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6.1 Moment vector
Definition 6.1 (Moment vector) We define the moment vector (or moment parameter
as:

µ(η) = ∇A(η) = Eη[φ(X)].

6.1.1 Examples of moment vectors

Bernoulli

For a Bernoulli distribution, we can write:

p(x) = πx(1− π)1−x = ex log π−x log(1−π)+log(1−π) = exη−A(η)

with η = log π
1−π and A(η) = − log(1− π).

From this we get that π = (1− π)eη and thus π = eη

1+eη
= 1

1+e−η
= σ(η). Remark that in

logistic regression we have η = w>x.

Moreover, we can write A(η) = − log(1− π) = log(1 + eη) and the moment vector is:

µ(η) = Eη[φ(X)] = Eη[X] = π.

Multinomial

In the multinomial case we consider Z → {0, 1}k. We have φ(Z) =

 Z1
...
Zk

 and the moment

vector is:

µ(η) = Eη[φ(Z)] =

 π1
...
πk

 .
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Gaussian

In the gaussian model, we have φ(x) =

(
x
x2

)
and we obtain:

µ(η) = Eη

[
x
x2

]
=

(
µ

σ2 + µ2

)

6.2 Hessian of A
Proposition 6.2 The hessian of A is the covariance matrix of the sufficient statistic:

∇2A(η) = E[(φ(X)− µ(η))(φ(X)− µ(η))>] = Cov(φ(X))

Proof We can write:

∇2A(η) = ∇∇A(η) = ∇
(
∇Z(η)

Z(η)

)
=
∇2Z(η)

Z(η)
+∇Z(η)

(
−∇Z(η)

Z(η)2

)>
=
∇2Z(η)

Z(η)
−
(
∇Z(η)

Z(η)

)(
∇Z(η)

Z(η)

)>
Moreover we have [∇2Z(η)]k,k′ = E [φk(X)φk′(X)]Z(η) ie:

∇2Z(η) = E[φ(X)φ(X)>]Z(η).

Consequently:

∇2A(η) = E[φ(X)φ(X)>]− µ(η)µ(η)>

= E[(φ(X)− µ(η))(φ(X)− µ(η)>]

= Cov(φ(X))

Remark: Z can be seen as a moment generating function t → Z(η + t) and A as the
cumulative generating function t→ A(η + t).

Corollary 6.3 We have the three following properties:

1. ∇2A(η) � 0 (semi-positive definite).

2. A is convex.

3. A is strictly convex on Ω̊ if, and only if, φ(X) is a minimal representation of the
exponential family.
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Proof

1. ∀c, c>∇2A(η)c = E[c>(φ− µ)(φ− µ)>c] = E[((φ− µ)>c)2] ≥ 0

2. Since ∇2A � 0, A is convex.

3. If A is not strictly convex, then there exists η and c such that c>∇2A(η)c = 0 therefore,
for all x, Var(c>φ(x)) = 0 thus c>φ(x) = −co. We can thus write: ∀x, c0 + c1φ1(x) +
. . .+ ckφk(x) = 0. Since we can go backward, we have the equivalence.

6.3 Log-Likelihood of an exponential function
Denoting φ̄ = 1

n

∑
i

φ(xi), we have:

−l(η) = −η>φ̄n+ nA(η)

and
−∇l(η) = −φ̄n+ nµ(η).

Consequently, we have the following equivalence:

∇l(η) = 0⇔ µ(η) = φ̄

Theorem 6.4 The maximum likelihood estimator η is such that φ̄ = µ(η). This result is
called “Moment Matching”.

φ̄ = Eη[φ(x)] = µ(η)

η
inference
�

learning
µ(η) = φ̄

6.4 Link between Maximum Likelihood and Maximum
Entropy

The Maximum Entropy principle can be applied: we want to find the disribution p such that
E[φ(X)] = φ̄ and has maximal entropy.

We can write this as a convex optimization problem:
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Minimize
p

−H(p)

subject to


Ep[φ(X)] = φ̄

p(x) ≥ 0∑
x

p(x) = 1

Let us introduce the corresponding Lagrangian:

L(p, λ, c) =
∑
x

p(x) log p(x)− λ>
(∑

x

p(x)φ(x)− φ̄

)
+ c

(∑
x

p(x)− 1

)
Since the problem is convex, we have strong duality:

min
p

max
λ,c
L(p, λ, c) = max

λ,c
min
p
L(p, λ, c)

Slater’s condition corresponds to the existence of p in the relative interior of the domain
of the function that is in R|X|+∗ and such that

∑
x∈X p(x) = 1. If we do not find such a p then

we can reduce our set taken X ′ = X \ {x|p(x) = 0}.
Without loss of generality, we can hence assume that p > 0 and that the moment condition

holds. The gradient of the Lagrangian with respect to p is given by:

∇pL(p, λ, c) = log p(x) + 1− λ>φ(x) + c

and we have:

∇pL = 0⇔ log p(x) = λ>φ(x)− (c+ 1)

⇔ p(x) = Ceλ
>φ(x) with C = e−(c+1)

We recognize here an exponential family. Reinjecting this value of p and maximizing
with respect to λ and c, we obtain the maximum likelihood estimator.

Theorem 6.5 If X1, . . . , Xn is an iid sample and φ(X) a statistic, then the maximum en-
tropy estimator satisfying the equality Ep[φ(X)] = φ̄ is the maximum likelihood distribution
in the exponential family with sufficient statistic φ.

6.5 Gaussian graphical models

6.5.1 Canonical parameterization

We consider a Gaussian random variable X ∈ Rp : X ∼ N (µ,Σ) with µ ∈ Rp, Σ ∈ Rp×p,
Σ � 0. We recall the expression of its density:

p (x, µ,Σ) =
1√

(2π)p |Σ|
exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
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Denoting η = Σ−1µ et Λ = Σ−1 we get:

(x− µ)T Σ−1 (x− µ) = xTΣ−1x− xµTΣ−1x+ µTΣ−1µ

= xTΛx− 2ηTx+ ηTΛ−1η

p (x, µ,Λ) = exp

[
ηTx− 1

2
xTΛx− A (η,Λ)

]
A (η,Λ) =

1

2
ηTΛ−1η +

p

2
log 2π − 1

2
log |Λ|

θ = {Λ, η} are the canonical parameters. Λ is called the precision matrix, and η is the loading
vector. We have the following sufficient statistic, which is not a minimal representation:

Φ(x) =

(
x

−1
2

Vec
(
xxT

) )
Mean and covariance

The mean and covariance of X are given by :

∇θA (η,Λ) = Eθ [Φ(X)]

=

(
Eθ [X]

−1
2
Eθ
[
XXT

] )
Eθ [X] = ∇ηA (η,Λ)

= Λ−1η

= µ

−1

2
Eθ
[
XXT

]
= ∇ΛA (η,Λ)

= −1

2
Λ−1ηηTΛ−1 − 1

2
Λ−1

= −1

2

[
µµT + Λ−1

]
Hence

Cov [X] = Eθ
[
XXT

]
− Eθ [X]Eθ [X]T

= Λ−1

= Σ

Please note that we could have also computed the covariance with:

∇2
θA (η,Λ) =

(
Cov(X) . . .
. . . Cov(Vec(XXT ))

)
and ∇2

ηA (η,Λ) = Λ−1
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6.5.2 Conditioning and marginalization in Gaussian GM

We partition the random variable X ∈ Rp into two components X1 ∈ Rp1 and X2 ∈ Rp2

such that X =

(
X1

X2

)
and p = p1 +p2. We now seek to determine the law of X1 and X2|X1.

X1 ∼ ?, X2|X1 ∼ ?

