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General information

Every Wed 9am-12pm amphi Tocqueville until Nov 27.

Except

This Friday Oct 11th 1.30pm-4.30pm amphi Tocqueville
Next Wed Oct 16th 9am-12pm amphi Curie

Grading :

Homework 1 (20%)
Homework 2 (20%)
Take Home Exam (a longer Homework) (30%)
Project (30%)

Programming :

All Hwk + Exam + Project involve programming
You may choose the programming language you want
We recommend you choose a vector oriented PL such as Python, R
Matlab.
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General information II

Calendar for the project :

Mid-nov choose a project to do alone or in pairs.
Before 11/27 send a mail announcing project choice.
Before 12/04 send a project draft (1 page)+ first results.
Before 12/20 Hand in your final exam (to Carine Saint-Prix/by email).
On 12/18 Poster session perhaps Pavillon des Jardins.
Before 01/10 Project reports due (≈ 6 pages).

Polycopié will be available later at the office of Carine Saint-Prix

Don’t rush there now...
If you are not registered in the Master send an email to Carine to say
that you would like to attend the course.

Email
francis.bach@ens.fr

guillaume.obozinski@imagine.enpc.fr

always write to both of us + add ”MVA” in the email title.

Lecture notes Scribes
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Machine learning

Goal

Extract “statistical relations” between

a large number of input variables / features / descriptors
one or several decision/output variables

Construct empirical knowledge :

Turning empirical information into statistical knowledge

Specificities w.r.t. other AI approches

1 Knowledge essentially extracted from des données

2 Generalization ability
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Specificities w.r.t. classical statistics

Goal

Predictive/Action model vs explanatory model of reality

Challenge

Requires to integrate the info from a very large number of variables

Computer vision : 107 dimensions par image

Brain imaging : 105 dimensions par volume

Natural Language processing : 104 − 1015 paramètres

Genetics : 104 gènes, 105 SNPs/ microsatellites, 109 bases d’ADN

Which role for probabilistic modelling ?
How do proceed ?
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Algorithm

Criterion/Formulation

Model Principles

A priori
knowledge

Data

Task+ lear-
ning modality

Probabilistic graphical models 6/32



Algorithm

Criterion/Formulation

Model Principles

A priori
knowledge

Données

Task + lear-
ning modality

• Max entropy
• Max likelihood
• Min risk
• MDL
• Bayesian calculus
• Max margin
• Min regret

• Supervision ?
• On/off line
• Active/Passive
• Sequentiel minimax
• Reinforcement

• Function spaces
− RKHS (kernels)
− Wavelets
•Functional rel.
• Probabilistic rel.

• Optimization
• Expectation computa-
tion

• Dynamic progr
• (Linear Algebra)
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Structured problems in HD
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Sequence modelling

How to model the distribution of DNA sequences of length k ?

Naive model→ 4n − 1 parameters

Indépendant model → 3n parameters

x1 x2 x3 x4

First order Markov chain :

x1 x2 x3 x4

Second order Markov chain :

x1 x2 x3 x4

Number of parameters O(n) for chains of length n.
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Models for speech processing

Speech modelled by a sequence of unobserved phonemes

For each phoneme a random sound is produced following a
distribution which characterizes the phoneme

Hidden Markov Model : HMM (Modèle de Markov caché)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

→ Latent variable models
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Modelling image structures

Markov Random Field
(Champ de Markov caché)

Segmentation
→ oriented graphical model vs non oriented
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Anaesthesia alarm (Beinlich et al., 1989)

