Bolasso: Model Consistent Lasso Estimation through the Bootstrap

Francis Bach

Willow project, INRIA - Ecole Normale Supérieure, Paris

July 2008

Outline

- 1. Review of asymptotic properties of the Lasso
- 2. Bolasso : using the bootstrap for consistent model selection
- 3. Simulations

Lasso

- Goal: predict a response $Y \in \mathbb{R}$ from $X = (X_1, \dots, X_p)^\top \in \mathbb{R}^p$ as a linear function $w^\top X$, with $w \in \mathbb{R}^p$
- Observations: *independent and identically distributed* (i.i.d.)

- data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$

- given in the form of matrices $\overline{Y} \in \mathbb{R}^n$ and $\overline{X} \in \mathbb{R}^{n \times p}$.
- Square loss function: $\frac{1}{2n} \sum_{i=1}^{n} (y_i w^\top x_i)^2 = \frac{1}{2n} \|\overline{Y} \overline{X}w\|_2^2$

• Lasso:

$$\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$$

Lasso

- Goal: predict a response $Y \in \mathbb{R}$ from $X = (X_1, \dots, X_p)^\top \in \mathbb{R}^p$ as a linear function $w^\top X$, with $w \in \mathbb{R}^p$
- Observations: *independent and identically distributed* (i.i.d.)

- data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$

- given in the form of matrices $\overline{Y} \in \mathbb{R}^n$ and $\overline{X} \in \mathbb{R}^{n \times p}$.
- Square loss function: $\frac{1}{2n} \sum_{i=1}^{n} (y_i w^\top x_i)^2 = \frac{1}{2n} \|\overline{Y} \overline{X}w\|_2^2$

• Lasso:

$$\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$$

- Regularization by $||w||_1$ leads to sparsity
 - Many efficient algorithms, empirical evaluations and extensions
 - Asymptotic analysis: does is actually work?

Asymptotic analysis

- Asymptotic set up
 - data generated from linear model $Y = X^\top \mathbf{w} + \varepsilon$
 - \hat{w} any minimizer of the Lasso problem
 - number of observations \boldsymbol{n} tends to infinity
- Three types of consistency
 - regular consistency: $\|\hat{w} \mathbf{w}\|_2$ tends to zero in probability
 - pattern consistency: the sparsity pattern $\hat{J} = \{j, \ \hat{w}_j \neq 0\}$ tends to $\mathbf{J} = \{j, \ \mathbf{w}_j \neq 0\}$ in probability
 - sign consistency: the sign vector $\hat{s} = sign(\hat{w})$ tends to s = sign(w) in probability
- NB: with our assumptions, pattern and sign consistencies are equivalent once we have regular consistency

Assumptions for analysis

- Simplest assumptions (fixed *p*, large *n*):
 - 1. Sparse linear model: $Y = X^{\top} \mathbf{w} + \varepsilon$, ε independent from X, and \mathbf{w} sparse.
 - 2. Finite cumulant generating functions $\mathbb{E} \exp(a \|X\|_2^2)$ and $\mathbb{E} \exp(a\varepsilon^2)$ finite for some a > 0.
 - 3. Invertible matrix of second order moments $\mathbf{Q} = \mathbb{E}(XX^{\top}) \in \mathbb{R}^{p \times p}$.

Asymptotic analysis - simple cases $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$

- If μ_n tends to infinity
 - \hat{w} tends to zero with probability tending to one
 - \hat{J} tends to \varnothing in probability

Asymptotic analysis - simple cases $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$

- If μ_n tends to infinity
 - \hat{w} tends to zero with probability tending to one
 - \hat{J} tends to \varnothing in probability
- If μ_n tends to $\mu_0 \in (0,\infty)$
 - \hat{w} converges to the minimum of $\frac{1}{2}(w \mathbf{w})^{\top}\mathbf{Q}(w \mathbf{w}) + \mu_0 \|w\|_1$
 - The sparsity and sign patterns may or may not be consistent
 - Possible to have sign consistency without regular consistency

Asymptotic analysis - simple cases $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$

