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Abstract

Purely bottom-up, unsupervised segmentation of a sin-
gle image into foreground and background regions remains
a challenging task for computer vision. Co-segmentation
is the problem of simultaneously dividing multiple images
into regions (segments) corresponding to different object
classes. In this paper, we combine existing tools for bottom-
up image segmentation such as normalized cuts, with kernel
methods commonly used in object recognition. These two
sets of techniques are used within a discriminative cluster-
ing framework: the goal is to assign foreground/background
labels jointly to all images, so that a supervised classifier
trained with these labels leads to maximal separation of the
two classes. In practice, we obtain a combinatorial opti-
mization problem which is relaxed to a continuous convex
optimization problem, that can itself be solved efficientlyfor
up to dozens of images. We illustrate the proposed method
on images with very similar foreground objects, as well
as on more challenging problems with objects with higher
intra-class variations.

1. Introduction
Co-segmentation is the problem of simultaneously divid-

ingq images into regions (segments) corresponding tok dif-
ferent classes. Whenq = 1 andk = 2, this reduces to the
classical segmentation problem where an image is divided
into foregroundandbackgroundregions. Despite over 40
years of research, it is probably fair to say that there is still
no reliable purely bottom-up single-image segmentation al-
gorithm [9, 17, 22]. The situation is different when a pri-
ori information is available, for example in a supervised or
interactive setting where labelled samples are available for
the foreground and background (or even additional,k > 2)
classes (see, e.g., [5, 6, 12]). The idea of co-segmentation
is that the availability of multiple images that contain in-
stances of the same “object” classes makes up for the ab-
sence of detailed supervisory information.
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Rother et al. [19] first introduced this idea in the rela-
tively simple setting where the same object lies in front of
different backgrounds in a pair of images. At the same time,
in the context of object recognition, where object instances
may vary in pose, shape or color, co-segmentation should
provide mid-level features which could improve recogni-
tion performance, [16, 20, 23]. Our aim here is to obtain a
co-segmentation algorithm flexible enough to perform well
in both instances, i.e., when foreground objects in several
images are close to identical, and when they are not. The
experiments presented in Section 4 reflect this double ob-
jective. The framework we have chosen to use is based on
discriminative clustering.

Discriminative clustering was first introduced by Xu et
al. [24] and relies explicitly onsupervisedclassification
techniques such as the support vector machine (SVM) to
performunsupervisedclustering: it aims at assigning labels
to the data so that if an SVM were run with these labels, the
resulting classifier would separate the data with high mar-
gin. In order to solve the associated combinatorial optimiza-
tion problem over labels, Xu et al. [24] consider a convex
relaxation in terms of a semidefinite program (SDP) [4]. In
this paper, we consider instead the least-squares classifica-
tion framework of Bach and Harchaoui [2], which leads to
more efficient and flexible algorithms (see Section 2.2 for
details).

Discriminative clustering is well adapted to the co-
segmentation problem for two reasons: first, we can re-
use existing features for supervised classification or detec-
tion, in particular state-of-the-art architectures basedon his-
tograms of local features and kernel methods [25]. Re-
lying on supervised tools and previous research dedicated
to fine-tuning these descriptors has proved to be advan-
tageous in other weakly supervised tasks in computer vi-
sion [8, 18]. Second, discriminative clustering easily allows
the introduction of constraints into the partitions found by
the clustering algorithm, in our case spatial and local color-
consistency constraints.

In order to adapt discriminative clustering to the task of
co-segmentation, we need to extend its original formulation
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[2, 24] in two directions: first, we include some local spatial
consistency by incorporating a term based on a normalized
Laplacian, which is often used in spectral clustering [22].
Second, we use recent techniques from the optimization lit-
erature [13] to find solutions of semidefinite programs over
matrices representing more than tens of thousands of data
points, which is necessary to co-segment up to dozens of
images (see Section 3 for details).

