Probabilistic graphical models

Francis Bach, INRIA/ENS
Guillaume Obozinski, ENPC

M2 MVA 2013-2014

General information

- Every Wed 9am-12pm amphi Tocqueville until Nov 27.
- Except
- This Friday Oct 11th 1.30 pm-4.30pm amphi Tocqueville
- Next Wed Oct 16th 9am-12pm amphi Curie
- Grading :
- Homework 1 (20\%)
- Homework 2 (20\%)
- Take Home Exam (a longer Homework) (30\%)
- Project (30\%)
- Programming :
- All Hwk + Exam + Project involve programming
- You may choose the programming language you want
- We recommend you choose a vector oriented PL such as Python, R Matlab.

General information II

- Calendar for the project :

Mid-nov
Before 11/27
Before 12/04
Before 12/20
On 12/18
Before 01/10
choose a project to do alone or in pairs. send a mail announcing project choice. send a project draft (1 page)+ first results.
Hand in your final exam (to Carine Saint-Prix/by email). Poster session perhaps Pavillon des Jardins.
Project reports due (≈ 6 pages).

- Polycopié will be available later at the office of Carine Saint-Prix
- Don't rush there now...
- If you are not registered in the Master send an email to Carine to say that you would like to attend the course.
- Email
- francis.bach@ens.fr
- guillaume.obozinski@imagine.enpc.fr
- always write to both of us + add "MVA" in the email title.
- Lecture notes Scribes

Machine learning

Goal

- Extract "statistical relations" between
- a large number of input variables / features / descriptors
- one or several decision/output variables
- Construct empirical knowledge :

Turning empirical information into statistical knowledge

Specificities w.r.t. other AI approches

(1) Knowledge essentially extracted from des données
(2) Generalization ability

Specificities w.r.t. classical statistics

Goal
Predictive/Action model vs explanatory model of reality

Challenge

Requires to integrate the info from a very large number of variables

- Computer vision : 10^{7} dimensions par image
- Brain imaging : 10^{5} dimensions par volume
- Natural Language processing : $10^{4}-10^{15}$ paramètres
- Genetics: 10^{4} gènes, $10^{5} \mathrm{SNPs}$ / microsatellites, 10^{9} bases d'ADN

Which role for probabilistic modelling?
How do proceed?

- Supervision?
- On/off line
- Active/Passive
- Sequentiel minimax
- Reinforcement
- Function spaces
- RKHS (kernels)
- Wavelets
-Functional rel.
- Probabilistic rel.

- Max entropy
- Max likelihood
- Min risk
- MDL
- Bayesian calculus
- Max margin
- Min regret
- Optimization
- Expectation computation
- Dynamic progr
- (Linear Algebra)

Structured problems in HD

SNiPs or SNPs =
sites of variation in the genome (spelling mistakes) \qquad AGCTTGAC TCCATGATGATT Debo AGCTTGAC GCCATGATGATT jose AGCTTGAC TCCCTGATGATT Thomas AGCTTGACGCCCTGATGATT Anupriya AGCTTGAC TCCATGATGATT Robert AGCTTGACGCCA TGATGATT michelle AGCTTGAC TCCC TGATGATT zhijun AGCTTGACGCCCTGATGATT

Probabilistic graphical models

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters
- Indépendant model $\rightarrow 3 n$ parameters

First order Markov chain :

Second order Markov chain :

Number of parameters $\mathcal{O}(n)$ for chains of length n.

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model : HMM (Modèle de Markov caché)

\rightarrow Latent variable models

Modelling image structures

Original image

Segmentation
\rightarrow oriented graphical model vs non oriented

Anaesthesia alarm (Beinlich et al., 1989)
"The ALARM Monitoring system"

CVP	central venous pressure
PCWP	pulmonary capillary wedge pressure
HIST	history
TPR	total peripheral resistance
BP	blood pressure
CO	cardiac output
HRBP	heart rate / blood pressure.
HREK	heart rate measured by an EKG monitor
HRSA	heart rate / oxygen saturation.
PAP	pulmonary artery pressure.
SAO2	arterial oxygen saturation.
FIO2	fraction of inspired oxygen.
PRSS	breathing pressure.
ECO2	expelled CO2.
MINV	minimum volume.
MVS	minimum volume set
HYP	hypovolemia
LVF	left ventricular failure
APL	anaphylaxis ANES
insufficient anesthesia/analgesia.	
PMB	pulmonary embolus
INT	intubation
KINK	kinked tube.
DISC	disconnection
LVV	left ventricular end-diastolic volume
STKV	stroke volume
CCHL	catecholamine
ERLO	error low output
HR	heart rate.
ERCA	electrocauter
SHNT	shunt
PVS	pulmonary venous oxygen saturation
ACO2	arterial CO2
VALV	pulmonary alveoli ventilation
VLNG lung ventilation	
VTUB	ventilation tube
VMCH	ventilation machine

PCWP
HIST
TPR
CO
HRBP
HREK HRSA
PAP
SAO2
PRSS
ECO2
MINV
MVS
HYP
APL
ANES
PMB
KINK
DISC
LVV
STKV
CCHL
HR
ERCA
PVS
ACO2
VALV
VLNG

VMCH
central venous pressure pulmonary capillary wedge pressure history
total peripheral resistance
blood pressure
cardiac output
heart rate / blood pressure. heart rate / oxygen saturation.
pulmonary artery pressure.
arterial oxygen saturation.
breathing pressure.
expelled CO2.
minimum volume.
hypovolemia
left ventricular failure anaphylaxis insufficient anesthesia/analgesia. intubation kinked tube. left ventricular end-diastolic volume stroke volume catecholamine error low output heart rate. electrocauter shunt pulmonary venous oxygen saturation arterial CO2 pulmonary alveoli ventilation ventilation machine

Probabilistic model

Abstact models vs concrete ones

Abstracts models

- Linear regression
- Logistic regression
- Mixture model
- Principal Component Analysis
- Canonical Correlation Analysis
- Independent Component analysis
- LDA (Multinomiale PCA)
- Naive Bayes Classifier
- Mixture of experts

Concrete Models

- Markov chains
- HMM
- Tree-structured models
- Double HMMs
- Oriented acyclic models
- Markov Random Fields
- Star models
- Constellation Model

Operations on graphical models

Probabilistic inference
Computing a marginal distr. $p\left(x_{i}\right)$ ou $p\left(x_{i} \mid x_{1}=3, x_{7}=0\right)$

Decoding (MAP inference)

What is the most likely instance?

$$
\operatorname{argmax}_{z} p(z \mid x)
$$

Learning (or Estimation)
Soit $p(x ; \boldsymbol{\theta})=\frac{1}{z(\boldsymbol{\theta})} \prod_{C} \psi\left(x_{C}, \theta_{C}\right)$, we want to find

$$
\operatorname{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{n} p\left(x^{(i)} ; \boldsymbol{\theta}\right)=\operatorname{argmax}_{\boldsymbol{\theta}} \frac{1}{Z(\boldsymbol{\theta})} \prod_{i=1}^{n} \prod_{C} \psi\left(x_{C}^{(i)}, \theta_{C}\right)
$$

Course outline

- Course 1

Introduction
Maximum likelihood
Models with a single node

- Course 2

Linear regression
Logistic regression
Generative classification (Fisher discriminant)

- Cours 3

K-means
EM
Gaussian mixtures
Graph Theoretic aspects

- Cours 4 Unoriented graphical models
Oriented graphical models
- Cours 5

Exponential families Information Theory

- Cours 6

Gaussian Variables
Factorial Analysis

- Cours 7

Sum-product algorithm

- Cours 8

Approximate inférence

- Cours 9

Bayesian methods

General information

- Every Wed 9am-12pm amphi Tocqueville until Nov 27.
- Except
- This Friday Oct 11th 1.30 pm-4.30pm amphi Tocqueville
- Next Wed Oct 16th 9am-12pm amphi Curie
- Grading :
- Homework 1 (20\%)
- Homework 2 (20\%)
- Take Home Exam (a longer Homework) (30\%)
- Project (30\%)
- Programming :
- All Hwk + Exam + Project involve programming
- You may choose the programming language you want
- We recommend you choose a vector oriented PL such as Python, R Matlab.

General information II

- Calendar for the project :

Mid-nov
Before 11/27
Before 12/04
Before 12/20
On 12/18
Before 01/10
choose a project to do alone or in pairs. send a mail announcing project choice. send a project draft (1 page)+ first results.
Hand in your final exam (to Carine Saint-Prix/by email). Poster session perhaps Pavillon des Jardins. Project reports due (≈ 6 pages).

- Polycopié will be available later at the office of Carine Saint-Prix
- Don't rush there now...
- If you are not registered in the Master send an email to Carine to say that you would like to attend the course.
- Email
- francis.bach@ens.fr
- guillaume.obozinski@imagine.enpc.fr
- always write to both of us + add "MVA" in the email title.
- Lecture notes Scribes

To start: models with 1 and 2 nodes...

Regression and classification

Mixture models

Transversal concepts

- Generative models vs discriminative
- Supervised vs unsupervised learning
- Learning from completely observed data vs incomplete data
- Causation vs correlations :

Graphical models are not modelling causation \rightarrow modelling correlation based on sets of conditional independences.

Notations, formulas,definitions

- Joint distribution of X_{A} et $X_{B}: p\left(x_{A}, x_{B}\right)$
- Marginale distribution : $p\left(x_{A}\right)=\sum_{x_{A^{c}}} p\left(x_{A}, x_{A^{c}}\right)$
- Conditional distribution : $p\left(x_{A} \mid x_{B}\right)=\frac{p\left(x_{A}, x_{B}\right)}{p\left(x_{B}\right)}$ si $p\left(x_{B}\right) \neq 0$

Bayes formula

$$
p\left(x_{A} \mid x_{B}\right)=\frac{p\left(x_{B} \mid x_{A}\right) p\left(x_{A}\right)}{p\left(x_{B}\right)}
$$

\rightarrow Bayes formula is not "bayesian".

Expectation and Variance

- Expectation of $X: \mathbb{E}[X]=\sum_{x} x \cdot p(x)$
- Expectation of $f(X)$, for f mesurable :

$$
\mathbb{E}[f(X)]=\sum_{x} f(x) \cdot p(x)
$$

- Variance :

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

- Conditional Expectation de X given Y :

$$
\mathbb{E}[X \mid Y]=\sum_{x} x \cdot p(x \mid y)
$$

- Conditional Variance :

$$
\operatorname{Var}(X \mid Y)=\mathbb{E}\left[(X-\mathbb{E}[X \mid Y])^{2} \mid Y\right]=\mathbb{E}\left[X^{2} \mid Y\right]-\mathbb{E}[X \mid Y]^{2}
$$

Independence concepts

Independence : $X \Perp Y$

We say that X et Y are independents and write $X \Perp Y$ ssi :

$$
\forall x, y, \quad P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Conditional Independence : $X \Perp Y \mid Z$

- On says that X and Y are independent conditionally on Z and - write $X \Perp Y \mid Z$ iff :
$\forall x, y, z$,

$$
P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)
$$

Conditional Independence : example

"X-linked recessive disease" :
Transmission of the gene of hemophilia

Risk of illness or sons of a healthy father :

- dependent for two brothers.
- conditionally independant given whether the mother is a carrier or not.

Statistical model

Parametric model - Definition :

Ensemble of probability distributions parameterized by a vector $\theta \in \Theta \subset \mathbb{R}^{p}$

$$
\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}
$$

Bernoulli model : $X \sim \operatorname{Ber}(\theta) \quad \Theta=[0,1]$

$$
p(x ; \theta)=\theta^{x}(1-\theta)^{(1-x)}
$$

Binomial model : $Y \sim \operatorname{Bin}(n, \theta) \quad \Theta=[0,1]$

$$
p(Y ; \theta)=\binom{n}{x} \theta^{y}(1-\theta)^{(n-y)}
$$

Multinomial model : $Z \sim \mathcal{M}\left(n, \pi_{1}, \pi_{2}, \ldots, \pi_{K}\right) \quad \Theta=[0,1]^{K}$

$$
p(z ; \theta)=\binom{n}{z_{1}, \ldots, z_{k}} \pi_{1}^{z_{1}} \ldots \pi_{k}^{z_{k}}
$$

Gaussian model

Univariate gaussian: $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
X is real valued r.v., et $\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}_{+}^{*}$.

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Multivariate gaussian: $X \sim \mathcal{N}(\mu, \Sigma)$
X takes values in \mathbb{R}^{d}. Si \mathcal{K}_{n} is the set of $n \times n$ positive definite matrices, and $\theta=(\mu, \Sigma) \in \Theta=\mathbb{R}^{d} \times \mathcal{K}_{n}$.

$$
p_{\mu, \Sigma}(x)=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Gaussian densities

Maximum likelihood principle

- Let a model $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$
- Let an observation x

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood estimator :

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(x ; \theta)
$$

Sir Ronald Fisher (1890-1962)

Case of i.i.d. data
For $\left(x_{i}\right)_{1 \leq i \leq n}$ a sample of i.i.d. data of size n :

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{n} p\left(x_{i} ; \theta\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)
$$

Examples of calculations of the MLE

- Bernoulli model
- Multinomial model
- Gaussien model

Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an a priori $p(\theta)$ on the model parameters.

A posteriori

The data contribute to the likelihood : $p(x \mid \theta)$.
The a posteriori probability of parameters is then

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)} \propto p(x \mid \theta) p(\theta) .
$$

\rightarrow The Bayesian estimator is thus a probability distibution on the parameters.

One talks about Bayesian inference.

References

- Book of Christopher Bishop :

Pattern Recognition and Machine Learning, 2006, Springer. http://research.microsoft.com/~cmbishop/PRML/

- David Barber's book is available online :

Bayesian Reasoning and Machine Learning.
Cambridge University Press, 2012.
http://www.cs.ucl.ac.uk/staff/d.barber/brml/

- A good book on optimization theory :

Nonlinear Programming, 1999, Dimitri Bertsekas. Athena Scientific.

