converge, or until all constraints are
satisfied, or until some maximum number of iterations
is reached.

We model the contents of the cells probabilistically.
Let

pn =
[

P (Sn = 1) P (Sn = 2) · · · P (Sn = 9)
]

be the probability vector associated with cell Sn. Cells
which are specified initially place all their probability
mass on the specified value, while unspecified cells have
probability uniformly distributed over possible outcome
values. (The possible outcome values are obtained by



eliminating values from consideration which would vio-
late the three constraints associated with that cell. This is
not strictly necessary; initial probabilities could be uni-
formly distributed over all nine possibilities. However,
eliminating some contents based on constraints reduces
the number of iterations of the algorithm.)

For example, for the puzzle in (1),

p4 = e4 p6 = e9 p7 = e6, etc.

p1 =
1

4

[

0 1 1 0 1 0 0 1 0
]

p2 =
1

4

[

1 0 1 0 1 0 0 1 0
]

, etc.

where ek is a vector of length 9 with a single 1 at
position k and zeros in other positions. We also use 1

as a vector of all ones.
Let Cm denote the event that the mth constraint is

satisfied; that is, the event that all of the cells in that
constraint are distinct.

Belief propagation operates by sending probabilistic
messages between adjacent nodes in the graph. The
message that constraint node Cm sends to cell Sn is

rmn(x) = P (Cm is satisfied|Sn = x) = P (Cm|Sn = x)

that is, the probability that constraint Cm is satisfied
when the cell Sn contains x (see [11] for related discus-
sion for LDPC decoding). The “message” from Cm to
Sn is actually a probability vector, e.g.,

rmn =
[

rmn(1), rmn(2), . . . , rmn(9)
]

.

The message that cell node Sn sends to constraint node
Cm is

qmn(x) = P (Sn = x|all the constraints except Cm

involving Sn are satisfied)

= P (Sn = x|{Cm′ , m′ ∈ Mnm}),

that is, the probability that Sn = x given that all of
the constraints connected to Sn are satisfied, except the
constraint to which the message is being sent.

The decision values are based upon the message that
cell node Sn obtains from all of the constraints,

qn(x) = P (Sn = x|all constraints involving Sn

are satisfied)

= P (Sn = x|{Cm′ , m′ ∈ Mn}).

If there were no cycles in the graph, belief propagation
theory asserts that, after a sufficiently large number of
message passing steps, qn(x) would be the Bayesian pos-
terior probability, incorporating information both from
the prior probabilities and the evidence provided by the
constraints [1], [2]. If there are cycles in the graph,
then evidence recirculates around the graph, leading

to potentially biased results. However, experience has
shown that the results are usually still useful [4].

The belief propagation rules are derived under certain
assumptions of statistical independence. Strictly speak-
ing, cycles in the graph lead to violation of these as-
sumptions. However, the assumptions are approximately
true, and lead to tractable, and useful, results. It now
remains to develop expressions for these probabilities.

A. Constraint to Cell Message rmn(x)

We can write
rmn(x) = P (Cm|Sn = x)

=
∑

{x
n′ ,n′∈Nm,n}

P (Cm, {Sn′ = xn′}|Sn = x)

=
∑

{x
n′ ,n′∈Nm,n}

(

P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n})

× P ({Sn′ , n′ ∈ Nm,n}|Sn = x)
)

.

We now invoke an assumption that the cells in the set
{Sn′ , n′ ∈ Nm,n} are independent. This is clearly not
true, since cells associated with a constraint must have
distinct contents; if S1 = 1, it cannot be the case the
S2 = 1 also. However, following the spirit of the LDPC
decoder we use that assumption. We thus have

rmn(x) =
∑

{x
n′ ,n′∈Nm,n}

(

P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n})

×
∏

l∈Nm,n

P (Sl = xl|Sn = x)
)

.

We also note that P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n})
is conditioned upon all of the cells connected to Cm.
Constraint is Cm is then either satisfied or not, depending
on the values of the arguments. Thus

P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n}) =
{

1 all Sn and {Sn′ , n′ ∈ Nm,n} are distinct
0 otherwise.