2. Problem formulation
We are givenq imagesI1, . . . , Iq, with potentially differ-

ent sizes. Each imageIi is reduced to a subsampled grid of
ni pixels. For simplicity, we assume that the overall set of
n =

∑q
i=1

ni pixels is ordered so that pixels from the same
image have successive indices. We denote bycj ∈ R

3 the
color of thej-th pixel, bypj ∈ R

2 its position within the
corresponding image, and byxj ∈ R

k an additional feature
vector. In this paper, we use SIFT descriptors [15], Gabor
filters and color histograms [12].

While our approach is based on the multi-class discrim-
inative framework of [2] and is thus applicable tok > 2
classes, we focus for simplicity on the casek = 2 in this pa-
per, and we aim at partitioning all the pixels from all images
into only two classes, theforegroundand thebackground.
We denote byy the vector inRn such that:

yj =

{

1 if the jth pixel is in theforeground,
−1 otherwise.

Our goal is to findy ∈ {−1, 1}n, given only theq images
and their associated features.

Co-segmenting a set of images to find a common ob-
ject instance relies on maximizing the separability of two
classes between different images and on maximizing spa-
tial and appearance consistency within a particular image.
The latter problem leads to methods designed for bottom-
up unsupervisedclustering, e.g., spectral methods such
as normalized cuts [22] without any sharing of informa-
tion between different images, whereas the former prob-
lem leads to solving a top-downdiscriminativeclustering
problem which allows some shared information between
images. The approach we propose combines both methods
and solves the associated problemssimultaneously.

2.1. Spatial consistency
Spatial consistencywithin an imagei is enforced through

a similarity matrixW i based on feature positionspj and
color vectorscj , which is standard in spectral cluster-
ing [22], leading to high similarity for nearby pixels with
similar color. We thus define the similarity matrixW i asso-
ciated with imagei as follows: for any pair(l, m) of pixels
that belong to thei-th image,W i

lm is zero if the two pixels
are separated by more than two nodes in the image grid, and
is given by:

W i
lm = exp(−λp‖p

m − pl‖2 − λc‖c
m − cl‖2) (1)

otherwise. Empirically, values ofλp = 0.001 andλc =
0.05 have given good results in our experiments.

We can assemble the separate similarity matricesW i,
i = 1, . . . , q, into a block-diagonal matrixW ∈ R

n×n, by
putting the blocksW i ∈ R

ni×ni on the diagonal.
We now consider theLaplacianmatrix defined from the

joint block-diagonal similarity matrixW . Denoting byD
the diagonal matrix composed of the row sums ofW , we
define the normalized Laplacian matrixL as L = In −
D−1/2WD−1/2, whereIn is the n-dimensional identity
matrix.

Given the normalized Laplacian matrix, a spectral
method like normalized cuts [22] outputs the second small-
est eigenvector ofL, which corresponds to minimizing
y⊤Ly under the constraints‖y‖2 = n andy⊤D1/21n = 0
(where1n denotes then-dimensional vector of all ones).

Following normalized cuts, we will thus include the term
y⊤Ly into our objective function. SinceL is block diago-
nal, minimizing this term alone leads to segmenting the im-
agesindependentlyinto two different groups, based solely
on local features (color differences and position differences
at nearby pixels).

2.2. Discriminative clustering
Our discriminative clustering framework is based on

positive definite kernels [21]. Since ourk-dimensional fea-
tures are all histograms, we consider a jointn × n positive
semidefinite kernel matrixK (defined for all pairs of all pix-
els from all images) based on theχ2-distance, with entries:

Klm = exp

(

− λh

k
∑

d=1

(xl
d − xm

d )2

xl
d + xm

d

)

, (2)

whereλh > 0. In the experiments, we useλh = 0.1. Note
that we do not use the positionspj to share information
through images in order to be robust to object location.

