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Phylogenetic hidden Markov models, or phylo-HMMs, are probabilistic mod-
els that consider not only the way substitutions occur through evolutionary
history at each site of a genome but also the way this process changes from
one site to the next. By treating molecular evolution as a combination of
two Markov processes—one that operates in the dimension of space (along a
genome) and one that operates in the dimension of time (along the branches
of a phylogenetic tree)—these models allow aspects of both sequence structure
and sequence evolution to be captured. Moreover, as we will discuss, they per-
mit key computations to be performed exactly and efficiently. Phylo-HMMs
allow evolutionary information to be brought to bear on a wide variety of
problems of sequence “segmentation,” such as gene prediction and the iden-
tification of conserved elements.

Phylo-HMMs were first proposed as a way of improving phylogenetic mod-
els that allow for variation among sites in the rate of substitution [9, 52]. Soon
afterward, they were adapted for the problem of secondary structure predic-
tion [11, 47], and some time later for the detection of recombination events [20].
Recently there has been a revival of interest in these models [41, 42, 43, 44, 33],
in connection with an explosion in the availability of comparative sequence
data, and an accompanying surge of interest in comparative methods for the
detection of functional elements [5, 3, 24, 46, 6]. There has been particular
interest in applying phylo-HMMs to a multispecies version of the ab initio
gene prediction problem [41, 43, 33].

In this chapter, phylo-HMMs are introduced, and examples are presented
illustrating how they can be used both to identify regions of interest in mul-
tiply aligned sequences and to improve the goodness of fit of ordinary phylo-
genetic models. In addition, we discuss how hidden Markov models (HMMs),
phylogenetic models, and phylo-HMMs all can be considered special cases of
general “graphical models” and how the algorithms that are used with these
models can be considered special cases of more general algorithms. This chap-
ter is written at a tutorial level, suitable for readers who are familiar with
phylogenetic models but have had limited exposure to other kinds of graphi-
cal models.
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12.1 Background

A phylo-HMM can be thought of as a machine that probabilistically generates
a multiple alignment, column by column, such that each column is defined by
a phylogenetic model. As with the single-sequence HMMs ordinarily used in
biological sequence analysis [7], this machine probabilistically proceeds from
one state to another1, and at each time step it “emits” an observable ob-
ject, which is drawn from the distribution associated with the current state
(Figure 12.1). With phylo-HMMs, however, the distributions associated with
states are no longer multinomial distributions over a set of characters (e.g.,
{A,C,G,T}) but are more complex distributions defined by phylogenetic mod-
els.

Phylogenetic models, as considered here, define a stochastic process of sub-
stitution that operates independently at each site in a genome. (The question
of independence will be revisited below.) In the assumed process, a character
is first drawn at random from the background distribution and assigned to the
root of the tree; character substitutions then occur randomly along the tree’s
branches from root to leaves. The characters that remain at the leaves when
the process has been completed define an alignment column. Thus, a phyloge-
netic model induces a distribution over alignment columns having a correla-
tion structure that reflects the phylogeny and substitution process (see [11]).
The different phylogenetic models associated with the states of a phylo-HMM
may reflect different overall rates of substitution (as in conserved and noncon-
served regions), different patterns of substitution or background distributions
(as in coding and noncoding regions), or even different tree topologies (as with
recombination [20]).

Typically with HMMs, a sequence of observations (here denoted X) is
available to be analyzed, but the sequence of states (called the “path”) by
which the observations were generated is “hidden” (hence the name “hidden
Markov model”). Efficient algorithms are available to compute the maximum-
likelihood path, the posterior probability that any given state generated any
given element of X, and the total probability of X considering all possible
paths (the likelihood of the model). The usefulness of HMMs in general, and
phylo-HMMs in particular, is in large part a consequence of the fact that
these computations can be performed exactly and efficiently. In this chapter,
three examples of applications of phylo-HMMs will be presented that par-
allel these three types of computation—prediction based on the maximum-
likelihood path (Example 12.1), prediction based on posterior probabilities
(Example 12.2), and improved goodness of fit, as evidenced by model likeli-
hood (Example 12.3). Finally, it will be shown how these algorithms may be
considered special cases of more general algorithms by regarding phylo-HMMs
as graphical models.

1Throughout this chapter, it is assumed that the Markov chain for state transi-
tions is discrete, first-order, and homogeneous.
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Fig. 12.1. (a) A 3-state single-sequence HMM with a multinomial distribution
associated with each state (boxed tables). A new state is visited at each time step
according to the indicated transition probabilities (numbers on arcs), and a new
character is emitted according to the probability distribution for that state. The
shaded boxes indicate the current state and a newly emitted character, which is
appended to the sequence X. In this example, one state has an A+T-rich distribution
(s1), one has a G+C-rich distribution (s2), and one favors purines (s3). (b) An
analogous phylo-HMM. In this case, the multinomial distributions are replaced by
phylogenetic models, and at each time step a new column in a multiple alignment
X is emitted. The phylogenetic models include parameters describing the overall
shape and size of the tree as well as the background distribution for characters
and the pattern of substitution. For simplicity, the tree parameters are represented
graphically, and only one auxiliary parameter is shown.

12.2 Formal Definition of a Phylo-HMM

Formally, we define phylo-HMM θ = (S, ψ,A,b) to be a four-tuple, consisting
of a set of states, S = {s1, . . . , sM}, a set of associated phylogenetic models,
ψ = {ψ1, . . . ,ψM}, a matrix of state-transition probabilities, A = {aj,k}
(1 ≤ j, k ≤ M), and a vector of initial-state probabilities, b = (b1, . . . , bM ). In
particular, ψj is the phylogenetic model associated with state sj (1 ≤ j ≤ M),
aj,k (1 ≤ j, k ≤ M) is the conditional probability of visiting state k at some
site i given that state j is visited at site i − 1, and bj (1 ≤ j ≤ M) is
the probability that state j is visited first (thus,

∑
k aj,k = 1 for all j, and∑

j bj = 1). Let X be the given alignment, consisting of L columns (sites) and
n rows (one for each of n species), with the ith column denoted Xi (1 ≤ i ≤ L).

