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Lasso

• Goal: predict a response Y ∈ R from X = (X1, . . . ,Xp)
⊤ ∈ R

p as a

linear function w⊤X, with w ∈ R
p

• Observations: independent and identically distributed (i.i.d.)

– data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– given in the form of matrices Y ∈ R
n and X ∈ R

n×p.

• Square loss function: 1

2n

∑n
i=1

(yi − w⊤xi)
2 = 1

2n‖Y − Xw‖2

2

• Lasso: min
w∈Rp

1

2n
‖Y − Xw‖2

2
+ µn‖w‖1
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• Regularization by ‖w‖1 leads to sparsity

– Many efficient algorithms, empirical evaluations and extensions

– Asymptotic analysis: does is actually work?



Asymptotic analysis

• Asymptotic set up

– data generated from linear model Y = X⊤w + ε

– ŵ any minimizer of the Lasso problem

– number of observations n tends to infinity

• Three types of consistency

– regular consistency: ‖ŵ −w‖2 tends to zero in probability

– pattern consistency: the sparsity pattern Ĵ = {j, ŵj 6= 0} tends

to J = {j, wj 6= 0} in probability

– sign consistency: the sign vector ŝ = sign(ŵ) tends to s = sign(w)

in probability

• NB: with our assumptions, pattern and sign consistencies are

equivalent once we have regular consistency



Assumptions for analysis

• Simplest assumptions (fixed p, large n):

1. Sparse linear model: Y = X⊤w + ε , ε independent from X, and

w sparse.

2. Finite cumulant generating functions E exp(a‖X‖2

2
) and

E exp(aε2) finite for some a > 0.

3. Invertible matrix of second order moments Q = E(XX⊤) ∈ R
p×p.



Asymptotic analysis - simple cases

minw∈Rp
1
2n‖Y − Xw‖2

2 + µn‖w‖1

• If µn tends to infinity

– ŵ tends to zero with probability tending to one

– Ĵ tends to ∅ in probability
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• If µn tends to zero faster than n−1/2

– ŵ converges in probability to w

– With probability tending to one, all variables are included



Asymptotic analysis

minw∈Rp
1
2n‖Y − Xw‖2

2 + µn‖w‖1

• If µn tends to zero slower than n−1/2

– ŵ converges in probability to w

– the sign pattern converges to the one of the minimum of

1

2
v⊤Qv + v⊤J sign(wJ) + ‖vJc‖1

– The sign pattern is equal to s (i.e., sign consistency) if and only if

‖QJcJQ
−1

JJ sign(wJ)‖∞ 6 1

– Consistency condition found by many authors: Yuan & Lin (2007),

Wainwright (2006), Zhao & Yu (2007), Zou (2006)
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‖QJcJQ
−1

JJ sign(wJ)‖∞ 6 1

– Consistency condition found by many authors: Yuan & Lin (2007),

Wainwright (2006), Zhao & Yu (2007), Zou (2006)

– Disappointing?



Asymptotic analysis - new results

• If µn tends to zero at rate n−1/2, i.e., n1/2µn → ν0 ∈ (0,∞)

– ŵ converges in probability to w

– All (and only) patterns which are consistent with w on J are

attained with positive probability



Asymptotic analysis - new results

• If µn tends to zero at rate n−1/2, i.e., n1/2µn → ν0 ∈ (0,∞)

– ŵ converges in probability to w

– All (and only) patterns which are consistent with w on J are

attained with positive probability

– Proposition: for any pattern s ∈ {−1, 0, 1}p such that sJ 6=

sign(wJ), there exist a constant A(µ0) > 0 such that

log P(sign(ŵ) = s) 6 −nA(µ0) + O(n−1/2).

– Proposition: for any sign pattern s ∈ {−1, 0, 1}p such that

sJ = sign(wJ), P(sign(ŵ) = s) tends to a limit ρ(s, ν0) ∈ (0, 1),

and we have:

P(sign(ŵ) = s) − ρ(s, ν0) = O(n−1/2 log n).