Considering a positive definite kernel such as the one
used in Eq. (2) is equivalent to mapping each of our
n k-dimensional vectorsxj , j = 1, . . . , n into a high-
dimensional Hilbert spaceF through a feature mapΦ, so
thatKml = Φ(xm)T Φ(xl) [21]. Kernel methods then aim
at learning a classifier which is an affine function ofΦ(x)
through the minimization with respect tof ∈ F andb ∈ R

of
1

n

n
∑

j=1

ℓ(yj , f
T Φ(xj) + b) + λk‖f‖

2, (3)

whereyj ∈ {−1, 1} is the label associated with thej-th
pixel andℓ is a loss function. In this paper, we consider the
square lossℓ(s, t) = (s − t)2 but other losses such as the
hinge loss (for the SVM) could be considered (at the price
of additional computational cost) [24].

Given the kernel matrixK (which is known and fixed)
and the labelsy (which are unknown), we denote byg(y)



the optimal solution of the supervised learning problem in
Eq. (3) with the kernel matrixK and labelsy. The optimal
valueg(y) is a measure of the separability of the classes
defined byy ∈ {−1, 1}n.

Following [2], for the square loss, we can computeg(y)
in closed form as

g(y) = y⊤Ay, (4)

whereA = λk(In−
1

n1n1T
n )(nλkIn +K)−1(In−

1

n1n1T
n ).

See [2] for details.

Degrees of freedom. Another advantage of using the
square loss is that it gives a natural interpretation of the reg-
ularization parameterλk in terms of the implicit number of
parameters of the learning procedure [11]. Indeed, thede-
gree of freedomdefined asdf = n(1 − trA), provides a
simple way to set the regularization parameterλk [11]. In
the experiments, we usedf = 100 and deduce from it the
value ofλk.

Incomplete Cholesky decomposition. EvaluatingA is
prohibitive since inverting an × n square matrix has an
O(n3) complexity. Following [2], we use an incomplete
Cholesky decomposition for the kernel matrixK to reduce
this complexity toO(n) [21]: For a fixed rankr < n, we
obtain ann × r dimensional matrixG such asK ≈ GGT .
Using the matrix inversion lemma, this allows us to invert
anr × r system instead of ann × n one. The overall com-
plexity is thereforeO(nr2). In our simulations, we use
r = min(n, 400).

Cluster size constraints. Putting all pixels into a single
class leads to perfect separation (this can be seen by notic-
ing that the matrixA is positive semidefinite and satisfies
1T

nA1n = 0). Following [2, 24], we add constraints on the
number of elements in each class to avoid this trivial solu-
tion. In our situation where then observations (i.e., pixels)
belong toq different images, we constrain the number of
elements of each class ineach imageto be upper bounded
by λ1 and lower bounded byλ0. If δi ∈ R

n is the indicator
vector of thei-th image, with(δi)j = 1 if the j-th pixel is
in the i-th image and 0 otherwise, then the constraints are
equivalent to the component-wise inequalities:

λ0niδi 6 1

2
(yy⊤ + 1n1T

n )δi 6 λ1niδi.

Empirically, we have seen that different choices ofλ0 and
λ1 do not change the results much as long asλ0 is small
enough. Therefore we have fixedλ0 = 5% andλ1 = 95%.

Problem formulation. Finally, combining a spatial con-
sistency term associated with the Laplacian matrixL with a
discriminative cost associated with the matrixA, and adding
the cluster size constraints, we obtain the following prob-
lem:

min
y∈{−1,1}n

yT
(

A + µ
nL

)

y, (5)

subject to ∀i, λ0niδi 6
1

2
(yy⊤ + 1n1T

n )δi 6 λ1niδi.

In the next section, we show how this optimization prob-
lem may be relaxed to a convex one that can be solved effi-
ciently.

3. Optimization
In this section, we present an efficient convex relaxation

of the hard combinatorial optimization problem defined in
Eq. (5).