Each phylogenetic model ψj , in turn, consists of several components. For
our purposes, a phylogenetic model ψj = (Qj ,πj , τ j ,βj) is a four-tuple con-
sisting of a substitution rate matrix Qj , a vector of background (or equilib-
rium) frequencies πj , a binary tree τ j , and a set of branch lengths βj . The
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model is defined with respect to an alphabet Σ (e.g., Σ = {A,C,G,T}) whose
size is denoted d. Generally, Qj has dimension d × d, and π has dimension d
(but see Example 12.3). The tree τ j has n leaves, corresponding to n present-
day taxa. The elements of βj are associated with the branches (edges) of the
tree. It is assumed that all phylogenetic models in ψ are defined with respect
to the same alphabet and number of species.

The probability that a column Xi is emitted by state sj is simply the prob-
ability of Xi under the corresponding phylogenetic model, P (Xi|ψj). This
quantity can be computed efficiently by a recursive dynamic programming
algorithm known as Felsenstein’s “pruning” algorithm [8]. Felsenstein’s algo-
rithm requires conditional probabilities of substitution for all bases a, b ∈ Σ
and branch lengths t ∈ βj . The probability of substitution of a base b for
a base a along a branch of length t, denoted P (b|a, t,ψj), is based on a
continuous-time Markov model of substitution, defined by the rate matrix Qj .
In particular, for any given nonnegative value t, the conditional probabilities
P (b|a, t,ψj) for all a, b ∈ Σ are given by the d × d matrix Pj(t) = exp(Qjt),

where exp(Qjt) =
∑∞

k=0
(Qjt)k

k! [28]. Qj can be parameterized in various more
or less parsimonious ways [50]. For most of this chapter, we will assume the
parameterization corresponding to the “HKY” model [13], which implies that
Qj has the form

Qj =

⎛⎜⎜⎝
− πCj κjπGj πTj

πAj − πGj κjπTj

κjπAj πCj − πTj

πAj κjπCj πGj −

⎞⎟⎟⎠ , (12.1)

where πj = (πAj , πCj , πGj , πTj), κj represents the transition/transversion rate
ratio for model ψj , and the − symbols indicate quantities required to make
each row sum to zero.

A “path” through the phylo-HMM is a sequence of states, φ = (φ1, . . . , φL),
such that φi ∈ {1, . . . , M} for 1 ≤ i ≤ L. The joint probability of a path and
an alignment is2

P (φ,X|θ) = bφ1P (X1|ψφ1
)

L∏
i=2

aφi−1,φi
P (Xi|ψφi

). (12.2)

The likelihood is given by the sum over all paths, P (X|θ) =
∑

φ P (φ,X|θ),
and the maximum-likelihood path is φ̂ = arg maxφ P (φ,X|θ). These quanti-
ties can be computed efficiently using two closely related dynamic-program-
ming algorithms known as the “forward” and Viterbi algorithms, respec-
tively. The posterior probability that observation Xi was produced by state
sj , denoted P (φi = j|X,θ), can be computed for all i and j by combin-
ing the forward algorithm with a complementary “backward” algorithm, in a
“forward-backward” procedure. Details can be found in [7].

2For simplicity, transitions to an “end” state are omitted here.
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Fig. 12.2. (a) A 4-state phylo-HMM for gene finding. States s1, s2, and s3 represent
the three codon positions, and state s4 represents noncoding sites. The associated
phylogenetic models ψ1, . . . , ψ4 capture characteristic properties of the different
types of sites, such as the higher average rate of substitution and the greater tran-
sition/transversion ratio, in noncoding and third-codon-position sites than in first-
and second-codon-position sites. (b) The eight mammals and phylogeny assumed
for the simulation, with branch lengths drawn in the proportions of the noncoding
model (ψ4). Subsets of species were selected to maximize the sum of the branch
lengths of the induced subtree—such as rat and dog for n = 2 and rat, dog, and cow
for n = 3.

Example 12.1 A toy gene finder

This example is meant to demonstrate, in principle, how a phylo-HMM can be
used for gene finding. Consider a simple 4-state phylo-HMM, with states for
the three codon positions and noncoding sites (Figure 12.2(a)). The problem
is to identify the genes in a synthetic data set based on this model using
nothing but the aligned sequence data and the model. (This is a multiple-
sequence version of the ab initio gene prediction problem.) For simplicity,
we assume the model parameters θ are given, along with the data set X. In
practice, the parameters have been set to reasonable values for a phylogeny
of n = 8 mammals (Figure 12.2(b))3, and the data set has been generated
according to these values. The state path was recorded during the generation
of the data, so that it could be used to evaluate the accuracy of predictions.
The synthetic data set consists of L = 100000 sites and 74 genes.

The Viterbi algorithm can be used for prediction of genes in this data
set in a straightforward way. For every site i (1 ≤ i ≤ L) and state j (1 ≤
j ≤ M), the emission probability P (Xi|ψj) is computed using Felsenstein’s
algorithm. These L×M values, together with the state-transition probabilities
A and initial-state probabilities b, are sufficient to define the joint probability

3Parameter estimates from [44] were used for the phylogenetic models, and the
state-transition probabilities were approximately based on estimates from [43]. (The
probability from s4 to s1 was inflated so that genes would not be too sparse.) A
uniform distribution was assumed for initial-state probabilities.
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Fig. 12.3. Nucleotide-level sensitivity and specificity for the phylo- and nonphylo-
HMMs on the simulated data set of Example 12.1. Results are shown for n = 1, . . . , 8
species.

P (φ,X|ψ) for any path φ and can be simply plugged into the standard Viterbi
algorithm to obtain a maximum-likelihood path, φ̂. This predicted path, in
turn, defines a set of predicted genes.

To evaluate the effect on prediction accuracy of the number of species in
the data set, subsets of n = 1, . . . , 8 sequences were selected from the full
alignment (Figure 12.2(b)), and a separate set of predictions was produced
for each subset. Predictions were also produced with an alternative model, in
which emission probabilities were based on the assumption that all characters
in a column were independently drawn from the background (equilibrium)
distribution of each state—in other words, the correlation structure implied
by the phylogeny was ignored. This model, which will be called the “nonphylo-
HMM,” allows the importance of the phylogeny in the phylo-HMM to be
assessed.

