Bolasso: Model Consistent Lasso

Estimation through the Bootstrap
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1. Review of asymptotic properties of the Lasso
2. Bolasso : using the bootstrap for consistent model selection

3. Simulations



Lasso

e Goal: predict a response Y € R from X = (X1,...,X,)" € RP as a
linear function w'X, with w € RP

e Observations: independent and identically distributed (i.i.d.)

— data (z;,4;) ERP xR, 1=1,...,n
— given in the form of matrices Y € R™ and X € R"*P.

e Square loss function: 5= > " (y; —w'z;)? = 5=||Y — Xw|3
e |asso: Hél]&—nHY XszJFMnHw\h




Lasso

e Goal: predict a response Y € R from X = (X;,...,X,)" € RP as a

linear function w'X, with w € RP

e Observations: independent and identically distributed (i.i.d.)

— data (z;,y;,) ERP xR, 1=1,...,n
— given in the form of matrices Y € R and X € R"*P.

e Square loss function: %Z? (Y — —w'x;)? = %HY — Xwl|3
e |asso: Hélﬂgj—nHY XszJFMnHw\h

e Regularization by ||w||; leads to sparsity

— Many efficient algorithms, empirical evaluations and extensions

— Asymptotic analysis: does is actually work?



Asymptotic analysis

e Asymptotic set up

— data generated from linear model Y = X 'w + ¢
— w any minimizer of the Lasso problem
— number of observations n tends to infinity

e [hree types of consistency

— regular consistency: ||[w — w2 tends to zero in probability

— pattern consistency: the sparsity pattern J = {j, w; # 0} tends
to J = {j, w,; # 0} in probability

— sign consistency: the sign vector § = sign(w) tends to s = sign(w)
in probability

e NB: with our assumptions, pattern and sign consistencies are
equivalent once we have regular consistency



Assumptions for analysis

e Simplest assumptions (fixed p, large n):

1. Sparse linear model: Y = X "w + ¢, ¢ independent from X, and
W sparse.

2. Finite cumulant generating functions Eexp(a|/X||3) and
E exp(ag?) finite for some a > 0.
3. Invertible matrix of second order moments Q = E(X X ") ¢ RP*P.



Asymptotic analysis - simple cases
minyere 5,]|Y — Xw|3 + pafwlls

o If 11, tends to infinity

— W tends to zero with probability tending to one
— J tends to & in probability
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o If 1, tends to infinity
— w tends to zero with probability tending to one
— J tends to @ in probability

o If i, tends to ug € (0,00)

— W converges to the minimum of (w — w) ' Q(w — w) + pollw]|1
— The sparsity and sign patterns may or may not be consistent
— Possible to have sign consistency without regular consistency



Asymptotic analysis - simple cases
minyere 5,]|Y — Xw|3 + pafwlls

o If 1, tends to infinity

— w tends to zero with probability tending to one
— J tends to & in probability

o If i, tends to ug € (0, 00)

— W converges to the minimum of 2(w — w) ' Q(w — w) + pollw]|1
— The sparsity and sign patterns may or may not be consistent
— Possible to have sign consistency without regular consistency

e If 1, tends to zero faster than n~1/2

— W converges in probability to w
— With probability tending to one, all variables are included



Asymptotic analysis
itz [V — X[ + onll0ll
e If 11, tends to zero slower than n~'/2

— W converges in probability to w
— the sign pattern converges to the one of the minimum of

%UTQU + vy sign(wy) + ||vge|x
— The sign pattern is equal to s (i.e., sign consistency) if and only if

1Que3Qyy sign(wy) oo < 1

— Consistency condition found by many authors: Yuan & Lin (2007),
Wainwright (2006), Zhao & Yu (2007), Zou (2006)



Asymptotic analysis
itz [V — X[ + onll0ll
e If 11, tends to zero slower than n~'/2

— W converges in probability to w
— the sign pattern converges to the one of the minimum of

%UTQU + vy sign(wy) + ||vge|x
— The sign pattern is equal to s (i.e., sign consistency) if and only if

1Q1c1Q;; sign(wy)lleo < 1

— Consistency condition found by many authors: Yuan & Lin (2007),
Wainwright (2006), Zhao & Yu (2007), Zou (2006)
— Disappointing?



Asymptotic analysis - new results

1/2

o If 1, tends to zero at rate n=1/2, i.e., n'/?u, — vy € (0,0)

— W converges in probability to w
— All (and only) patterns which are consistent with w on J are
attained with positive probability



Asymptotic analysis - new results

1/2

o If 1, tends to zero at rate n=1/2, i.e., n'/?u, — vy € (0,00)

— W converges in probability to w

— All (and only) patterns which are consistent with w on J are
attained with positive probability

— Proposition: for any pattern s € {—1,0,1}? such that s; #
sign(wy), there exist a constant A(ug) > 0 such that

log P(sign(w) = s) < —nd(ug) + O(n~1/?).