3.1. Convex relaxation
Using the similarity of Eq. (5) with max-cut prob-

lems [10], we notice that the objective function may be
rewritten asyT

(

A + µ
nL

)

y = tr
(

yyT
(

A + µ
nL

))

. Thus,
we may reparameterize Eq. (5) withY = yy⊤. The matrix
Y is usually referred to as theequivalence matrix(Yij = 1
if pixels i andj are in the same cluster and−1 otherwise).
The constrainty ∈ {−1, 1}n is then equivalent toY be-
ing symmetric, positive semidefinite, with diagonal equal
to one, and unit rank. Thus, if we denote byE theelliptope,
i.e., the convex set defined by:

E = {Y ∈ R
n×n , Y = Y T , diag(Y ) = 1n , Y � 0},

Eq. (5) is equivalent to:

min
Y ∈E

tr
(

Y
(

A + µ
nL

))

, (6)

subject to ∀i, λ0niδi 6
1

2
(Y + 1n1T

n )δi 6 λ1niδi

rank(Y ) = 1.

The rank constraint ensures that the solution of Eq. (6) is
an integer matrix but makes the continuous problem Eq. (6)
non-convex. We propose to remove this constraint, which
leads to a relaxed convex optimization problem over posi-
tive definite matrices, usually referred to as a semidefinite
program (SDP) [4].

3.2. Efficient low-rank optimization
Without using the structure of this problem, general pur-

pose toolboxes would solve it inO(n7) [4], which is clearly
not acceptable in our situation. Bach and Harchaoui [2]
consider a partial dualization technique that solves the re-
laxed problem through a sequence of singular value decom-
positions and scales up to thousands of data points. To gain
another order of magnitude, we adopt the framework for
optimization through low-rank matrices proposed in [13].

From constraints to penalties. Unfortunately, the pro-
cedure developed in [13] cannot deal with inequality
constraints. Therefore we use an augmented Lagrangian
method to transform these into penalties [3]—that is, for
each constraint of the formh(Y ) 6 0, we add a twice dif-
ferentiable convex penalty term to the objective function,in
our caseν

α log(1 + exp(αh(Y )), with α = 0.1. To ensure



Figure 1. Illustrating the co-segmentation process on two bear images; from left to right: input images, over-segmentations, scores obtained
by our algorithm and co-segmentations.µ = 1.

that the constraints are respected after convergence, we fol-
low [3] and increaseν by a constant factor at every iteration
of our iterative scheme.

Low-rank solutions. We are now faced with the optimiza-
tion of a convex functionf(Y ) on the elliptopeE , poten-
tially with rank constraints (in their absence the optimiza-
tion problem is convex). The unconstrained minimization
of convex functions on the elliptope usually leads to low-
rank solutions [13]. Letr be the rank of the solution. We
consider the functiongd : y 7→ f(yy⊤) defined for matrices
y ∈ R

n×d such that diag(yy⊤) = 1. For anyd > r, it turns
out that all the local minima ofgd correspond to a global
minimum off over the elliptope [13]. If the rankr of the
optimal solution was known, then we could simply use local
descent procedures to minimizegd for d = r +1. However,
r is not known. Journée et al. [13] have designed an adap-
tive procedure for this case, that first considersd = 2, finds
a local minimum ofgd, and checks whether it corresponds
to a global optimum off using second order derivatives of
f . If not, thend is increased by one and the same opera-
tion is performed until the actual rankr is reached. Thus,
whend = r + 1, we must get an optimum of the convex
problem, which has been obtained by a sequence of local
minimizations of low-rank non-convex problems. Note that
we obtain a global minimum off(Y ) regardless of the cho-

Figure 2. Dog images: (top) input images, (middle) scores ob-
tained by our algorithm and (bottom) co-segmentations.µ = 1.

sen initialization of the low-rank descent algorithm.

