Bolasso: Model Consistent Lasso Estimation through the Bootstrap

Francis Bach

Willow project, INRIA - Ecole Normale Supérieure, Paris

July 2008

Outline

1. Review of asymptotic properties of the Lasso
2. Bolasso : using the bootstrap for consistent model selection
3. Simulations

Lasso

- Goal: predict a response $Y \in \mathbb{R}$ from $X=\left(X_{1}, \ldots, X_{p}\right)^{\top} \in \mathbb{R}^{p}$ as a linear function $w^{\top} X$, with $w \in \mathbb{R}^{p}$
- Observations: independent and identically distributed (i.i.d.)
- data $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, n$
- given in the form of matrices $\bar{Y} \in \mathbb{R}^{n}$ and $\bar{X} \in \mathbb{R}^{n \times p}$.
- Square loss function: $\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}=\frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}$
- Lasso:

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

Lasso

- Goal: predict a response $Y \in \mathbb{R}$ from $X=\left(X_{1}, \ldots, X_{p}\right)^{\top} \in \mathbb{R}^{p}$ as a linear function $w^{\top} X$, with $w \in \mathbb{R}^{p}$
- Observations: independent and identically distributed (i.i.d.)
- data $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, n$
- given in the form of matrices $\bar{Y} \in \mathbb{R}^{n}$ and $\bar{X} \in \mathbb{R}^{n \times p}$.
- Square loss function: $\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}=\frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}$
- Lasso:

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- Regularization by $\|w\|_{1}$ leads to sparsity
- Many efficient algorithms, empirical evaluations and extensions
- Asymptotic analysis: does is actually work?

Asymptotic analysis

- Asymptotic set up
- data generated from linear model $Y=X^{\top} \mathbf{w}+\varepsilon$
- \hat{w} any minimizer of the Lasso problem
- number of observations n tends to infinity
- Three types of consistency
- regular consistency: $\|\hat{w}-\mathbf{w}\|_{2}$ tends to zero in probability
- pattern consistency: the sparsity pattern $\hat{J}=\left\{j, \hat{w}_{j} \neq 0\right\}$ tends to $\mathbf{J}=\left\{j, \mathbf{w}_{j} \neq 0\right\}$ in probability
- sign consistency: the sign vector $\hat{s}=\operatorname{sign}(\hat{w})$ tends to $\mathbf{s}=\operatorname{sign}(\mathbf{w})$ in probability
- NB: with our assumptions, pattern and sign consistencies are equivalent once we have regular consistency

Assumptions for analysis

- Simplest assumptions (fixed p, large n):

1. Sparse linear model: $Y=X^{\top} \mathbf{w}+\varepsilon, \varepsilon$ independent from X, and w sparse.
2. Finite cumulant generating functions $\mathbb{E} \exp \left(a\|X\|_{2}^{2}\right)$ and $\mathbb{E} \exp \left(a \varepsilon^{2}\right)$ finite for some $a>0$.
3. Invertible matrix of second order moments $\mathbf{Q}=\mathbb{E}\left(X X^{\top}\right) \in \mathbb{R}^{p \times p}$.

Asymptotic analysis - simple cases

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to infinity
- \hat{w} tends to zero with probability tending to one
$-\hat{J}$ tends to \varnothing in probability

Asymptotic analysis - simple cases

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to infinity
- \hat{w} tends to zero with probability tending to one
- \hat{J} tends to \varnothing in probability
- If μ_{n} tends to $\mu_{0} \in(0, \infty)$
- \hat{w} converges to the minimum of $\frac{1}{2}(w-\mathbf{w})^{\top} \mathbf{Q}(w-\mathbf{w})+\mu_{0}\|w\|_{1}$
- The sparsity and sign patterns may or may not be consistent
- Possible to have sign consistency without regular consistency

Asymptotic analysis - simple cases

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\bar{Y}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to infinity
- \hat{w} tends to zero with probability tending to one
- \hat{J} tends to \varnothing in probability
- If μ_{n} tends to $\mu_{0} \in(0, \infty)$
- \hat{w} converges to the minimum of $\frac{1}{2}(w-\mathbf{w})^{\top} \mathbf{Q}(w-\mathbf{w})+\mu_{0}\|w\|_{1}$
- The sparsity and sign patterns may or may not be consistent
- Possible to have sign consistency without regular consistency
- If μ_{n} tends to zero faster than $n^{-1 / 2}$
- \hat{w} converges in probability to \mathbf{w}
- With probability tending to one, all variables are included