We thus have

rmn(x) =
∑

{xn′ , n′ ∈ Nm,n}
{x, xn′} all unique

∏

l∈Nm,n

P (Sl = xl|Sn = x)

To formulate this as a belief propagation step, we invoke
the approximation

P (Sl = xl|Sn = x) = qml(xl),

the probability that cell Sl sends to constraint Cm. We
thus obtain

rmn(x) =
∑

{xn′ , n′ ∈ Nm,n}
{x, xn′} all unique

∏

l∈Nm,n

qml(xl). (2)



Unfortunately, the sum is over a combinatorial set.
However, when some of the cells in Nm,n are known,
it reduces the size of the set. Furthermore, this is only a
“local” combinatorial complexity, restricted to the cells
involved in a constraint, and not over all the empty cells
in the puzzle.

B. Cell to Constraint Message qmn(x)

We derive qn(x); modifications to obtain qmn(x) are
straightforward.

qn(x) = P (Sn = x|{Cm, m ∈ Mn})

=
P (Sn = x, {Cm, m ∈ Mn})

P ({Cm, m ∈ Mn})

= αP ({Cm, m ∈ Mn}|Sn = x)P (Sn = x),

where α is a normalizing constant. We assume indepen-
dence again, then recognize rmn(x):

qn(x) = P (Sn = x)
∏

m∈Mn

P (Cm|Sn = x)

= P (Sn = x)
∏

m∈Mn

rmn(x).

Similarly,

qmn(x) = P (Sn = x)
∏

m′∈Mn,m

rm′n(x). (3)

In operation, the BP iterates between (2) and (3).
However, for a cell whose contents are unambiguously
known — such as the cells initially filled in — the cell to
constraint message is simply the fixed probability vector.

C. Cycle structure of the graph

The BP method is exact on graphs with no cycles.
However, the graph associated with Sudoku has many
short cycles in it. In fact, every cell is in four cycles of
girth four. There are two of the following form:

cell → row constraint → cell on row → box constraint
→ cell,

one for each of the two other cells on the row in a box,
and

cell → column constraint → cell on column →

box constraint → cell,

one for each of the two other cells on the column in a
box. For example,

1 → row 1 constraint → 2 → box constraint → 1

1 → row 1 constraint → 3 → box constraint → 1

1 → column 1 constraint → 10 → box constraint → 1

1 → column 1 constraint → 19 → box constraint → 1

These many short cycles will definitely bias the results
of the message passing algorithm. What results is that
not every puzzle is solvable by this MP technique.

IV. SOME RESULTS

In solving the puzzle, several iterations of elimination
were computed: the possible contents of each cell were
eliminated based on the constraints the cell associated
with. This reduced the number of BP iterations, and
acts according to how a human would begin solving
the puzzle. Following this simple elimination, the BP
proceeds. As computation proceeds, as a probability
vector emerges that places all of its mass on a single cell,
a “hard” decision is declared, establishing the contents
of a cell. (Filled cells are important because they reduce
the computationally complexity of the sum in (2).)

We consider first the puzzle in (1). The initial elimi-
nation phase did not result in any simplifications. This
was followed by 8 iterations of message passing. The
sequence of steps is as follows.

2 4 3 9 6 7

4 7 6 9

6 4 3

2 1 7 4 6

6 4 2 1 8

2 1 6 4

1 6

4 3 2

6 2 9 1 4

2 4 3 9 6 7

4 7 6 9

6 2 4 3

2 1 7 4 6

6 4 3 2 1 8

2 1 6 4

1 6

4 3 2

6 2 9 1 4

2 4 3 9 6 7

4 7 6 9 2

6 1 2 4 3

2 1 7 4 6

6 4 3 2 1 8

2 1 6 4

1 6 2 4

4 3 2 1 6 9

6 2 9 1 4 7

2 4 3 9 6 7 1

4 7 6 9 2

6 1 2 4 3

2 1 7 4 6

6 4 3 2 1 8

2 1 6 4 9 5

1 6 2 4

4 3 2 1 6 9

6 2 9 1 4 3 7

2 4 3 9 6 7 1

4 1 3 7 6 9 2

6 1 2 4 3

2 1 7 4 6

6 4 9 3 2 1 8

2 1 6 4 3 9 5

1 6 2 4

4 3 2 1 6 9

6 2 9 1 4 3 7

2 4 3 9 6 7 1

4 1 3 7 6 9 2

9 6 1 2 4 3

3 2 1 7 4 6

6 4 5 9 3 2 1 8

8 2 1 6 4 3 9 5

1 3 9 6 2 4

4 3 2 1 6 9

6 2 9 1 4 3 7

2 8 4 3 9 6 7 1

4 1 3 8 7 6 9 2

9 7 6 1 2 4 3

3 9 5 2 8 1 7 4 6

6 4 7 5 9 3 2 1 8

8 2 1 6 4 7 3 9 5

1 3 9 7 6 8 2 4

7 4 3 2 1 6 9

5 6 2 9 1 4 8 3 7

2 5 8 4 3 9 6 7 1

4 1 3 8 7 6 9 5 2

9 7 6 1 5 2 4 8 3

3 9 5 2 8 1 7 4 6

6 4 7 5 9 3 2 1 8

8 2 1 6 4 7 3 9 5

1 3 9 7 6 8 5 2 4

7 8 4 3 2 5 1 6 9

5 6 2 9 1 4 8 3 7



After the last step (eight iterations) the puzzle is correctly
completed.

As a second example, we present a puzzle whose
solution is not completely determined. After easy elim-
ination, we obtain the following.

1 4

9 3

4 7 1

1 2 8 5

8 2

5 6 4

1 3 9

5

3 9 2

1 4 2

9 3 4

4 7 1

1 2 8 5

8 2

5 6 2 1 8 4

1 3 9

5 3

3 9 5 2

1 4 2

9 1 3 4

4 3 7 1

1 2 8 5

8 7 2

5 6 2 1 8 4

1 3 9

4 5 3

3 9 5 2 1

1 4 2

9 1 3 4

2 4 3 7 1

1 2 9 8 5

8 1 7 9 2

5 6 2 1 8 4

1 3 9

1 9 4 5 3

4 3 8 9 5 2 1

3 1 4 2

9 2 1 3 4

2 4 3 7 1

6 1 2 9 8 5

5 8 1 7 9 2

9 7 5 6 2 1 8 4

1 3 4 9

1 9 2 4 5 3

4 3 8 9 5 2 1

3 1 4 2

9 2 1 3 4

2 4 3 7 1

6 1 2 9 4 8 5 3 7

5 8 4 1 7 9 2

9 3 7 5 6 2 1 8 4

2 5 1 3 4 9

1 9 2 4 8 5 3

4 3 8 9 5 2 1

3 5 1 4 6 7 2

9 2 1 3 4

2 4 3 7 6 1

6 1 2 9 4 8 5 3 7

5 8 4 1 3 7 9 6 2

9 3 7 5 6 2 1 8 4

8 2 5 1 3 4 9 6

1 9 2 4 8 5 3

4 3 8 9 5 2 7 1

3 5 1 4 8 6 7 2 9

7 9 2 5 1 3 4 5

2 4 8 3 7 9 6 1 5

6 1 2 9 4 8 5 3 7

5 8 4 1 3 7 9 6 2

9 3 7 5 6 2 1 8 4

8 2 5 7 1 3 4 9 6

1 7 9 6 2 4 8 5 3

4 6 3 8 9 5 2 7 1

Note that incorrect decisions have been made: the second
row has two 5s on it, and the last column has two 5s
on it. Ultimately, this is due to biases introduced due to
cycles.

V. CONCLUSIONS

The MP paradigm is straightforward to apply to some
problems with multiple constraints, with solutions ob-
tained over discrete sets. The computational complexity
is localized to each constraint.

Cycles lead to failures in some cases, due to biases in
the MP process. Addressing these biases is the topic for
future investigations.
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