- If μ_n tends to infinity
 - \hat{w} tends to zero with probability tending to one
 - \hat{J} tends to \varnothing in probability
- If μ_n tends to $\mu_0 \in (0,\infty)$
 - \hat{w} converges to the minimum of $\frac{1}{2}(w \mathbf{w})^{\top}\mathbf{Q}(w \mathbf{w}) + \mu_0 \|w\|_1$
 - The sparsity and sign patterns may or may not be consistent
 - Possible to have sign consistency without regular consistency
- If μ_n tends to zero faster than $n^{-1/2}$
 - \hat{w} converges in probability to ${\bf w}$
 - With probability tending to one, all variables are included

Asymptotic analysis $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$

- If μ_n tends to zero slower than $n^{-1/2}$
 - \hat{w} converges in probability to ${\bf w}$
 - the sign pattern converges to the one of the minimum of

$$\frac{1}{2}v^{\top}\mathbf{Q}v + v_{\mathbf{J}}^{\top}\operatorname{sign}(\mathbf{w}_{\mathbf{J}}) + \|v_{\mathbf{J}^{c}}\|_{1}$$

– The sign pattern is equal to ${\bf s}$ (i.e., sign consistency) if and only if

$$\|\mathbf{Q}_{\mathbf{J}^{c}\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leq 1$$

Consistency condition found by many authors: Yuan & Lin (2007),
 Wainwright (2006), Zhao & Yu (2007), Zou (2006)

Asymptotic analysis $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|\overline{Y} - \overline{X}w\|_2^2 + \mu_n \|w\|_1$

- If μ_n tends to zero slower than $n^{-1/2}$
 - \hat{w} converges in probability to ${\bf w}$
 - the sign pattern converges to the one of the minimum of

$$\frac{1}{2}v^{\top}\mathbf{Q}v + v_{\mathbf{J}}^{\top}\operatorname{sign}(\mathbf{w}_{\mathbf{J}}) + \|v_{\mathbf{J}^{c}}\|_{1}$$

– The sign pattern is equal to ${\bf s}$ (i.e., sign consistency) if and only if

$$\|\mathbf{Q}_{\mathbf{J}^{c}\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leq 1$$

- Consistency condition found by many authors: Yuan & Lin (2007),
 Wainwright (2006), Zhao & Yu (2007), Zou (2006)
- Disappointing?

Asymptotic analysis - new results

- If μ_n tends to zero at rate $n^{-1/2}$, i.e., $n^{1/2}\mu_n \rightarrow \nu_0 \in (0,\infty)$
 - \hat{w} converges in probability to ${\bf w}$
 - All (and only) patterns which are consistent with ${\bf w}$ on ${\bf J}$ are attained with positive probability

Asymptotic analysis - new results

- If μ_n tends to zero at rate $n^{-1/2}$, i.e., $n^{1/2}\mu_n \rightarrow \nu_0 \in (0,\infty)$
 - \hat{w} converges in probability to ${\bf w}$
 - All (and only) patterns which are consistent with ${\bf w}$ on ${\bf J}$ are attained with positive probability
 - **Proposition**: for any pattern $s \in \{-1, 0, 1\}^p$ such that $s_J \neq sign(w_J)$, there exist a constant $A(\mu_0) > 0$ such that

$$\log \mathbb{P}(\operatorname{sign}(\hat{w}) = s) \leqslant -nA(\mu_0) + O(n^{-1/2}).$$

- **Proposition**: for any sign pattern $s \in \{-1, 0, 1\}^p$ such that $s_J = \operatorname{sign}(\mathbf{w}_J)$, $\mathbb{P}(\operatorname{sign}(\hat{w}) = s)$ tends to a limit $\rho(s, \nu_0) \in (0, 1)$, and we have:

$$\mathbb{P}(\operatorname{sign}(\hat{w}) = s) - \rho(s, \nu_0) = O(n^{-1/2} \log n).$$

μ_n tends to zero at rate $n^{-1/2}$

- Summary of asymptotic behavior:
 - All relevant variables (i.e., the ones in ${\bf J})$ are selected with probability tending to one exponentially fast
 - All other variables are selected with strictly positive probability

μ_n tends to zero at rate $n^{-1/2}$

- Summary of asymptotic behavior:
 - All relevant variables (i.e., the ones in ${f J}$) are selected with probability tending to one exponentially fast
 - All other variables are selected with strictly positive probability
- If several datasets (with same distributions) are available, intersecting support sets would lead to the correct pattern with high probability