— Proposition: for any sign pattern s € {—1,0,1}? such that
sy = sign(wy), P(sign(w) = s) tends to a limit p(s,vg) € (0,1),
and we have:

P(sign(w) = s) — p(s, ) = O(n"?logn).



11, tends to zero at rate n /2

e Summary of asymptotic behavior:

— All relevant variables (i.e., the ones in J) are selected with
probability tending to one exponentially fast
— All other variables are selected with strictly positive probability



11, tends to zero at rate n /2

e Summary of asymptotic behavior:

— All relevant variables (i.e., the ones in J) are selected with
probability tending to one exponentially fast
— All other variables are selected with strictly positive probability

o If several datasets (with same distributions) are available, intersecting
support sets would lead to the correct pattern with high probability

Dataset1  Jj
Dataset2 b 1

Dataset 3 B

Dataset4  Jy —— =
Dataset 5 N 1 —

| nter section




Bootstrap

e Given n i.i.d. observations (z;,7;) CR* xR, i=1,...,n
e m independent bootstrap replications: £k =1,....,m,
— ghost samples (x%,y¥) € R’ x R, ¢ = 1,...,n, sampled

independently and uniformly at random with replacement from
the n original pairs

e Each bootstrap sample is composed of n potentially (and usually)
duplicated copies of the original data pairs

e Standard way of mimicking availability of several datasets (Efron &
Tibshirani, 1998)



Bolasso algorithm

e m applications of the Lasso/Lars algorithm (Efron et al., 2004)

— Intersecting supports of variables
— Final estimation of w on the entire dataset

Bootstrapl  J

Bootstrap2 b 1

Bootstrap3  J3

Bootstrap4  J 1 ] —

Bootstraps kg 1 /=

| nter section




Bolasso - Consistency result

Proposition: Assume u,, = von~ /2, with v9 > 0. Then, for all
m > 1, the probability that the Bolasso does not exactly select the
correct model has the following upper bound:

I I
oE(n) ,  Jog(m)
n m

)

P(J #J) < Ayme 2" + Ag

where A1, Ay, A3, A4 are strictly positive constants.

e Valid even if the Lasso consistency is not satisfied

e Influence of n, m

e Could be improved?



Consistency of the Lasso/Bolasso - Toy example

e | og-odd ratios of the probabilities of selection of each variable vs. u
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Consistency condition satisfied not satisfied



Influence of the number of bootstrap replications

e Bolasso (red) and Lasso (black): probability of correct sign estimation

vs. regularization parameter, m € {2,4, 8,16, 32,64, 128,256}
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Comparison of several variable selection methods

e p = 64, averaged (over 32 replications) variable selection error =
square distance between sparsity pattern indicator vectors.
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Comparison of least-square estimation methods

o Different values of x = ||Q3c1Q7; 83| 0o

e Performance is measured through mean squared prediction error
(multiplied by 100).

e Toy examples

e Regularization parameter estimated by cross-validation

K 0.93 1.20 1.42 1.28
Ridge 88+45 |49+25 |73+3.9 |81+8.6
Lasso 76+38 |44+£23 |4.7+£25 |51+6.5
Bolasso 54+30|34+24 |34+1.7 | 3.7+£10.2
Bagging | 7.8 4.7 |464+3.0 [54+4.1 |58+£84
Bolasso-S | 5.7+3.8 [3.0+23|3.1+28|3.2+8.2




Comparison of least-square estimation methods

e UCI regression datasets

e Performance is measured through mean squared prediction error
(multiplied by 100).

e Regularization parameter estimated by cross-validation

Autompg | Imports Machine Housing
Ridge 186449 | 7.7+£4.8 | 58+18.6 | 28.045.9
Lasso 186 +£49 | 7.8£5.2 |58+£19.8 |28.0£5.7
Bolasso 181 4.7 | 20.7+£9.8 | 46+£21.4 |26.9£2.5
Bagging | 18.6£5.0 | 8.0%£5.2 |6.0£18.9 | 28.1%6.6
Bolasso-S | 17.9+5.0|824+49 [46+19.9|26.8+6.4




Conclusion

e Detailed analysis of variable selection properties of bootstrapped
Lasso

e Consistency with no consistency conditions on covariance matrices
e No additional free parameter

e Extensions

— Allowing p to grow (e.g., Meinshausen & Yu, 2008)
— Extensions to the group Lasso (Yuan & Lin, 2006, Bach, 2008)
— Connections with other resampling methods