Before doing so, we need to partition the moment parameters µ, Σ and the canonical
parameters Λ, η in the same way:

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, η =

(
η1

η2

)
, Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
.

from which we get a partitioned form for the joint distribution:

p (x1, x2) =
1

(2π)p/2 |Σ|1/2
exp

[
−1

2

(
x1 − µ1

x2 − µ2

)T
Λ

(
x1 − µ1

x2 − µ2

)]
(6.1)

In what follows, we will introduce a tool to block diagonalize partitioned matrices. We
will then be able to develop general formulas for marginalization and conditioning in the
multivariate Gaussian setting.

6.5.3 Digression on Schur complement

Let us consider the block matrix M =

(
A L
R U

)
. Our goal is to explicit the blocks of its

inverse in terms of the initial blocks A, L (L stands for left), U (U stands for upper) and R
(R stands for right).

We can zero out the L and R by premultiplying M by D and postmultiplying by D. We
denote ∆ this block diagonal matrix.(

I 0
−RA−1 I

)
×
(
A L
R U

)
×
(
I −A−1L
0 I

)
= D ×M ×G

=

(
I 0

−RA−1 I

)
×
(
A 0
R U −RA−1L

)
∆ =

(
A 0
0 U −RA−1L

)

Definition 6.6 The Schur complement of the matrix M =

(
A L
R U

)
with respect to A is[

M/A

]
= U −RA−1L.

By symmetry we obtain the Schur complement of M with respect to U :
[
M/U

]
= A −

LU−1R
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Lemme 6.7 (Determinant lemma)

|M | = |A| ×
∣∣[M/A

]∣∣ = |U | ×
∣∣[M/U

]∣∣
Proof

|∆| = |D|︸︷︷︸
=1

|M | |G|︸︷︷︸
=1

= |M |

and we have also
|∆| = |A|

∣∣[M/A

]∣∣
and

|∆| = |U |
∣∣[M/U

]∣∣

Lemme 6.8 (Positivity lemma) If M is symmetric then M < 0 if and only if A < 0 and[
M/A

]
< 0.

Please note that we have the same lemma for strict inequalities.
Proof G = DT . A < 0 and

[
M/A

]
< 0 ⇔ ∀x, xT∆x > 0 ⇔ ∀x,

(
DTx

)T
M
(
DTx

)
> 0,

hence ∀y, yTMy > 0 because G = DT is invertible.

Woodbury-Sherman-Morrison inversion formula for partitioned matrices

We have thatM is invertible if and only if A < 0 and
[
M/A

]
< 0. Then ∆−1 = G−1M−1D−1,

and M−1 = G∆−1D. The explicit computation of this matrix product gives the so-called
Woodbury-Sherman-Morrison formula:

M−1 =

(
I −A−1L
0 I

)
×
(
A−1 0

0
[
M/A

]−1

)
×
(

I 0
−RA−1 I

)
=

(
A−1 + A−1L

[
M/A

]−1
RA−1 −A−1L

[
M/A

]−1

−
[
M/A

]−1
RA−1

[
M/A

]−1

) (6.2)

Similarly we obtain:

M−1 =

( [
M/U

]−1 −U−1R
[
M/U

]−1

−
[
M/U

]−1
LU−1 U−1 + U−1R

[
M/U

]−1
LU−1

)
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6.5.4 Back to the problem

We now use the Woodbury formula (6.2) to compute an interesting expression for the
quadratic form of the multivariate Gaussian distribution.

(x− µ)TΣ−1(x− µ) =

(
x1 − µ1

x2 − µ2

)T (
I −Σ−1

11 Σ12

0 I

)
...

×
(

Σ−1
11 0

0
[
Σ/Σ11

]−1

)
×
(

I 0
−Σ21Σ−1

11 I

)(
x1 − µ1

x2 − µ2

)
= (x1 − µ1)T (x1 − µ1) + (x2 − µ2 − b)T

[
Σ/Σ11

]−1
(x2 − µ2 − b)

(6.3)

where we denoted b = Σ21Σ−1
11 (x1 − µ1).