Trust-region method on a manifold. Crucial to the rank
adaptive method presented earlier is the possibility of ob-
taining local minima of the low-rank problems (as op-
posed to the stationary points, that a simple gradient de-
scent scheme ony ∈ R

n×d would give). We first notice
that the costgd is invariant by right-multiplication ofy by a
d × d orthogonal matrix. Therefore, following [1], we per-
form our minimization on the quotient spacēEd = Ed/Od,
whereEd = {Y ∈ E , rank(Y ) = d} andOd = {P ∈
R

d×d|PPT = Id}. Journée et al. [13] show that, ford > 2,
Ēd is a Riemannian manifold. In order to find a local min-
imum on this quotient space, we can thus use a second-
order trust-region method for such manifolds1, with guar-
anteed convergence to local minima rather than stationary
points (see, e.g., [1]). Note the following interesting phe-
nomenon: our overall goal is to minimizegd for d = 1.
This is a combinatorial problem. By going tod > 2, we
get a Riemannian manifold, and ford large enough, all lo-
cal minima are provably global minima. Thus, this is a case
where increasing dimension helps optimization. We show
in Section 3.3 how to project back the solution to rank-one
matrices.

Preclustering. Since our cost functionf uses a fulln ×
n matrix A + (µ/n)L, the memory cost of our algorithm
may be prohibitive. This has prompted us to use superpixels
obtained from an oversegmentation of our images (in our
case the watershed implementation of [17], but any other
method would do), see the example in Figure 1. Usings
superpixels is equivalent to constraining the matrixY to be
block-constant and thus reduces the size of the SDP to a
problem of sizes×s. In our experiments, for a single image,
s can be between 200 and 1000. For 30 images, we use in
generals = 15000.

Running time. We perform our experiments on a 2.4
gHz processor with 16 gB of RAM. Our code is in MAT-
LAB. The optimization method has an overall complexity
of O(s2) in the number of superpixels. Typically, depend-
ing on the number of superpixels in an image, it takes be-
tween 20 seconds and 1.5 minutes (on average 45 seconds)
to segment a single image. Segmenting a pair of images
takes between 5 minutes and 15 minutes (on average 8 min-

1we use the code from www.montefiore.ulg.ac.be/

˜ journee/ in our experiments.



Figure 3. (Left) stone images and (right) girl images: (top)input
images, (middle) scores obtained by our algorithm, (bottom) co-
segmentations.µ = 0.001.

utes). For 30 images, it takes between 4 and 9 hours.

3.3. Rounding
We have presented in Section 3.2 an efficient method for

solving the optimization problem of Eq. (6) without the rank
constraint. In order to retrievey ∈ {−1, 1} from a matrixY
in E with rank larger than one, several alternatives have been
considered in the literature, using randomization or eigen-
value decomposition for example [10, 22]. In this paper,
we follow the latter approach, and compute the eigenvector
e ∈ R

n associated with the largest eigenvalue ofY , which
is equivalent to projectingY on the set of unit-rank positive
definite matrices [4]. We refer toe ∈ R

n as the segmenta-
tion score of our algorithm. We then considery ∈ R

n as the
component-wise sign ofe, i.e.,1 for positive values, and−1
otherwise. Our final clustering is obtained by thresholding
the score at 0 (see example in Figure 1). Note that adaptive
threshold selection could be considered as well. Empiri-
cally, we have noticed that adapting the threshold does not
give better results that fixing it to 0.

Post-processing.In this paper, we subsample the grid to
make the algorithm faster: we clean the coarse resulting
segmentation by applying a fast bottom-up segmentation al-
gorithm based on graph cuts on the original grid, seeded by
the scoree [5, 14]. We use the same parameters for this
algorithm in all our experiments, except the dog (Figure 2),
for which we adjusted them to obtain a better final segmen-
tation. We could also use our algorithm as an initialization
for other co-segmentation methods [19].

4. Experiments
We present our results on different datasets. In Sec-

tion 4.1, we first consider images with foreground objects
which are identical or very similar in appearance and with

Figure 4. Boy images: (left) input images, (middle) scores ob-
tained by our algorithm, (right) co-segmentation.µ = 0.001.

few images to co-segment, a setting that was already used in
[19] and extended in [12]. Then, in Section 4.2, we consider
images where foreground objects exhibit higher appearance
variations, with more images to co-segment (up to 30).