The nucleotide-level sensitivity (portion correctly predicted of sites ac-
tually in genes) and specificity (portion correct of sites predicted to be in
genes) for both models are shown in Figure 12.3 as the number of species
increases from n = 1 to n = 8. The two models are identical for n = 1 (where
there is no phylogeny to consider), but as the number of species increases
from n = 2, . . . , 8, the performance of the phylo-HMM rapidly improves, with
about 98% sensitivity and specificity achieved by n = 2, and 99% sensitivity
and specificity achieved by n = 5. The nonphylo-HMM, on the other hand,
appears to improve slightly then decline in both sensitivity and specificity.4

4It might be expected that the prediction accuracy of the nonphylo-HMM would
simply fail to improve as rapidly as that of the phylo-HMM rather than declining.
The reason for the decline seems to be that the erroneous assumption of indepen-
dence causes random fluctuations in base composition to appear more significant
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The phylo-HMM is able to capitalize on differences in branch lengths and sub-
stitution patterns, while the nonphylo-HMM has to rely completely on more
subtle differences in base composition.

This example is obviously a gross simplification of the real gene prediction
problem. Here, the model used for prediction exactly matches the model used
to generate the data, while in the real problem, the model for prediction tends
to fit the data in a much more approximate way. Even if slightly contrived,
however, this example should help to illustrate how the information encoded in
substitution rates and patterns can be exploited in problems of segmentation,
such as gene prediction. ��

Example 12.2 Identification of highly conserved regions

Our second example is concerned with a phylo-HMM in which states corre-
spond to “rate categories”—classes of sites assumed to differ only in overall
rate of substitution—rather than “functional categories,” as in the previous
example. The problem is to identify highly conserved genomic regions in a
set of multiply aligned sequences. Such regions are likely to be functionally
important, and hence their identification has become a subject of considerable
interest in comparative genomics; see Margulies et al. [32] for a recent review
and a comprehensive discussion. In this example, we will use a phylo-HMM
to identify conserved regions in a subset of the data set analyzed by Mar-
gulies et al. It will be shown that a phylo-HMM can be used to obtain results
comparable to theirs and has certain potential advantages over their methods.

A phylo-HMM like the one proposed by Felsenstein and Churchill [9] is as-
sumed, with k states corresponding to k rate categories and state transitions
defined by a single “autocorrelation” parameter λ (Figure 12.4; a similar
model, but with a more complex parameterization of transition probabilities,
was proposed by Yang [52]). Regions of the alignment that are likely to have
been generated by the “slowest” rate categories will be considered putative
“Multi-species Conserved Sequences” (MCSs) [32]. Specifically, we will look
at sites i for which the posterior probability P (φi = 1|X,θ) is high, assuming
state s1 has the smallest rate constant. Posterior probabilities will be com-
puted using the forward-backward algorithm. As in Example 12.1, the L × k
table of emission probabilities—P (Xi|ψj) for every site i (1 ≤ i ≤ L) and
state j (1 ≤ j ≤ k)—together with the state-transition and initial-state prob-
abilities (parameters A and b of the phylo-HMM), can be plugged into the
standard forward-backward algorithm for HMMs. In other words, once the
emission probabilities are computed, the phylogenetic models can be ignored,
and the phylo-HMM can be treated like an ordinary HMM. Note that infer-
ences about the evolutionary rate at each site could alternatively be based on
the Viterbi path. We have opted to use posterior probabilities instead, partly
for illustration and partly because they can be conveniently interpreted as a

than they really are. These fluctuations are “explained” by changes in state, result-
ing in errors in the inferred path and a decline in accuracy.
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Fig. 12.4. State-transition diagram for the autocorrelated rate-variation model
of Felsenstein and Churchill [9] with k = 3 rate categories and a uniform stationary
distribution. The autocorrelation parameter λ defines all transition probabilities,
as shown. It takes values between 0 and 1 and describes the degree to which the
evolutionary rates at adjacent sites tend to be similar. The values r1, r2, and r3

are applied as scaling constants to the branch lengths of a phylogenetic model; all
parameters other than branch lengths are left unchanged. In our case, these “rate
constants,” as well as λ, are estimated (approximately) from the data (see [42]).

continuous-valued “conservation score” that can be plotted along the genome
(see below). With this model, the posterior probabilities also tend to be more
robust than the Viterbi path, which is highly sensitive to λ.

The data set consists of about 1.8 Mb of human sequence from chromo-
some 7 and a homologous sequence from eight other eutherian mammals [46]
(we consider only the nine mammals of the 12 species analyzed in [32].) The
species and phylogeny are as shown in Figure 12.2(b), except that in this case
the chimp is also included and appears in the phylogeny as a sister taxon to
the human. Assuming the HKY substitution model and k = 10 states, we
fitted a phylo-HMM to this alignment, obtaining an estimate of λ̂ = 0.94.
Using these parameter estimates, we then computed the posterior probability
of each state at each site. The posterior probabilities for s1 in a selected region
of the alignment are shown in Figure 12.5 along with the conservation scores
developed by Margulies et al. The known exons in this region all coincide with
regions of high posterior probability, as do several conserved intronic features
identified by Margulies et al. [32].

A detailed comparison of results is not possible here, but we note that the
posterior probabilities based on the phylo-HMM are qualitatively very simi-
lar to the binomial- and parsimony-based conservation scores of Margulies et
al. [32]. In addition, the phylo-HMM may have certain advantages as a frame-
work for addressing this problem. For example, it requires no sliding window
of fixed size and, as a result, is capable of identifying both very short highly
conserved sequences and long, not so conserved sequences. In addition, it can
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Fig. 12.5. A screen shot from the UCSC Genome Browser [25] showing a selected
region of the data set of Example 12.2, including several exons of the MET gene
(black boxes at top). The binomial-based (light gray) and parsimony-based (medium
gray) conservation scores of Margulies et al. [32] are shown as tracks in the browser,
as are the posterior probabilities (×1000) of state s1 in the phylo-HMM (dark gray).
Plots similar to this one, showing phylo-HMM-based conservation scores across the
whole human genome, can be viewed online at http://genome.ucsc.edu.

be used with any phylogenetic model, including, for example, ones that allow
for nonhomogeneities in the substitution process or context-dependent substi-
tution (see Example 12.3); it extends naturally to the case in which different
functional categories of sites, as well as rate categories, are considered [42];
and it could be adapted to model properties such as the length distributions
of MCSs (e.g., using techniques from gene finding). ��

12.3 Higher-Order Markov Models for Emissions

It is common with (single-sequence) gene-finding HMMs to condition the emis-
sion probability of each observation xi on the observations that immediately
precede it in the sequence (e.g., xi−2 and xi−1). By taking into consideration
the “context” for each observation, emission probabilities become more in-
formative, and the HMM can discriminate more effectively between different
classes of observations. For example, in a third-codon-position state, the emis-
sion of a base xi = “A” might have a fairly high probability if the previous
two bases are xi−2 = “G” and xi−1 =“A” (GAA = Glu) but should have zero
probability if the previous two bases are xi−2 = “T” and xi−1 = “A” (TAA
= Stop).

