
Learning Graphical Models
with Mercer Kernels

Francis R. Bach
Division of Computer Science

University of California
Berkeley, CA 94720

fbach@cs.berkeley.edu

Michael I. Jordan
Computer Science and Statistics

University of California
Berkeley, CA 94720

jordan@cs.berkeley.edu

Abstract

We present a class of algorithms for learning the structure of graphical
models from data. The algorithms are based on a measure known as
the kernel generalized variance (KGV), which essentially allows us to
treat all variables on an equal footing as Gaussians in a feature space
obtained from Mercer kernels. Thus we are able to learn hybrid graphs
involving discrete and continuous variables of arbitrary type. We explore
the computational properties of our approach, showing how to use the
kernel trick to compute the relevant statistics in linear time. We illustrate
our framework with experiments involving discrete and continuous data.

1 Introduction

Graphical models are a compact and ef£cient way of representing a joint probability distri-
bution of a set of variables. In recent years, there has been a growing interest in learning
the structure of graphical models directly from data, either in the directed case [1, 2, 3, 4]
or the undirected case [5]. Current algorithms deal reasonably well with models involv-
ing discrete variables or Gaussian variables having only limited interaction with discrete
neighbors. However, applications to general hybrid graphs and to domains with general
continuous variables are few, and are generally based on discretization.

In this paper, we present a general framework that can be applied to any type of variable.
We make use of a relationship between kernel-based measures of “generalized variance”
in a feature space, and quantities such as mutual information and pairwise independence in
the input space. In particular, suppose that each variable xi in our domain is mapped into a
high-dimensional space Fi via a map Φi. Let φi = Φi(xi) and consider the set of random
variables {φi} in feature space. Suppose that we compute the mean and covariance matrix
of these variables and consider a set of Gaussian variables, {φGi }, that have the same mean
and covariance. We showed in [6] that a canonical correlation analysis of {φGi } yields a
measure, known as “kernel generalized variance,” that characterizes pairwise independence
among the original variables {xi}, and is closely related to the mutual information among
the original variables. This link led to a new set of algorithms for independent component
analysis. In the current paper we pursue this idea in a different direction, considering the
use of the kernel generalized variance as a surrogate for the mutual information in model
selection problems. Effectively, we map data into a feature space via a set of Mercer
kernels, with different kernels for different data types, and treat all data on an equal footing

as Gaussian in feature space.

We brie¤y review the structure-learning problem in Section 2, and in Section 4 and Sec-
tion 5 we show how classical approaches to the problem, based on MDL/BIC and condi-
tional independence tests, can be extended to our kernel-based approach. In Section 3 we
show that by making use of the “kernel trick” we are able to compute the sample covari-
ance matrix in feature space in linear time in the number of samples. Section 6 presents
experimental results.

2 Learning graphical models

Structure learning algorithms generally use one of two equivalent interpretations of graphi-
cal models [7]: the compact factorization of the joint probability distribution function leads
to local search algorithms while conditional independence relationships suggest methods
based on conditional independence tests.

Local search. In this approach, structure learning is explicitly cast as a model selection
problem. For directed graphical models, in the MDL/BIC setting of [2], the likelihood is
penalized by a model selection term that is equal to 1

2 logN times the number of param-
eters necessary to encode the local distributions. The likelihood term can be decomposed
and expressed as follows: JML =

∑

i JML(i, πi), with JML(i, πi) = −NI(xi, xπi
),

where πi is the set of parents of node i in the graph to be scored and I(xi, xπi
) is the

empirical mutual information between the variable xi and the vector xπi
. These mutual in-

formation terms and the number of parameters for each local conditional distributions are
easily computable in discrete models, as well as in Gaussian models. Alternatively, in a full
Bayesian framework, under assumptions about parameter independence, parameter modu-
larity, and prior distributions (Dirichlet for discrete networks, inverse Wishart for Gaussian
networks), the log-posterior probability of a graph given the data can be decomposed in a
similar way [1, 3].

Given that our approach is based on the assumption of Gaussianity in feature space, we
could base our development on either the MDL/BIC approach or the full Bayesian ap-
proach. In this paper, we extend the MDL/BIC approach, as detailed in Section 4.

Conditional independence tests. In this approach, conditional independence tests are
performed to constrain the structure of possible graphs. For undirected models, going
from the graph to the set of conditional independences is relatively easy: there is an edge
between xi and xj if and only if xi and xj are independent given all other variables [7].
In Section 5, we show how our approach could be used to perform independence tests and
learn an undirected graphical model. We also show how this approach can be used to prune
the search space for the local search of a directed model.

3 Gaussians in feature space

In this section, we introduce our Gaussianity assumption and show how to approximate the
mutual information, as required for the structure learning algorithms.

3.1 Mercer Kernels

A Mercer kernel on a space X is a function k(x, y) from X 2 to R such that for any set of
points {x1, . . . , xN} in X , the N×N matrix K, de£ned by Kij = k(xi, xj), is positive
semide£nite. The matrix K is usually referred to as the Gram matrix of the points {x i}.
Given a Mercer kernel k(x, y), it is possible to £nd a space F and a map Φ from X to F ,
such that k(x, y) is the dot product in F between Φ(x) and Φ(y) (see, e.g., [8]). The space
F is usually referred to as the feature space and the map Φ as the feature map. We will use

the notation f>g to denote the dot product of f and g in feature space F . We also use the
notation f> to denote the representative of f in the dual space of F .

For a discrete variable which takes values in {1, . . . , d}, we use the trivial kernel k(x, y) =
δx=y , which corresponds to a feature space of dimension d. The feature map is Φ(x) =
(δx=1, . . . , δx=d). Note that this mapping corresponds to the usual embedding of a multi-
nomial variable of order d in the vector space Rd.

For continuous variables, we use the Gaussian kernel k(x, y) = e−(x−y)2/2σ2

. The feature
space has in£nite dimension, but as we will show, the data only occupy a small linear
manifold and this linear subspace can be determined adaptively in linear time. Note that
an alternative is to use the kernel k(x, y) = xy, which corresponds to simply modeling the
data as Gaussian in input space.

3.2 Notation

Let x1, . . . , xm be m random variables with values in spaces X1, . . . ,Xm. Let us assign
a Mercer kernel ki to each of the input spaces Xi, with feature space Fi and feature map
Φi. The random vector of feature images φ = (φ1, . . . , φm) , (Φ1(x1), . . . ,Φm(xm))
has a covariance matrix C de£ned by blocks, with block Cij being the covariance matrix
between φi = