Probabilistic graphical models

Francis Bach, INRIA/ENS Guillaume Obozinski, ENPC

M2 MVA 2013-2014

General information

• Every Wed 9am-12pm amphi Tocqueville until Nov 27.

Except

- This Friday Oct 11th 1.30pm-4.30pm amphi Tocqueville
- Next Wed Oct 16th 9am-12pm amphi Curie
- Grading :
 - Homework 1 (20%)
 - Homework 2 (20%)
 - Take Home Exam (a longer Homework) (30%)
 - Project (30%)

Programming :

- All Hwk + Exam + Project involve programming
- You may choose the programming language you want
- We recommend you choose a vector oriented PL such as Python, R Matlab.

General information II

• Calendar for the project :

- Mid-novchoose a project to do alone or in pairs.Before 11/27send a mail announcing project choice.Before 12/04send a project draft (1 page)+ first results.Before 12/20Hand in your final exam (to Carine Saint-Prix/by email).On 12/18Poster session perhaps Pavillon des Jardins.Before 01/10Project reports due (\approx 6 pages).
- Polycopié will be available later at the office of Carine Saint-Prix
 - Don't rush there now...
 - If you are not registered in the Master send an email to Carine to say that you would like to attend the course.
- Email
 - o francis.bach@ens.fr
 - guillaume.obozinski@imagine.enpc.fr
 - $\bullet\,$ always write to both of us + add "MVA" in the email title.
- Lecture notes Scribes

Machine learning

Goal

- Extract "statistical relations" between
 - a large number of input variables / features / descriptors
 - one or several decision/output variables
- Construct empirical knowledge :

Turning empirical information into statistical knowledge

Specificities w.r.t. other AI approches

- Knowledge essentially extracted from des données
- **Generalization** ability

Specificities w.r.t. classical statistics

Goal

Predictive/Action model vs explanatory model of reality

Challenge

Requires to integrate the info from a very large number of variables

- Computer vision : 10⁷ dimensions par image
- Brain imaging : 10⁵ dimensions par volume
- $\bullet\,$ Natural Language processing : 10^4-10^{15} paramètres
- $\bullet~{\rm Genetics}$: 10^4 gènes, $10^5~{\rm SNPs}/$ microsatellites, 10^9 bases d'ADN

Which role for probabilistic modelling? How do proceed?

Structured problems in HD

SNIPs or SNPs = sites of variation in the genome (spelling mistakes)

Maren	AGCITGAC		
Debo	AGCTTGAC		
Jose	AGCTTGAC		
Thomas	AGCTTGAC		
	AGCTTGAC		
Robert	AGCTTGAC		
	AGCTTGAC		
Zhijun	AGCTTGAC	GCCC	TGATGATT

Probabilistic graphical models

Sequence modelling

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

First order Markov chain :

Second order Markov chain :

Number of parameters $\mathcal{O}(n)$ for chains of length n.

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model : HMM (Modèle de Markov caché)

 \rightarrow Latent variable models

Modelling image structures

Original image

Segmentation

 \rightarrow oriented graphical model vs non oriented

Anaesthesia alarm (Beinlich et al., 1989)

"The ALARM Monitoring system"

CVP	central venous pressure	
PCWP	pulmonary capillary wedge pressure	
HIST	history	
TPR	total peripheral resistance	
BP	blood pressure	
со	cardiac output	
HRBP	heart rate / blood pressure.	
HREK	heart rate measured by an EKG monitor	
HRSA	heart rate / oxygen saturation.	
PAP	pulmonary artery pressure.	
SAO2	arterial oxygen saturation.	
FIO2	fraction of inspired oxygen.	
PRSS	breathing pressure.	
ECO2	expelled CO2.	
MINV	ninimum volume.	
MVS	minimum volume set	
HYP	hypovolemia	
LVF	left ventricular failure	
APL	anaphylaxis	
ANES	insufficient anesthesia/analgesia.	
PMB	pulmonary embolus	
INT	intubation	
KINK	kinked tube.	
DISC	disconnection	
LVV	left ventricular end-diastolic volume	
STKV	stroke volume	
CCHL	catecholamine	
ERLO	error low output	
HR	heart rate.	
ERCA	electrocauter	
SHNT	shunt	
PVS	pulmonary venous oxygen saturation	
ACO2	arterial CO2	
VALV	pulmonary alveoli ventilation	
VLNG	lung ventilation	
VTUB	ventilation tube	
VMCH	ventilation machine	

http://www.bnlearn.com/documentation/networks/

Probabilistic model

 $p(x_1, x_2, \dots, x_9) = f_{12}(x_1, x_2) f_{23}(x_2, x_3) f_{34}(x_3, x_4) f_{45}(x_4, x_5) \dots f_{56}(x_5, x_6) f_{37}(x_3, x_7) f_{678}(x_6, x_7, x_8) f_9(x_9)$