Considering the N observations preceding each xi corresponds to using an
Nth-order Markov model for emissions. (Note that such a model does not im-
ply an Nth-order Markov chain for state transitions; indeed, things are kept
simpler, and the model remains mathematically valid, if state transitions con-
tinue to be described by a first-order Markov chain.) An Nth-order model for
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emissions is typically parameterized in terms of (N +1)-tuples of observations,
and conditional probabilities are computed as

P (xi|xi−N , . . . , xi−1) =
P (xi−N , . . . , xi−1, xi)∑
y P (xi−N , . . . , xi−1, y)

, (12.3)

with the numerator being the probability of the (N + 1)-tuple (xi−N , . . . , xi)
and the sum in the denominator being over all possible observations y that
could appear in place of xi.

An Nth-order Markov model for emissions can be incorporated into a
phylo-HMM in essentially the same way. In this case, a whole alignment col-
umn Xi is considered in place of each single base xi. Because we will primar-
ily be concerned below with tuple size, let us also redefine N and speak of
(N − 1)st-order Markov models and N -tuples of observations instead of Nth-
order Markov models and (N +1)-tuples of observations. With these changes,
equation (12.3) can be rewritten as

P (Xi|Xi−N+1, . . . ,Xi−1) =
P (Xi−N+1, . . . ,Xi−1,Xi)∑
Y P (Xi−N+1, . . . ,Xi−1,Y)

. (12.4)

Notice that the sum in the denominator is now over all possible alignment
columns Y and has dn terms, where d is the size of the alphabet (d = |Σ|)
and n is the number of rows (species) in the alignment. To compute the quan-
tity in the numerator of equation (12.4), we replace an ordinary phylogenetic
model, defined with respect to an alphabet Σ, with what we will call an
“Nth-order” phylogenetic model, defined with respect to ΣN , the alphabet
of N -tuples of characters from Σ.5 (The new rate matrix and vector of equi-
librium frequencies will have dimensions dN × dN and dN , respectively.) The
N -tuple of columns in the numerator is reinterpreted as a column of N -tuples,
and its probability is computed with Felsenstein’s pruning algorithm using the
Nth-order phylogenetic model. The sum in the denominator can no longer be
evaluated directly, but it can be computed efficiently by dynamic program-
ming using a slight adaptation of Felsenstein’s algorithm [44, 42]. This new
algorithm differs from the original only in its initialization strategy. Thus,
the conditional probability P (Xi|Xi−N+1, . . . ,Xi−1) can be computed with
an Nth-order phylogenetic model and two passes through Felsenstein’s algo-
rithm, one for the numerator and one for the denominator of equation (12.4).
This procedure is feasible only for small N ; so far, for N ≤ 3.

5Note that the “order” of a phylogenetic model is given by the size of the tuples
considered and is not equal to the order of the Markov model for emissions. Here,
N th-order phylogenetic models are used to define an (N −1)st-order Markov model.
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Once the conditional emission probabilities of equation (12.4) are available,
they can be substituted directly into equation (12.2). For example, in the case
of N = 3, equation (12.2) can be rewritten as

P (φ,X|θ) = bφ1P (X1|ψφ1
)aφ1,φ2P (X2|X1,ψφ2

)

×
L∏

i=3

aφi−1,φi
P (Xi|Xi−2,Xi−1,ψφi

). (12.5)

The forward, Viterbi, and forward-backward algorithms are unaffected by the
use of a higher-order Markov model for emissions.

It is important to note that this strategy for incorporating higher order
Markov models into a phylo-HMM allows “context” to be considered in the nu-
cleotide substitution process as well as in the equilibrium frequencies of bases.
Nth-order phylogenetic models describe the joint substitution probabilities of
N -tuples of nucleotides. As a result, the conditional probabilities of equation
(12.4) may reflect various important context or neighbor dependencies in the
substitution process, such as the tendency for synonymous substitutions to
occur at a higher rate than nonsynonymous substitutions in coding regions,
or the tendency for a high rate of C→T transitions in CpG dinucleotides.
Equations (12.4) and (12.5), as will be shown in Example 12.3, essentially
provide a way of “stringing together” context-dependent phylogenetic models
so that context dependencies can be considered between every adjacent pair
of columns in an alignment.

Example 12.3 Modeling context-dependent substitution

In this example, we will look at how goodness of fit is affected by increasing
the order N of a phylogenetic model and by allowing for Markov dependence
between sites (as in equation (12.5)). We will consider the goodness of fit of
various independent-site (N = 1) and context-dependent (N > 1) phyloge-
netic models with respect to about 160,000 sites in aligned noncoding DNA
from nine mammalian species. The results presented here are taken from [44].
(The full paper should be consulted for complete details.)

For convenience, let us call the class of phylo-HMMs described by equa-
tions (12.4) and (12.5) “Markov-dependent” models because they allow for
Markov dependence of columns in the alignment. As will be seen below, these
models are actually only approximations of models that properly allow for
Markov dependence across sites in the substitution process. Regardless, these
Markov-dependent models are valid probability models (the probabilities of all
alignments of a given size sum to one), so it is fair to evaluate goodness of fit
based on model likelihoods. The way in which these models are approximate
is discussed in detail in Section 12.7 and the Appendix.

In this example, there are no functional or rate categories to consider.
We assume that the HMM has only a single state, so nothing is actually
“hidden”—only one path is possible, and the model reduces to a Markov
chain.
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As a result, equation (12.5) becomes

P (φ,X|θ) = P (X1|ψ1)P (X2|X1,ψ1)
L∏

i=3

P (Xi|Xi−2,Xi−1,ψ1). (12.6)

This simplification allows us to focus on the impact of higher-order Markov
models and to avoid issues related to the HMM structure. Keep in mind,
however, that higher-order Markov models can be used with a nontrivial HMM
as easily as with this trivial one.