Asymptotic analysis

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\overline{\bar{Y}}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to zero slower than $n^{-1 / 2}$
- \hat{w} converges in probability to \mathbf{w}
- the sign pattern converges to the one of the minimum of

$$
\frac{1}{2} v^{\top} \mathbf{Q} v+v_{\mathbf{J}}^{\top} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)+\left\|v_{\mathbf{J}^{c}}\right\|_{1}
$$

- The sign pattern is equal to s (i.e., sign consistency) if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

- Consistency condition found by many authors: Yuan \& Lin (2007), Wainwright (2006), Zhao \& Yu (2007), Zou (2006)

Asymptotic analysis

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|\overline{\bar{Y}}-\bar{X} w\|_{2}^{2}+\mu_{n}\|w\|_{1}
$$

- If μ_{n} tends to zero slower than $n^{-1 / 2}$
- \hat{w} converges in probability to \mathbf{w}
- the sign pattern converges to the one of the minimum of

$$
\frac{1}{2} v^{\top} \mathbf{Q} v+v_{\mathbf{J}}^{\top} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)+\left\|v_{\mathbf{J}}{ }^{c}\right\|_{1}
$$

- The sign pattern is equal to s (i.e., sign consistency) if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

- Consistency condition found by many authors: Yuan \& Lin (2007), Wainwright (2006), Zhao \& Yu (2007), Zou (2006)
- Disappointing?

Asymptotic analysis - new results

- If μ_{n} tends to zero at rate $n^{-1 / 2}$, i.e., $n^{1 / 2} \mu_{n} \rightarrow \nu_{0} \in(0, \infty)$
- \hat{w} converges in probability to \mathbf{w}
- All (and only) patterns which are consistent with w on J are attained with positive probability

Asymptotic analysis - new results

- If μ_{n} tends to zero at rate $n^{-1 / 2}$, i.e., $n^{1 / 2} \mu_{n} \rightarrow \nu_{0} \in(0, \infty)$
- \hat{w} converges in probability to \mathbf{w}
- All (and only) patterns which are consistent with w on J are attained with positive probability
- Proposition: for any pattern $s \in\{-1,0,1\}^{p}$ such that $s_{\mathbf{J}} \neq$ $\operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)$, there exist a constant $A\left(\mu_{0}\right)>0$ such that

$$
\log \mathbb{P}(\operatorname{sign}(\hat{w})=s) \leqslant-n A\left(\mu_{0}\right)+O\left(n^{-1 / 2}\right)
$$

- Proposition: for any sign pattern $s \in\{-1,0,1\}^{p}$ such that $s_{\mathbf{J}}=\operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right), \mathbb{P}(\operatorname{sign}(\hat{w})=s)$ tends to a limit $\rho\left(s, \nu_{0}\right) \in(0,1)$, and we have:

$$
\mathbb{P}(\operatorname{sign}(\hat{w})=s)-\rho\left(s, \nu_{0}\right)=O\left(n^{-1 / 2} \log n\right) .
$$

μ_{n} tends to zero at rate $n^{-1 / 2}$

- Summary of asymptotic behavior:
- All relevant variables (i.e., the ones in \mathbf{J}) are selected with probability tending to one exponentially fast
- All other variables are selected with strictly positive probability

μ_{n} tends to zero at rate $n^{-1 / 2}$

- Summary of asymptotic behavior:
- All relevant variables (i.e., the ones in J) are selected with probability tending to one exponentially fast
- All other variables are selected with strictly positive probability
- If several datasets (with same distributions) are available, intersecting support sets would lead to the correct pattern with high probability

Bootstrap

- Given n i.i.d. observations $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, i=1, \ldots, n$
- m independent bootstrap replications: $k=1, \ldots, m$,
- ghost samples $\left(x_{i}^{k}, y_{i}^{k}\right) \in \mathbb{R}^{p} \times \mathbb{R}, \quad i=1, \ldots, n$, sampled independently and uniformly at random with replacement from the n original pairs
- Each bootstrap sample is composed of n potentially (and usually) duplicated copies of the original data pairs
- Standard way of mimicking availability of several datasets (Efron \& Tibshirani, 1998)

Bolasso algorithm

- m applications of the Lasso/Lars algorithm (Efron et al., 2004)
- Intersecting supports of variables
- Final estimation of w on the entire dataset

Intersection

Bolasso - Consistency result

- Proposition: Assume $\mu_{n}=\nu_{0} n^{-1 / 2}$, with $\nu_{0}>0$. Then, for all $m>1$, the probability that the Bolasso does not exactly select the correct model has the following upper bound:

$$
\mathbb{P}(J \neq \mathbf{J}) \leqslant A_{1} m e^{-A_{2} n}+A_{3} \frac{\log (n)}{n^{1 / 2}}+A_{4} \frac{\log (m)}{m}
$$

where $A_{1}, A_{2}, A_{3}, A_{4}$ are strictly positive constants.

- Valid even if the Lasso consistency is not satisfied
- Influence of n, m
- Could be improved?

Consistency of the Lasso/Bolasso - Toy example

- Log-odd ratios of the probabilities of selection of each variable vs. μ

LASSO

BOLASSO

Consistency condition satisfied

not satisfied

Influence of the number of bootstrap replications

- Bolasso (red) and Lasso (black): probability of correct sign estimation vs. regularization parameter, $m \in\{2,4,8,16,32,64,128,256\}$.

Consistency condition satisfied

Consistency condition not satisfied

Comparison of several variable selection methods

- $p=64$, averaged (over 32 replications) variable selection error $=$ square distance between sparsity pattern indicator vectors.

Consistency condition satisfied

Consistency condition not satisfied

Comparison of least-square estimation methods

- Different values of $\kappa=\left\|\mathbf{Q}_{\mathbf{J} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \mathbf{S}_{\mathbf{J}}\right\|_{\infty}$.
- Performance is measured through mean squared prediction error (multiplied by 100).
- Toy examples
- Regularization parameter estimated by cross-validation

κ	0.93	1.20	1.42	1.28
Ridge	8.8 ± 4.5	4.9 ± 2.5	7.3 ± 3.9	8.1 ± 8.6
Lasso	7.6 ± 3.8	4.4 ± 2.3	4.7 ± 2.5	5.1 ± 6.5
Bolasso	$\mathbf{5 . 4} \pm \mathbf{3 . 0}$	3.4 ± 2.4	3.4 ± 1.7	3.7 ± 10.2
Bagging	7.8 ± 4.7	4.6 ± 3.0	5.4 ± 4.1	5.8 ± 8.4
Bolasso-S	5.7 ± 3.8	$\mathbf{3 . 0} \pm \mathbf{2 . 3}$	$\mathbf{3 . 1} \pm \mathbf{2 . 8}$	$\mathbf{3 . 2} \pm \mathbf{8 . 2}$

Comparison of least-square estimation methods

- UCI regression datasets
- Performance is measured through mean squared prediction error (multiplied by 100).
- Regularization parameter estimated by cross-validation

	Autompg	Imports	Machine	Housing
Ridge	18.6 ± 4.9	$\mathbf{7 . 7} \pm \mathbf{4 . 8}$	5.8 ± 18.6	28.0 ± 5.9
Lasso	18.6 ± 4.9	7.8 ± 5.2	5.8 ± 19.8	28.0 ± 5.7
Bolasso	18.1 ± 4.7	20.7 ± 9.8	4.6 ± 21.4	26.9 ± 2.5
Bagging	18.6 ± 5.0	8.0 ± 5.2	6.0 ± 18.9	28.1 ± 6.6
Bolasso-S	$\mathbf{1 7 . 9} \pm \mathbf{5 . 0}$	8.2 ± 4.9	$\mathbf{4 . 6} \pm \mathbf{1 9 . 9}$	$\mathbf{2 6 . 8} \pm \mathbf{6 . 4}$

Conclusion

- Detailed analysis of variable selection properties of bootstrapped Lasso
- Consistency with no consistency conditions on covariance matrices
- No additional free parameter
- Extensions
- Allowing p to grow (e.g., Meinshausen \& Yu, 2008)
- Extensions to the group Lasso (Yuan \& Lin, 2006, Bach, 2008)
- Connections with other resampling methods