Now recall that we have |Σ| = |Σ11|
∣∣[Σ/Σ11

]∣∣. The joint distribution can be expressed as:

p(x1, x2) =
1√

(2π)p1 |Σ11|
exp

[
−1

2

(
(x1 − µ1)T Σ−1

11 (x1 − µ1)
)]

︸ ︷︷ ︸
p(x1)

×...

1√
(2π)p1

∣∣[Σ/Σ11

]∣∣ exp

[
−1

2

(
(x2 − µ2 − b)

[
Σ/Σ11

]−1
(x2 − µ2 − b)

)]
︸ ︷︷ ︸

p(x2|x1)

(6.4)

From (6.4) we deduce that X1 ∼ N (µ1,Σ11), et X2|X1 ∼ N
(
µ2 + b,

[
Σ/Σ11

])
.

We denote by (µ1,Σ1), respectively (µ2|1,Σ2|1), the moment parameters of the marginal
distribution of x1, respectively the moment parameters of the conditional distribution of x2

given x1. We have a similar notation for the canonical parameters η and Λ. We summarize
our results in the following:

Moment parameterization summary
µ1 = µ1

Σ1 = Σ11

µ2|1 = µ2 + b = µ2 + Σ21Σ−1
11 (x1 − µ1)

Σ2|1 =
[
Σ/Σ11

]
= Σ22 − Σ21Σ−1

11 Σ12

Canonical parameterization summary
η1 =

[
Λ/Λ22

]
µ1 = η2 − Λ12Λ−1

22 η2

Λ1 = Σ−1
11 =

[
Λ/Λ22

]
= Λ11 − Λ12Λ−1

22 Λ21

η2|1 = Λ22|1 × µ2|1 = Λ22µ2 − Λ21 (x1 − µ1) = η2 − Λ21x1

Λ22|1 = Λ22
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We can notice that in the moment parameterization, the marginalization operation is
simple and the conditioning is complicated and the opposite holds in the canonical parame-
terization.

6.5.5 Zeros of the precision matrix and Markov properties

Let p(x1, ..., xp) a joint Gaussian distribution. We denote I = {i, j} and we consider
p (xi, xj|xB), with B = {1, . . . , p} \ {i, j}. Using the canonical parameterization:

ηI |B =

(
ηi − ΛiBxB
ηj − ΛjBxB

)
and ΛII|B = ΛII =

(
λii λij
λji λjj

)
we have the following expression for the covariance matrix of XI |XB:

Cov (XI |XB) = ΣII|B = Λ−1
II|B =

1

|ΛII |

(
λjj −λji
−λij λii

)
Hence Cov (xi, xj|XB) =

−λij√
λii×λjj

and λij = 0⇒ Xi⊥Xj | XB.

Proposition 6.9 The non zero coefficients in Λ correspond to edges in the underlying graph-
ical model.

Indeed, the distribution is proportional to exp(ηT−1
2
xΛxT ) =

∏
i exp(ηixi)

∏
ij exp(−1

2
xiλijxj)

6.5.6 Matrix inversion lemma

A useful consequence of the Schur component is to prove rigorously the following inversion
lemma:

Lemme 6.10 (Matrix inversion) Let X ∈ Rp×n(
Id +λXTX

)−1
= Id−λX

(
Id +λXXT

)−1
XT

In practice, we often want to invert matrix such as
(
Id +λXTX

)
where X ∈ Rp×n is a

design matrix. n represents an i.i.d sample while p represents the features, and we usually
have n� p. In that case, the inversion lemma 6.10 replaces the problem of inverting a n×n
matrix (complexity in O(n3)) by a less costly one: inverting a p× p matrix.

Proof We consider M =

(
Id X
XT − 1

λ
Id

)
=

(
A L
R U

)
, then

[
M/U

]−1
=
(
Id +λXTX

)
.

Recall the Woodbury formula (6.2), we have:[
M/U

]−1
= A−1 + A−1L

[
M/A

]−1
RA−1

which gives us the inversion lemma since here
[
M/U

]−1
= Id +X

(
− 1
λ

Id−XXT
)−1

XT .
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