In [44], various models were fitted to the data set of 160,000 noncoding
sites, and their likelihoods were compared. The models differed in the type
of phylogenetic model used (its order N and the parameterization of its rate
matrix) and whether N -tuples of columns were assumed to be independent or
whether Markov dependence was allowed. We will focus here on four types of
phylogenetic models: the HKY and UNR first-order models, the U2S second-
order model, and the U3S third-order model. The HKY model, introduced in
Section 12.2, is treated as a baseline. The UNR, or “unrestricted,” model has
a separate free parameter for every nondiagonal element of the rate matrix
and is the most general model possible for single-nucleotide substitution (see,
e.g., [51]). The U2S and U3S models are fully general second and third-order
models, respectively, except that they assume strand symmetry (so that, e.g.,
the rate at which AG changes to AC is the same as the rate at which CT
changes to GT), and like most codon models [12], they prohibit instantaneous
substitutions of more than one nucleotide. They have 48 and 288 rate-matrix
parameters, respectively. We will consider two cases for each phylogenetic
model: an “independent tuples” case, in which the data set was partitioned
into N -tuples of columns, which were considered independent; and a Markov-
dependent case, in which N -tuples were allowed to overlap, and likelihoods
were computed with equations (12.4) and (12.6). Note that, with first-order
models, the independent tuples and Markov-dependent cases are identical.

Figure 12.6(a) shows the log-likelihoods of the UNR, U2S, and U3S phy-
logenetic models, with and without Markov dependence, relative to the log-
likelihood of the HKY model. Even when N -tuples are considered indepen-
dent, context-dependent models (here U2S and U3S) produce a striking im-
provement in likelihood—a far larger increase than is obtained by replacing
even a fairly parsimonious first-order model (HKY) with a fully general one
(UNR). When Markov dependence between sites is introduced, another large
improvement occurs. This improvement appears to be largely a consequence
of the fact that, with Markov dependence, every boundary between adjacent
sites is considered, while with independent tuples, only every other (U2S) or
every third (U3S) such boundary is considered. Notice that, even with Markov
dependence, goodness of fit improves significantly when a second-order model
(U2S) is replaced with a third-order model (U3S). This is probably partly
because of direct context effects that extend beyond the nearest neighbors of
each base and partly because the third-order model does a better job than
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Fig. 12.6. (a) Log-likelihoods of the UNR, U2S, and U3S phylogenetic models, with
and without Markov dependence between sites, relative to the log-likelihood of the
HKY model. Results are for an alignment of nine species and approximately 160,000
sites of noncoding data, as described in [44]. (b) Parameter estimates of substitution
rates for the U3S model vs. estimates based on counts from aligned human genes and
pseudogenes [16]. The rates cluster into three groups: transversions, transitions, and
CpG transitions. (CpG transversions cluster with non-CpG transitions.) In general,
the two sets of estimates agree fairly well, considering the differences in methods
and data sets. (See [44] for a detailed discussion.)

the second-order model of accounting for indirect context effects—that is, it
provides a better approximation of a proper process-based model of context-
dependent substitution (see below).

The observed improvements remain essentially unchanged when a mea-
surement is used that considers the different numbers of parameters in the
models and the size of the data set (the Bayesian information criterion) and
in cross-validation experiments [44]. Thus, the apparent improvement in good-
ness of fit is not an artifact of the number of parameters in the models.

The U2S and U3S models allow context-dependent substitution rates to
be estimated with full consideration of the phylogeny and allowance for mul-
tiple substitutions per site, unlike simpler “counting” methods for estimating
context-dependent substitution rates [16]. Parameter estimates indicate a wide
variation in rates, spanning a 200-fold range, and, in particular, pronounced
CpG effects (Figure 12.6(b)).

Coding regions can be modeled using a simple 3-state phylo-HMM, with
a separate third-order phylogenetic model for each codon position. Thus, the
state corresponding to the third codon position considers columns of aligned
codons, like an ordinary codon model, but the two other states consider
columns of nucleotide triples that are out-of-frame, and, consequently, these
states can capture context effects that cross codon boundaries. Such a model
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improves substantially on ordinary codon models, indicating that context ef-
fects that cross codon boundaries are important [44] (see also [40]). ��

12.4 Phylogenetic Models, HMMs, and Phylo-HMMs as
Graphical Models

In recent years, probabilistic models originally developed in various research
communities have been unified under the heading of “graphical models.”
Graphical models provide an intuitively appealing framework for construct-
ing and understanding probabilistic models and at the same time allow for
rigorous analysis, in very general statistical and graph-theoretic terms, of al-
gorithms for inference and learning. Many familiar classes of models fit natu-
rally into the graphical models framework, including HMMs and phylogenetic
models, as well as mixture models and hierarchical Bayesian models. A phylo-
HMM can be seen as a graphical model whose structure is a hybrid of the
graphical models for HMMs and phylogenetic models (Figure 12.7). Viewing
phylo-HMMs as graphical models helps to provide insight about why they
permit efficient inference and why this property may be sacrificed when as-
sumptions such as site independence are relaxed. Our discussion of graphical
models will necessarily be brief; other tutorials should be consulted for a more
complete introduction to the field (e.g., [31, 14, 23]).

In graphical models, random variables are represented by nodes in a graph,
and dependencies between variables are represented by edges (Figure 12.7).6

Let X be the set of random variables represented by a graph with nodes
(vertices) V and edges E such that Xv is the variable associated with v ∈ V .
In addition, let XC be the subset of variables associated with C ⊆ V , and
let lowercase letters indicate (sets of) instances of variables (e.g., xv, xC , and
x). Graphical models can be defined in terms of directed or undirected graphs
and accordingly are called directed or undirected models; here we will focus on
the directed case, which for our purposes is simpler to describe. In a directed
model, the edges of the graph correspond to local conditional probability
distributions, and the joint probability of a set of instances x is a product of
the conditional probabilities of nodes given their parents,

P (x) =
∏
v∈V

P (xv|xPv ), (12.7)

where Pv denotes the set of parents of node v and P (xv|xPv ) is the local
conditional probability associated with xv. It should not be too hard to see,
looking at Figure 12.7, that equation (12.7) generalizes the joint probability
of a sequence and a particular path in the case of an HMM and the joint

6The brief introduction to graphical models provided here roughly follows the
more detailed tutorial of Jordan and Weiss [23].
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Fig. 12.7. Graphical model representations of (a) an HMM, (b) a phylogenetic
model, and (c) a phylo-HMM. In each case, nodes correspond one-to-one with ran-
dom variables; shaded nodes represent observed variables, and unshaded nodes rep-
resent unobserved (latent) variables. These are directed graphical models based on
directed acyclic graphs (sometimes called Bayesian networks). The edges between
nodes correspond to local conditional probability distributions and can be thought
of as implying dependencies between variables. (More precisely, the set of all edges
defines a set of conditional independence assertions about the variables.) In (a), each
Xi represents an observation in the sequence and each φi represents a state in the
path. The conditional probability distribution for observation Xi given state φi is
incorporated in the directed edge from φi to Xi, and the conditional probability
distribution for state φi given state φi−1 (i.e., of a transition from φi−1 to φi) is
incorporated in the directed edge from φi−1 to φi. In (b), each set of nodes collec-
tively labeled Xi represents an alignment column, and each set collectively labeled
Yi represents a set of ancestral bases. The conditional probabilities of nucleotide
substitutions (based on the continuous-time Markov model) are incorporated in the
directed edges from each parent node to its two children. In (c), conventions from
(a) and (b) are combined.

probability of an alignment and a particular set of ancestral bases in the case
of a phylogenetic model.