“The ALARM Monitoring system”

http://www.bnlearn.com/documentation/networks/

CVP central venous pressure
PCWP pulmonary capillary wedge pressure
HIST history
TPR total peripheral resistance
BP blood pressure
CO cardiac output
HRBP heart rate / blood pressure.
HREK heart rate measured by an EKG monitor
HRSA heart rate / oxygen saturation.
PAP pulmonary artery pressure.
SAO2 arterial oxygen saturation.
FIO2 fraction of inspired oxygen.
PRSS breathing pressure.
ECO2 expelled CO2.
MINV minimum volume.
MVS minimum volume set
HYP hypovolemia
LVF left ventricular failure
APL anaphylaxis
ANES insufficient anesthesia/analgesia.
PMB pulmonary embolus
INT intubation
KINK kinked tube.
DISC disconnection
LVV left ventricular end-diastolic volume
STKV stroke volume
CCHL catecholamine
ERLO error low output
HR heart rate.
ERCA electrocauter
SHNT shunt
PVS pulmonary venous oxygen saturation
ACO2 arterial CO2
VALV pulmonary alveoli ventilation
VLNG lung ventilation
VTUB ventilation tube
VMCH ventilation machine
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Probabilistic model
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f56(x5, x6) f37(x3, x7) f678(x6, x7, x8) f9(x9)
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Abstact models vs concrete ones

Abstracts models

Linear regression

Logistic regression

Mixture model

Principal Component Analysis

Canonical Correlation Analysis

Independent Component analysis

LDA (Multinomiale PCA)

Naive Bayes Classifier

Mixture of experts

Concrete Models

Markov chains

HMM

Tree-structured models

Double HMMs

Oriented acyclic models

Markov Random Fields

Star models

Constellation Model
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Operations on graphical models

Probabilistic inference

Computing a marginal distr. p(xi ) ou p(xi |x1 = 3, x7 = 0)

Decoding (MAP inference)

What is the most likely instance ?

argmaxzp(z |x)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Learning (or Estimation)

Soit p(x ;θ) = 1
Z(θ)

∏
C ψ(xC , θC ), we want to find

argmaxθ

n∏
i=1

p(x (i);θ) = argmaxθ
1

Z (θ)

n∏
i=1

∏
C

ψ(x
(i)
C , θC )

Probabilistic graphical models 15/32



Course outline

Course 1
Introduction
Maximum likelihood
Models with a single node

Course 2
Linear regression
Logistic regression
Generative classification (Fisher
discriminant)

Cours 3
K-means
EM
Gaussian mixtures
Graph Theoretic aspects

Cours 4
Unoriented graphical
models
Oriented graphical models

Cours 5
Exponential families
Information Theory

Cours 6
Gaussian Variables
Factorial Analysis

Cours 7
Sum-product algorithm

Cours 8
Approximate inférence

Cours 9
Bayesian methods
Model selectionProbabilistic graphical models 16/32
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General information II

Calendar for the project :

Mid-nov choose a project to do alone or in pairs.
Before 11/27 send a mail announcing project choice.
Before 12/04 send a project draft (1 page)+ first results.
Before 12/20 Hand in your final exam (to Carine Saint-Prix/by email).
On 12/18 Poster session perhaps Pavillon des Jardins.
Before 01/10 Project reports due (≈ 6 pages).

Polycopié will be available later at the office of Carine Saint-Prix

Don’t rush there now...
If you are not registered in the Master send an email to Carine to say
that you would like to attend the course.
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Lecture notes Scribes
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To start : models with 1 and 2 nodes...
Regression and classification

t
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p(t|x0,w, β)
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Transversal concepts

Generative models vs discriminative

Supervised vs unsupervised learning

Learning from completely observed data vs incomplete data

Causation vs correlations :
Graphical models are not modelling causation →modelling correlation

based on sets ofconditional independences.
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Notations, formulas,definitions

Joint distribution of XA et XB : p(xA, xB)

Marginale distribution : p (xA) =
∑

xAc
p (xA, xAc )

Conditional distribution : p (xA|xB) = p(xA,xB)
p(xB) si p (xB) 6= 0

Bayes formula

p (xA|xB) =
p (xB |xA) p (xA)

p (xB)

→ Bayes formula is not “bayesian”.
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Expectation and Variance

Expectation of X : E [X ] =
∑

x x · p (x)

Expectation of f (X ), for f mesurable :

E [f (X )] =
∑
x

f (x) · p (x)

Variance :

Var (X ) = E
[
(X − E [X ])2

]
= E

[
X 2
]
− E [X ]2

Conditional Expectation de X given Y :