We present both qualitative and quantitative results. In
the latter case, co-segmentation performance is measured
by its accuracy, which is the proportion of well classified
pixels (foregroundand background) to the total number
of pixels. To evaluate the accuracy of our algorithm on a
dataset, we evaluate this quantity for each image separately.
Note that in our unsupervised approach we have one inde-
terminacy, i.e., we do not know if positive labels correspond
to foreground or to background. We thus select by hand the
best candidate (one single choice forall images of the same
class), but simple heuristics could be used to alleviate this
manual choice.

Tradeoff between bottom-up segmentation and discrim-
inative clustering. The parameterµ, which weighs the spa-
tial and color consistency and discriminative cost function,
is the only free parameter; in our simulations, we have con-
sidered two settings:µ = 1, corresponding to foreground
objects with fairly uniform colors, andµ = 0.001, corre-
sponding to objects with sharp color variations.

4.1. Experiments with low-variability datasets
We first present results obtained by our algorithm on a

set of images from [12, 19]. Following the experimental
set-up in these papers, our feature vector is composed of
color histograms and Gabor features. For synthetic exam-
ples with identical foreground objects (girl, stone, boy),we
use 25 buckets per color channel, while for natural images
(bear, dog) we use 16 buckets. Since we only consider a
few images (2 in all cases, except 4 for the dogs), we do
not need to subsample the images. Segmentation results are
shown in Figures 1 to 4 (note that these are best seen on
screen).

Qualitatively and quantitatively, our co-segmentation
framework gives similar results to [12] and [19], except on
the boy (Figure 4), where our algorithm fails to find the
head. This is due to the strong edge between the coat and



Figure 5. Flower images: (top) original images, (bottom) co-segmentations.

Girl Stone Boy Bear Dog

our method 0.8% 0.9% 6.5 % 5.5% 6.4 %
[12] - 1.2% 1.8% 3.9% 3.5%

Table 1. Segmentation accuracies on pairs of images.

the head and the similarity in color with the wood in the sec-
ond image. Settingλc = 0 in the Laplacian matrix would
improve the results, but this would add an additional param-
eter to tune.

Quantitative results are given in Table 1. We only com-
pare our algorithm with Hochbaum et al. [12] since these
authors report that they do better than [19] in their experi-
ments. In general, their results are also better than ours, but,
their algorithm exploits some a priori knowledge of back-
ground and foreground colors. Our algorithm starts from
scratch, without any such prior information.

4.2. Experiments with high-variability datasets
In this section, we consider co-segmentation problems

which are much harder and cannot be readily solved by pre-
vious approaches. They demonstrate the robustness of our
framework as well as its limitations.

Oxford flowers. We first consider a class of flowers from
the Oxford database1, with 30 images, subsampled grids
(with a ratio of 4), and oversegmentation into an average of
100 superpixels. Results are shown in Figure 5 and illustrate
that our co-segmentation algorithm is able to co-segment al-
most perfectly larger sets of natural images.

Weizman horses and MSRC database.We co-segment
images from the Weizmann horses database2 and the MSRC
database3, for which ground truth segmentations are avail-
able. Our aim is to show that our method is robust to fore-
ground objects with higher appearance variations. Our fea-
ture vectors are16 × 16 SIFT descriptors taken every 4
pixels. We choose SIFT instead of color histograms be-
cause SIFT is usually more robust to such variability. We
use an over-segmentation with an average of 400 super-
pixels to speed up the algorithm. Sample segmentation
results are shown in Figures 7 and 8, with quantitative

1www.robots.ox.ac.uk/ ˜ vgg/data/flowers/17/
2www.msri.org/people/members/eranb/
3www.research.microsoft.com/en-us/projects/

objectclassrecognition/

results in Table 2. Additional results may be found at
www.di.ens.fr/ ˜ joulin/ .

We consider three different baselines: for the first one
(“single-image”), we simply use our algorithm on all im-
agesindependently. Once each of these images are seg-
mented into two segments, we choose the assignments of
the two segments to foreground/background labels so that
the final segmentation accuracy is maximized. In other
words, we use the test set to find the best assignment, which
can only make this baseline artificially better.