The general problem of probabilistic inference is to compute marginal
probabilities from this joint distribution—probabilities of the form P (xU ) =∑

xW
P (xU , xW ), where (U, W ) is a partitioning of V . The likelihood is an

example of such a marginal probability, with xU being the observed data and
XW being the set of latent variables. When the likelihood of an HMM is
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Fig. 12.8. (a) A directed graphical model whose nodes form an arbitrary tree. The
marginal probability of an observed value of X5 is desired. (b) The intermediate
values of the elimination algorithm can be seen as “messages” that are passed from
one node to another in the direction of X5. (c) In the belief-propagation algorithm,
all possible messages are generated simultaneously; the marginal probability of each
node is a product of the incoming messages. (Based on Figure 1 of Jordan and Weiss
[23].)

computed, xU is the (observed) sequence and XW is the (latent) path. With a
phylogenetic model, the procedure is applied independently at each site, and
xU is an (observed) alignment column and XW is a set of (latent) ancestral
bases. Conditional probabilities of interest, such as the posterior probabilities
of Example 12.2, can be computed as quotients of marginal probabilities. For
instance, suppose xU is the observed data and Xw (w ∈ W ) is a latent variable;
then P (xw|xU ) = P (xU∪{w})

P (xU ) .
Marginal probabilities can always be computed from the complete joint

distribution by brute-force summation7. The problem is to keep these compu-
tations tractable as the number of random variables becomes large. It turns
out that if a directed graphical model is a tree (or set of trees), as in Figure
12.7(a, b) and Figure 12.8, meaning that every node has at most one parent,
then exact inference can be accomplished efficiently by dynamic program-
ming. (As we will see, efficient exact inference is also possible in certain cases
in which the directed graph is not a tree.)

The basic algorithm for computing marginal probabilities is known as
“elimination”, and is most easily described by example. Consider the graph
of Figure 12.8(a), with X = (X1, X2, X3, X4, X5) and edges as depicted. The
elimination algorithm takes advantage of the commutativity of sums and prod-
ucts, and reuse of intermediate computations, to reduce the computational
complexity of a marginal summation.

7This discussion is restricted to discrete random variables, although it extends
directly to the continuous case.
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Algebraically, the algorithm proceeds as follows,

P (x5) =
∑

x1,x2,x3,x4

P (x1, x2, x3, x4, x5)

=
∑

x1

∑

x2

∑

x3

∑

x4

P (x1)P (x2|x4)P (x3|x4)P (x4|x1)P (x5|x4)

=
∑

x4

P (x5|x4)
∑

x3

P (x3|x4)
∑

x2

P (x2|x4)
∑

x1

P (x1)P (x4|x1)

=
∑

x4

P (x5|x4)
∑

x3

P (x3|x4)
∑

x2

P (x2|x4)m14(x4)

=
∑

x4

P (x5|x4)
∑

x3

P (x3|x4)m24(x4)m14(x4)

=
∑

x4

P (x5|x4)m34(x4)m24(x4)m14(x4)

= m45(x5), (12.8)

where the terms of the form mij(xj) denote the results of intermediate
(nested) summations. (Each mij(xj) is the result of a sum over xi and is
a function of xj .) The algorithm can be described in graph-theoretic terms as
a procedure that eliminates one node at a time from the graph until only the
node corresponding to the desired marginal probability remains. From the al-
gebraic description, many readers will recognize the similarity to Felsenstein’s
pruning algorithm [8]. Felsenstein’s algorithm, it turns out, is an instance of
the elimination algorithm—one of the earliest instances to be discovered. The
forward algorithm is another instance of the elimination algorithm, as is the
combined forward/Felsenstein algorithm that we used above to compute the
likelihood of a phylo-HMM. The Viterbi algorithm is closely related to the
elimination algorithm; it can be derived by noting that the “max” operator
commutes with products, just as the summation operator does. Note that the
elimination algorithm depends on a good “elimination ordering”. An optimal
ordering is difficult to find for arbitrary graphs but can be determined easily
for specific classes of models (such as with HMMs, phylogenetic models, and
phylo-HMMs).

Often, not just one but many marginal probabilities are desired. The elim-
ination algorithm can be extended to compute the marginal probabilities for
all nodes in two passes across the graph, with conditional probabilities com-
puted in a forward pass and marginals in a backward pass [30]. Typically, this
procedure is described as “belief propagation” [38], with node elimination
replaced by a “message-passing” metaphor (Figure 12.8(b, c)). The belief-
propagation (also called “sum-product”) algorithm generalizes the forward-
backward algorithm for HMMs and algorithms for phylogenetic models that
compute marginal probabilities of ancestral bases [27].

We have focused on directed models, but undirected models are similar.
Moreover, the undirected case turns out to be, in a sense, the more general
one with respect to inference. In undirected models, the graph is viewed in
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terms of cliques (maximal fully connected subgraphs), and a potential function
(essentially an unnormalized probability distribution) is associated with each
clique. The joint probability of all variables (equation (12.7)) is now a prod-
uct over cliques, with a normalizing constant to ensure that

∑
x P (x) = 1.

Directed graphs can be converted to undirected graphs by a process known
as “moralization,” wherein the arrowheads of the edges are removed and new
edges are added between all parents of each node. (The resulting graph is
called the “moral” graph, because it requires that all parents be “married”.)
By explicitly creating a clique that includes each node and all of its parents,
moralization ensures that all dependencies implied by the local conditional
distributions of the directed graph are captured in the undirected graph.