Abstact models vs concrete ones

Abstracts models

- Linear regression
- Logistic regression
- Mixture model
- Principal Component Analysis
- Canonical Correlation Analysis
- Independent Component analysis
- LDA (Multinomiale PCA)
- Naive Bayes Classifier
- Mixture of experts

Concrete Models

- Markov chains
- HMM
- Tree-structured models
- Double HMMs
- Oriented acyclic models
- Markov Random Fields
- Star models
- Constellation Model

Operations on graphical models

Probabilistic inference

Computing a marginal distr. $p(x_i)$ ou $p(x_i|x_1 = 3, x_7 = 0)$

Decoding (MAP inference)

What is the most likely instance?

```
\operatorname{argmax}_{z} p(z|x)
```


Learning (or Estimation) Soit $p(x; \theta) = \frac{1}{Z(\theta)} \prod_{C} \psi(x_{C}, \theta_{C})$, we want to find $\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p(x^{(i)}; \theta) = \operatorname{argmax}_{\theta} \frac{1}{Z(\theta)} \prod_{i=1}^{n} \prod_{C} \psi(x_{C}^{(i)}, \theta_{C})$

Course outline

• Course 1

Introduction Maximum likelihood Models with a single node

• Course 2

Linear regression Logistic regression Generative classification (Fisher discriminant)

• Cours 3

K-means EM Gaussian mixtures Graph Theoretic aspects

• Cours 4

Unoriented graphical models Oriented graphical models

• Cours 5 Exponential families Information Theory

- Cours 6 Gaussian Variables Factorial Analysis
- Cours 7 Sum-product algorithm
- Cours 8 Approximate inférence
- Cours 9 Bayesian methods

General information

• Every Wed 9am-12pm amphi Tocqueville until Nov 27.

Except

- This Friday Oct 11th 1.30pm-4.30pm amphi Tocqueville
- Next Wed Oct 16th 9am-12pm amphi Curie
- Grading :
 - Homework 1 (20%)
 - Homework 2 (20%)
 - Take Home Exam (a longer Homework) (30%)
 - Project (30%)

Programming :

- All Hwk + Exam + Project involve programming
- You may choose the programming language you want
- We recommend you choose a vector oriented PL such as Python, R Matlab.

General information II

• Calendar for the project :

- Mid-novchoose a project to do alone or in pairs.Before 11/27send a mail announcing project choice.Before 12/04send a project draft (1 page)+ first results.Before 12/20Hand in your final exam (to Carine Saint-Prix/by email).On 12/18Poster session perhaps Pavillon des Jardins.Before 01/10Project reports due (\approx 6 pages).
- Polycopié will be available later at the office of Carine Saint-Prix
 - Don't rush there now...
 - If you are not registered in the Master send an email to Carine to say that you would like to attend the course.
- Email
 - o francis.bach@ens.fr
 - guillaume.obozinski@imagine.enpc.fr
 - $\bullet\,$ always write to both of us + add "MVA" in the email title.
- Lecture notes Scribes

To start : models with 1 and 2 nodes... Regression and classification

Mixture models

Transversal concepts

- Generative models vs discriminative
- Supervised vs unsupervised learning
- Learning from completely observed data vs incomplete data
- Causation vs correlations :

Graphical models are not modelling causation \rightarrow modelling correlation based on sets of conditional independences.

Notations, formulas, definitions

- Joint distribution of X_A et $X_B : p(x_A, x_B)$
- Marginale distribution : $p(x_A) = \sum_{x_{A^c}} p(x_A, x_{A^c})$
- Conditional distribution : $p(x_A|x_B) = \frac{p(x_A, x_B)}{p(x_B)}$ si $p(x_B) \neq 0$

Bayes formula

$$p(x_A|x_B) = \frac{p(x_B|x_A) p(x_A)}{p(x_B)}$$

 $\rightarrow~$ Bayes formula is not "bayesian".