E [X |Y ] =
∑
x

x · p (x |y)

Conditional Variance :

Var (X | Y ) = E
[
(X − E [X |Y ])2 |Y

]
= E

[
X 2|Y

]
− E [X |Y ]2
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Independence concepts

Independence : X ⊥⊥Y

We say that X et Y are independents and write X ⊥⊥Y ssi :

∀x , y , P(X = x ,Y = y) = P(X = x)P(Y = y)

Conditional Independence : X ⊥⊥Y | Z
On says that X and Y are independent conditionally on Z and

write X ⊥⊥Y | Z iff :

∀x , y , z ,

P(X = x ,Y = y | Z = z) = P(X = x |Z = z) P(Y = y |Z = z)
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Conditional Independence : example

“X-linked recessive disease” :
Transmission of the gene of hemophilia

Risk of illness or sons of
a healthy father :

dependent for two
brothers.

conditionally
independant given
whether the mother
is a carrier or not.
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Statistical model

Parametric model – Definition :

Ensemble of probability distributions parameterized by a vector
θ ∈ Θ ⊂ Rp

PΘ =
{
p(x ; θ) | θ ∈ Θ

}
Bernoulli model : X ∼ Ber(θ) Θ = [0, 1]

p(x ; θ) = θx(1− θ)(1−x)

Binomial model : Y ∼ Bin(n, θ) Θ = [0, 1]

p(Y ; θ) =

(
n

x

)
θy (1− θ)(n−y)

Multinomial model : Z ∼M(n, π1, π2, . . . , πK ) Θ = [0, 1]K

p(z ; θ) =

(
n

z1, . . . , zk

)
π1

z1 . . . πk
zk
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Gaussian model

Univariate gaussian : X ∼ N (µ, σ2)

X is real valued r.v., et θ =
(
µ, σ2

)
∈ Θ = R× R∗+.

pµ,σ2 (x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)

Multivariate gaussian : X ∼ N (µ,Σ)

X takes values in Rd . Si Kn is the set of n× n positive definite matrices,
and θ = (µ,Σ) ∈ Θ = Rd ×Kn.

pµ,Σ (x) =
1√

(2π)d det Σ
exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
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Gaussian densities
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Maximum likelihood principle

Let a model PΘ =
{
p(x ; θ) | θ ∈ Θ

}
Let an observation x

Likelihood :

L : Θ → R+

θ 7→ p(x ; θ)

Maximum likelihood estimator :

θ̂ML = argmax
θ∈Θ

p(x ; θ)
Sir Ronald Fisher

(1890-1962)

Case of i.i.d. data

For (xi )1≤i≤n a sample of i.i.d. data of size n :

θ̂ML = argmax
θ∈Θ

n∏
i=1

p(xi ; θ) = argmax
θ∈Θ

n∑
i=1

log p(xi ; θ)
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Examples of calculations of the MLE

Bernoulli model

Multinomial model

Gaussien model
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Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an a priori p (θ) on the model parameters.

A posteriori

The data contribute to the likelihood : p (x |θ).
The a posteriori probability of parameters is then

p (θ|x) =
p (x |θ) p (θ)

p (x)
∝ p (x |θ) p (θ) .

→ The Bayesian estimator is thus a probability distibution on the
parameters.

One talks about Bayesian inference.

Probabilistic graphical models 31/32



References

Book of Christopher Bishop :

Pattern Recognition and Machine Learning, 2006, Springer.
http://research.microsoft.com/~cmbishop/PRML/

David Barber’s book is available online :

Bayesian Reasoning and Machine Learning.
Cambridge University Press, 2012.

http://www.cs.ucl.ac.uk/staff/d.barber/brml/

A good book on optimization theory :

Nonlinear Programming, 1999, Dimitri Bertsekas. Athena Scientific.

Probabilistic graphical models 32/32

http://research.microsoft.com/~cmbishop/PRML/
http://www.cs.ucl.ac.uk/staff/d.barber/brml/

	Fondamentals