The moral graph for a directed tree is simply an undirected tree (i.e., no
new edges are added), and the belief-propagation algorithm for this undirected
tree is the same as that illustrated in Figure 12.8. For undirected graphs that
contain cycles, a generalization of the belief propagation algorithm, called the
“junction-tree” algorithm, can be used. The junction-tree algorithm operates
on a tree of cliques rather than of nodes and computes (unnormalized) mar-
ginal probabilities for cliques. (Marginal probabilities of nodes can be obtained
afterwards.) It requires an additional step, called “triangulation,” in which
new edges are added to the graph to represent certain implicit dependencies
between nodes. A complete introduction to the junction-tree algorithm is not
possible here. (More details can be found in [31] and [23].) The key point
for our purposes is that the computational complexity of the algorithm is ex-
ponential in the size of the largest clique. Thus, graphs with cycles can still
be handled efficiently if their clique size is constrained to be small. It is for
this reason that phylo-HMMs permit efficient inference; their (triangulated)
moral graphs have cycles, but the maximum clique size turns out to be three8.
When the clique size is large, exact inference is intractable, and approximate
methods are required. Some of the approximate methods in use include Monte
Carlo algorithms and variational methods, which include mean field methods
and “loopy” belief propagation. (Approximate methods are partially surveyed
in [23]; see also [37, 53, 48, 49].)

With phylo-HMMs, the junction-tree algorithm allows computation not
only of the posterior probability that each site was emitted by each state
(as in Example 12.2), but also of marginal posterior probabilities of ancestral
bases considering all paths. In addition, the algorithm can be used to compute
posterior expected values of interest, such as the expected number of substi-
tutions per site, or the expected numbers of each type of substitution (A→C,
A→G, etc.) along each branch of the tree (the sufficient statistics for parame-
ter estimation by expectation maximization [10, 44]). Using the junction tree
algorithm in the expectation step of an expectation-maximization algorithm,

8In the case of a phylo-HMM, the parents of each node are already connected
(Figure 12.7(c)), so moralization simply amounts to removing the arrowheads from
all edges in the graph. Moreover, it turns out that this graph is already triangulated.
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Fig. 12.9. (a) The lattice that results when context-dependent substitution is in-
corporated into a phylogenetic model, shown as an undirected graphical model. For
clarity, only a single leaf node is shown for each site, with a chain of ancestral nodes
leading to the root. (The phylogeny can be imagined as going into and out of the
page.) Each node depends not only on its parent node in the phylogeny but also
on its parent’s left and right neighbors in the alignment. (b) A version of the graph
in (a) with intermediate nodes added to the branches of the tree. As more and
more nodes are added, the branch lengths between them approach zero, and the
model approaches a true “process-based” model of context-dependent substitution.
In both (a) and (b), the untriangulated graph is shown; additional edges appear
during triangulation, leading to prohibitively large clique sizes.

it is possible to train a phylo-HMM (including its phylogenetic models) com-
pletely from unlabeled data. This technique could be used, for example, for
de novo detection of binding-site motifs in aligned sequences.

Once the effect of cycles in graphical models is understood, it becomes
clear that efficient exact inference will not be possible with models that accu-
rately describe the process of context-dependent substitution, by allowing for
dependencies between adjacent bases on all branches of the phylogenetic tree.
Figure 12.9(a) illustrates what happens to the graphical structure of a phylo-
genetic model when this kind of proper contextdependence is introduced. The
additional edges in the graph lead to the formation of a kind of lattice of depen-
dency, reminiscent of the classic Ising model from statistical mechanics. (This
case is like a two-dimensional Ising model, except that the branching structure
of the phylogeny creates a branching structure of two-dimensional sheets, not
shown in Figure 12.9(a).) Unless the size of the lattice is constrained to be
small, models of this kind are well-known to require approximate methods for
inference.

Moreover, for context-dependent substitution to be modeled properly, it
should be integrated into the continuous-time Markov model of substitution,
so that context effects can propagate indefinitely across sites as substitutions
accumulate along each branch of the phylogeny. This behavior can be approx-
imated by introducing intermediate nodes in the phylogeny while keeping
total branch lengths constant, as shown in Figure 12.9(b). As more and more
nodes are introduced, the branch lengths between them will approach zero,
and the model will approach the desired “process-based” model. Exact infer-
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ence is intractable for such models, even in the case of two sequences and an
unrooted tree, but Markov chain Monte Carlo (MCMC) methods have been
applied in this special case [21, 39]. The stationary distribution of a related
process has also been studied [2]. Extending such process-based models to full
phylogenies appears difficult, even with MCMC. However, a model without
intermediate nodes (as in Figure 12.9(a)) has been studied by Jojic et al. [22]
using variational methods for approximate inference. Jojic et al. have shown
experimentally that this model can produce significantly higher likelihoods
than the U2S version of the more approximate Markov-dependent model de-
scribed in Section 12.3.

The model of Section 12.3 essentially works by defining a simple (N −1)st-
order Markov chain of alignment columns (observed variables), while ignoring
the dependencies between the ancestral bases (latent variables) that are asso-
ciated with overlapping N -tuples of columns. As a result, this model has no
reasonable process-based interpretation. Nevertheless, it is a valid probability
model that appears to fit the data well, and it allows for exact inference at
modest computational cost [44]. The Markov-dependent model is compared
with the model of Jojic et al. in more detail in the Appendix.

12.5 Discussion

Phylogenetic hidden Markov models are probabilistic models that describe
molecular evolution as a combination of two Markov processes—one that op-
erates in the dimension of space (along a genome) and one that operates in
the dimension of time (along the branches of a tree). They combine HMMs
and phylogenetic models, two of the most powerful and widely used classes
of probabilistic models in biological sequence analysis. Phylo-HMMs often fit
aligned DNA sequence data considerably better than models that treat all
sites equally or that fail to allow for correlations between sites. In addition,
they are useful for identifying regions of interest in aligned sequences, such as
genes or highly conserved regions.