The second baseline (“MNcut”) is the same as the first
one, except that the images are independently segmented
with a multiscale normalized cut framework [7]. The third
baseline (“uniform”) simply classifies all the pixels of all
the images into the same segment (foreground or back-
ground), and keep the solution with maximal accuracy.

Qualitatively, our method works well on the cows, faces,
horses and car views. It does not do as well on cats and
planes and worse on bikes. For cats, this can be explained
by the fact that these animals possess a natural camouflage
that makes it hard to distinguish them in their own environ-
ment. Also, the cats in the MSRC database have a wide
range of positions and textures. The low score on planes
may be explained by the fact that the background does not
change much between images, so in fact our method may
consider that the airport is the object of interest, while the
planes are changing across images. The score on bikes is
low because our algorithm fails to segment the regions in-
side the wheels, leading to low scores even though, qualita-
tively, the results are still reasonable.

Quantitatively, as shown in Table 2, our method outper-
forms the baselines except for the bikes and frontal views
of cars. To be fair, it should be noted, however, that a vi-
sual inspection of the single-and multi-image versions of
our algorithm give qualitatively similar results on several
datasets. One possible explanation is that the various back-
grounds are not that different from one another. Thus, much
of the needed information can be retrieved from a single im-
age, with the discriminative clustering still improving the
results. Note also that our discriminative framework on a
single image outperforms “MNcut”.

Co-segmentation vs. independent segmentations.One
may therefore wonder if co-segmentation offers a real gain,
but there are at least two reasons for using it. First, there is



class images our method single-image MNcut [7] uniform µ

Cars (front) 6 87.65%±0.1 89.6 %±0.1 51.4 %±1.8 64.0 %±0.1 1
Cars (back) 6 85.1 %±0.2 83.7 %±0.5 54.1%±0.8 71.3 %±0.2 1

Face 30 84.3%±0.7 72.4%±1.3 67.7%±1.2 60.4%±0.7 1
Cow 30 81.6 %±1.4 78.5 %±1.8 60.1%±2.6 66.3 %±1.7 0.001
Horse 30 80.1 %±0.7 77.5 %±1.9 50.1%±0.9 68.6 %±1.9 0.001
Cat 24 74.4 %±2.8 71.3 %±1.3 59.8%±2.0 59.2 %±2.0 0.001

Plane 30 73.8 %±0.9 62.5 %±1.9 51.9%±0.5 75.9 %±2.0 0.001
Bike 30 63.3 %±0.5 61.1 %±0.4 60.7%±2.6 59.0%±0.6 0.001

Table 2. Segmentation accuracies on the Weizman horses and MSRC databases.

a quantitative gain on almost all datasets and, secondly, co-
segmentation from multiple images not only finds the fore-
ground and background regions but itautomaticallyclassi-
fies them, whereas this must be done manually if the im-
ages are segmented independently. Figure 6 shows the dif-
ferent segmentations obtained with “MNcut”, single-image
segmentation and co-segmentation. The first row shows an
example where, on a single image, our algorithm outper-
forms “MNcut”, but where the difference between single-
and multi-image segmention is less clear. In fact, for several
images, both our versions give the same results. The second
row shows a case where on a single image “MNcut” and
our algorithm behave similarly but adding information from
other images enhances the results, i.e., co-segmentation has
noticeably improved performance.

5. Conclusion
We have presented a discriminative clustering frame-

work for image co-segmentation, which is able to use the
information common to several images from the same ob-
ject class to improve the segmentation of all the images.
This work can be extended in several ways: first, our ma-
chine learning framework can, in principle, readily be ex-
tended to more than two segments per image and thus to
images with several different objects of interest. Moreover,
background images for which it is known that the object is
absent could be used to enhance segmentation performance,
as can readily be done within the discriminative clustering
framework [2, 24]. Like other extensions to weakly super-
vised learning, this is left for future work. Finally, the re-
sults of our algorithm can be seen as an automatic seeding
mechanism for marker-based segmentation algorithms and
we could thus use more refined tools to enhance our post-
processing [5, 14].
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