µn tends to zero at rate n−1/2

• Summary of asymptotic behavior:

– All relevant variables (i.e., the ones in J) are selected with

probability tending to one exponentially fast

– All other variables are selected with strictly positive probability



µn tends to zero at rate n−1/2

• Summary of asymptotic behavior:

– All relevant variables (i.e., the ones in J) are selected with

probability tending to one exponentially fast

– All other variables are selected with strictly positive probability

• If several datasets (with same distributions) are available, intersecting

support sets would lead to the correct pattern with high probability
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Bootstrap

• Given n i.i.d. observations (xi, yi) ∈ R
d × R, i = 1, . . . , n

• m independent bootstrap replications: k = 1, . . . ,m,

– ghost samples (xk
i , y

k
i ) ∈ R

p × R, i = 1, . . . , n, sampled

independently and uniformly at random with replacement from

the n original pairs

• Each bootstrap sample is composed of n potentially (and usually)

duplicated copies of the original data pairs

• Standard way of mimicking availability of several datasets (Efron &

Tibshirani, 1998)



Bolasso algorithm

• m applications of the Lasso/Lars algorithm (Efron et al., 2004)

– Intersecting supports of variables

– Final estimation of w on the entire dataset
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Bolasso - Consistency result

• Proposition: Assume µn = ν0n
−1/2, with ν0 > 0. Then, for all

m > 1, the probability that the Bolasso does not exactly select the

correct model has the following upper bound:

P(J 6= J) 6 A1me−A2n + A3

log(n)

n1/2
+ A4

log(m)

m
,

where A1, A2, A3, A4 are strictly positive constants.

• Valid even if the Lasso consistency is not satisfied

• Influence of n, m

• Could be improved?



Consistency of the Lasso/Bolasso - Toy example

• Log-odd ratios of the probabilities of selection of each variable vs. µ
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Influence of the number of bootstrap replications

• Bolasso (red) and Lasso (black): probability of correct sign estimation

vs. regularization parameter, m ∈ {2, 4, 8, 16, 32, 64, 128, 256}.
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Comparison of several variable selection methods

• p = 64, averaged (over 32 replications) variable selection error =

square distance between sparsity pattern indicator vectors.
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Comparison of least-square estimation methods

• Different values of κ = ‖QJcJQ
−1

JJ sJ‖∞.

• Performance is measured through mean squared prediction error

(multiplied by 100).

• Toy examples

• Regularization parameter estimated by cross-validation

κ 0.93 1.20 1.42 1.28

Ridge 8.8 ± 4.5 4.9 ± 2.5 7.3 ± 3.9 8.1 ± 8.6

Lasso 7.6 ± 3.8 4.4 ± 2.3 4.7 ± 2.5 5.1 ± 6.5

Bolasso 5.4 ± 3.0 3.4 ± 2.4 3.4 ± 1.7 3.7 ± 10.2

Bagging 7.8 ± 4.7 4.6 ± 3.0 5.4 ± 4.1 5.8 ± 8.4

Bolasso-S 5.7 ± 3.8 3.0 ± 2.3 3.1± 2.8 3.2 ± 8.2



Comparison of least-square estimation methods

• UCI regression datasets

• Performance is measured through mean squared prediction error

(multiplied by 100).

• Regularization parameter estimated by cross-validation

Autompg Imports Machine Housing

Ridge 18.6 ± 4.9 7.7± 4.8 5.8 ± 18.6 28.0 ± 5.9

Lasso 18.6 ± 4.9 7.8 ± 5.2 5.8 ± 19.8 28.0 ± 5.7

Bolasso 18.1 ± 4.7 20.7 ± 9.8 4.6 ± 21.4 26.9 ± 2.5

Bagging 18.6 ± 5.0 8.0 ± 5.2 6.0 ± 18.9 28.1 ± 6.6

Bolasso-S 17.9 ± 5.0 8.2 ± 4.9 4.6± 19.9 26.8± 6.4



Conclusion

• Detailed analysis of variable selection properties of bootstrapped

Lasso

• Consistency with no consistency conditions on covariance matrices

• No additional free parameter

• Extensions

– Allowing p to grow (e.g., Meinshausen & Yu, 2008)

– Extensions to the group Lasso (Yuan & Lin, 2006, Bach, 2008)

– Connections with other resampling methods