Three examples have been presented to illustrate some of the ways in which
phylo-HMMs may be used, and each one deserves additional comment. Apply-
ing phylo-HMMs to gene prediction (Example 12.1) is a much harder problem
than implied here, for several reasons. First, while coding and noncoding sites
have quite different properties on average, both types of sites are heteroge-
neous mixtures, so that correctly classifying particular sequence segments can
be difficult. For example, protein-coding sites show higher average levels of
evolutionary conservation than noncoding sites, but mammalian genomes do
appear to have many islands of conservation in noncoding regions [4, 32], which
can lead to false-positive predictions of exons [43]. Similarly, coding sites in
mammalian genomes exhibit higher average G+C content than do noncoding
sites, but base composition varies considerably in both kinds of sites from
one genomic region to another, which can have the effect of confounding gene
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prediction software. Second, the gene-finding problem ends up being largely
about identifying the boundaries of exons as determined by splice sites, and
phylo-HMMs are not necessarily the best tools for detecting these so-called
“signals.” Gene finders are often based on composite models, with special-
ized submodels for signal detection; a similar approach may be required for
phylo-HMMs to be effective in gene prediction. A third problem is that a
straightforward phylo-HMM like that of Example 12.1 induces a geometric
distribution of exon lengths, which is known to be incorrect. Some of these
problems have been addressed with a “generalized” phylo-HMM that allows
for arbitrary length distributions of exons, and also uses different sets of para-
meters for regions of different overall G+C content [33]. In other recent work, it
has been shown that the prediction performance of a phylo-HMM-based exon
predictor can be improved significantly by using context-dependent phyloge-
netic models, and by explicitly modeling both conserved noncoding regions
and nucleotide insertions/deletions [43]. Additional challenges in multispecies
gene prediction are also discussed in [43], stemming from lack of conservation
of exon structure across species and errors in the multiple alignment.

There are many possible ways of identifying conserved regions (Exam-
ple 12.2), and even quite different methods (e.g., ones that do and do not
consider the phylogeny) tend to be fairly concordant in the regions they iden-
tify [45, 32]. Perhaps more difficult than proposing a method to identify con-
served regions is confirming that it produces biologically useful results. Lim-
ited kinds of validation can be done computationally, but this is ultimately an
experimental problem and must be addressed in the laboratory. Most likely,
phylo-HMMs of the kind described in Example 12.2 will not produce results
dramatically different results from other methods, but, as mentioned above,
they provide a flexible framework in which to address the problem. It should
be noted that, while the original papers introducing phylo-HMMs focused on
improving the realism and goodness of fit of models allowing for rate varia-
tion [9, 52], they also showed that phylo-HMMs could be used to predict the
evolutionary rate at each site.

Modeling context-dependent substitution is an active area of current re-
search, and the Markov-dependent model described here (Example 12.3) rep-
resents only one of several possible approaches to this problem. The approach
of Jojic et al. [22], discussed at the end of Section 12.4, is another, and we are
aware of work in progress on at least two other, completely different methods.
At this stage, it remains unclear which models and algorithms for inference
will allow for the best compromise between computational efficiency and good-
ness of fit. It is likely that different approaches will turn out to be appropriate
for different purposes.

Space has not allowed for a complete survey of the applications of phylo-
HMMs. In particular, we have not discussed their use in the prediction of
secondary structure [11, 47, 29] or the detection of recombination [20], nor
have we touched on their use in a Bayesian setting [34, 19]. We also have not
discussed the models similar in spirit to phylo-HMMs that have been applied
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to the problems of RNA secondary structure prediction [26] and multiple
alignment [36, 18, 17, 15]. It has been noted [41] that phylo-HMMs them-
selves could be used for multiple alignment in a direct extension of the way
pair HMMs are used for pairwise alignment [7]. Indeed, phylo-HMMs provide
a natural framework for simultaneously addressing the multiple alignment and
gene prediction problems, as has been done in the two-sequence case with pair
HMMs [1, 35]. Another area in which phylo-HMMs may prove useful is ho-
mology searching. In principle, the profile HMMs that are commonly applied
to this problem [7] could be adapted to use phylogenetic models instead of
assuming independence of aligned sequences or relying on ad hoc weighting
schemes.
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Appendix

In this short appendix, we will examine more closely how the Markov-
dependent model for context-dependent substitution that was presented in
Section 12.3 (Example 12.3) compares with the graphical models of Section
12.4. We will concentrate on the model studied by Jojic et al. [22], which we
will refer to as the “simple-lattice” model, in contrast with the full process-
based model of Figure 12.9(b). The undirected graph for the simple-lattice
model is shown in Figure 12.10(a), assuming a very small alignment of n = 3
sequences and L = 3 columns. (The complete graph is shown here, whereas in
Figure 12.9(a) only a subgraph was shown.) From Figure 12.10(a), it should
be clear that the graph contains an L × 2 lattice of nodes for each branch of
the phylogeny.

The Markov-dependent model of Section 12.3 is a graphical model insofar
as it is based on a Markov chain of random variables, but it is quite different
from the simple-lattice model. The Markov-dependent model actually operates
at two levels, as illustrated in Figure 12.10(b). At one level (top of figure), a
simple Markov chain of alignment columns is assumed, with each column being
treated as an observed random variable. At another level (boxes at bottom of
figure), the conditional probability of each column given the previous column
is computed according to a phylogenetic model for pairs of columns. (Each
of these phylogenetic models is a submodel of the model shown in Figure
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Fig. 12.10. (a) Undirected graph for the “simple-lattice” model of Figure 12.9(a),
for an alignment of L = 3 sites and n = 3 species. Each node in the phylogeny is
represented by a sequence of three nodes, corresponding to sites 1, 2, and 3, and
each of these nodes is connected not only to its parent but to its parent’s neighbors
to the left and right. The shaded nodes together represent the three columns of
the alignment, X1, X2, and X3, and the unshaded nodes represent the correspond-
ing sets of ancestral bases, Y1, Y2, and Y3. (b) An interpretation of the Markov
chain model of Section 12.3 applied to the same alignment. (The case of N = 2 is
illustrated.) At one level (top), a Markov chain of alignment columns is assumed.
At another level (bottom, inside boxes), the conditional probability of each column
given the previous column is computed according to a phylogenetic model for pairs
of sites.

12.10(a).) When conditional probabilities are computed according to these
separate phylogenetic models, multiple versions of the random variables for
ancestral bases are effectively introduced (e.g., Y2 and Y′

2 in Figure 12.10(b)).
Moreover, these different versions are not required to be consistent. The effect
of this modeling choice is to ignore (indirect) dependencies between latent
variables that do not belong to the same “slice” of N columns but at the
same time permit exact likelihood computations and to capture what are
probably the most important context effects.

By failing to tie together the ancestral nodes of these multiple phyloge-
netic models, the Markov-dependent model sacrifices any claim of accurately
representing the process of context-dependent substitution. Nevertheless, it
allows the major consequences of this process to be characterized empirically
in such a way that valid likelihoods can be extracted, as well as reasonable
approximations of the conditional expectations of key quantities.
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