Expectation and Variance

- Expectation of $X : \mathbb{E}[X] = \sum_{x} x \cdot p(x)$
- Expectation of f(X), for f mesurable :

$$\mathbb{E}\left[f\left(X\right)\right] = \sum_{x} f\left(x\right) \cdot p\left(x\right)$$

• Variance :

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$
$$= \mathbb{E}\left[X^2\right] - \mathbb{E}[X]^2$$

• Conditional Expectation de X given Y :

$$\mathbb{E}\left[X|Y\right] = \sum_{x} x \cdot p\left(x|y\right)$$

Conditional Variance :

$$\operatorname{Var}(X \mid Y) = \mathbb{E}\left[\left(X - \mathbb{E}\left[X|Y\right]\right)^2 \mid Y\right] = \mathbb{E}\left[X^2 \mid Y\right] - \mathbb{E}\left[X|Y\right]^2$$

Independence concepts

Independence : $X \perp Y$

We say that X et Y are independents and write $X \perp Y$ ssi :

$$\forall x, y, \qquad P(X = x, Y = y) = P(X = x) P(Y = y)$$

Conditional Independence : $X \perp \!\!\!\perp Y \mid Z$

On says that X and Y are independent conditionally on Z and
write X ⊥⊥ Y | Z iff :

 $\forall x, y, z,$

$$P(X = x, Y = y | Z = z) = P(X = x | Z = z) P(Y = y | Z = z)$$

Conditional Independence : example

"X-linked recessive disease" : Transmission of the gene of hemophilia

Risk of illness or sons of a healthy father :

- dependent for two brothers.
- conditionally independant given whether the mother is a carrier or not.

Statistical model

Parametric model – Definition :

Ensemble of probability distributions parameterized by a vector $\theta\in\Theta\subset\mathbb{R}^p$

$$\mathcal{P}_{\Theta} = ig\{ p(x; heta) \mid heta \in \Theta ig\}$$

Bernoulli model : $X \sim Ber(\theta)$ $\Theta = [0, 1]$

$$p(x; \theta) = \theta^{x}(1-\theta)^{(1-x)}$$

Binomial model : $Y \sim Bin(n, \theta)$ $\Theta = [0, 1]$

$$p(Y;\theta) = \binom{n}{x} \theta^{y} (1-\theta)^{(n-y)}$$

Multinomial model : $Z \sim \mathcal{M}(n, \pi_1, \pi_2, \dots, \pi_K)$ $\Theta = [0, 1]^K$

$$p(z;\theta) = \binom{n}{z_1,\ldots,z_k} \pi_1^{z_1} \ldots \pi_k^{z_k}$$

Gaussian model

Univariate gaussian : $X \sim \mathcal{N}\left(\mu, \sigma^2
ight)$

X is real valued r.v., et $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}^*_+$.

$$p_{\mu,\sigma^2}(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}
ight)$$

Multivariate gaussian : $X \sim \mathcal{N}\left(\mu, \Sigma\right)$

X takes values in \mathbb{R}^d . Si \mathcal{K}_n is the set of $n \times n$ positive definite matrices, and $\theta = (\mu, \Sigma) \in \Theta = \mathbb{R}^d \times \mathcal{K}_n$.

$$p_{\mu,\Sigma}\left(x
ight)=rac{1}{\sqrt{\left(2\pi
ight)^{d}\det\Sigma}}\exp\left(-rac{1}{2}\left(x-\mu
ight)^{T}\Sigma^{-1}\left(x-\mu
ight)
ight)$$

Gaussian densities

Maximum likelihood principle

- Let a model $\mathcal{P}_{\Theta} = \left\{ p(x; \theta) \mid \theta \in \Theta \right\}$
- Let an observation x

Likelihood :

$$egin{array}{rcl} \mathcal{L}:\Theta& o&\mathbb{R}_+\ heta&\mapsto&p(x; heta) \end{array}$$

Maximum likelihood estimator :

$$\hat{\theta}_{\mathsf{ML}} = \operatorname*{argmax}_{\theta \in \Theta} p(x; \theta)$$

Sir Ronald Fisher (1890-1962)

Case of i.i.d. data For $(x_i)_{1 \le i \le n}$ a sample of i.i.d. data of size n: $\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i; \theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(x_i; \theta)$

Examples of calculations of the MLE

- Bernoulli model
- Multinomial model
- Gaussien model

Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an *a priori* $p(\theta)$ on the model parameters.

A posteriori

The data contribute to the likelihood : $p(x|\theta)$. The *a posteriori* probability of parameters is then

$$p(\theta|x) = \frac{p(x|\theta) p(\theta)}{p(x)} \propto p(x|\theta) p(\theta).$$

 $\rightarrow\,$ The Bayesian estimator is thus a probability distibution on the parameters.

One talks about Bayesian inference.

References

• Book of Christopher Bishop :

Pattern Recognition and Machine Learning, 2006, Springer. http://research.microsoft.com/~cmbishop/PRML/

• David Barber's book is available online :

Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012. http://www.cs.ucl.ac.uk/staff/d.barber/brml/

 A good book on optimization theory : Nonlinear Programming, 1999, Dimitri Bertsekas. Athena Scientific.