Bootstrap

- Given n i.i.d. observations $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$, $i = 1, \dots, n$
- m independent **bootstrap** replications: $k = 1, \ldots, m$,
 - ghost samples $(x_i^k, y_i^k) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \ldots, n$, sampled independently and uniformly at random with replacement from the n original pairs
- Each bootstrap sample is composed of *n* potentially (and usually) duplicated copies of the original data pairs
- Standard way of mimicking availability of several datasets (Efron & Tibshirani, 1998)

Bolasso algorithm

- m applications of the Lasso/Lars algorithm (Efron et al., 2004)
 - Intersecting supports of variables
 - Final estimation of \boldsymbol{w} on the entire dataset

Bolasso - Consistency result

• **Proposition**: Assume $\mu_n = \nu_0 n^{-1/2}$, with $\nu_0 > 0$. Then, for all m > 1, the probability that the Bolasso does not exactly select the correct model has the following upper bound:

$$\mathbb{P}(J \neq \mathbf{J}) \leqslant A_1 m e^{-A_2 n} + A_3 \frac{\log(n)}{n^{1/2}} + A_4 \frac{\log(m)}{m},$$

where A_1, A_2, A_3, A_4 are strictly positive constants.

- Valid even if the Lasso consistency is not satisfied
- \bullet Influence of $n,\ m$
- Could be improved?

Consistency of the Lasso/Bolasso - Toy example

 \bullet Log-odd ratios of the probabilities of selection of each variable vs. μ

Influence of the number of bootstrap replications

 Bolasso (red) and Lasso (black): probability of correct sign estimation vs. regularization parameter, m ∈ {2, 4, 8, 16, 32, 64, 128, 256}.

Comparison of several variable selection methods

• p = 64, averaged (over 32 replications) variable selection error = square distance between sparsity pattern indicator vectors.

Comparison of least-square estimation methods

- Different values of $\kappa = \|\mathbf{Q}_{\mathbf{J}^c \mathbf{J}} \mathbf{Q}_{\mathbf{J} \mathbf{J}}^{-1} \mathbf{s}_{\mathbf{J}} \|_{\infty}$.
- Performance is measured through mean squared prediction error (multiplied by 100).
- Toy examples
- Regularization parameter estimated by cross-validation

κ	0.93	1.20	1.42	1.28
Ridge	8.8 ± 4.5	4.9 ± 2.5	7.3 ± 3.9	8.1 ± 8.6
Lasso	7.6 ± 3.8	4.4 ± 2.3	4.7 ± 2.5	5.1 ± 6.5
Bolasso	5.4 ± 3.0	3.4 ± 2.4	3.4 ± 1.7	3.7 ± 10.2
Bagging	7.8 ± 4.7	4.6 ± 3.0	5.4 ± 4.1	5.8 ± 8.4
Bolasso-S	5.7 ± 3.8	3.0 ± 2.3	3.1 ± 2.8	3.2 ± 8.2

Comparison of least-square estimation methods

- UCI regression datasets
- Performance is measured through mean squared prediction error (multiplied by 100).
- Regularization parameter estimated by cross-validation

	Autompg	Imports	Machine	Housing
Ridge	18.6 ± 4.9	7.7 ± 4.8	5.8 ± 18.6	28.0 ± 5.9
Lasso	18.6 ± 4.9	7.8 ± 5.2	5.8 ± 19.8	28.0 ± 5.7
Bolasso	18.1 ± 4.7	20.7 ± 9.8	4.6 ± 21.4	26.9 ± 2.5
Bagging	18.6 ± 5.0	8.0 ± 5.2	6.0 ± 18.9	28.1 ± 6.6
Bolasso-S	17.9 ± 5.0	8.2 ± 4.9	$\boldsymbol{4.6 \pm 19.9}$	26.8 ± 6.4

Conclusion

- Detailed analysis of variable selection properties of bootstrapped Lasso
- Consistency with no *consistency conditions* on covariance matrices
- No additional free parameter
- Extensions
 - Allowing p to grow (e.g., Meinshausen & Yu, 2008)
 - Extensions to the group Lasso (Yuan & Lin, 2006, Bach, 2008)
 - Connections with other resampling methods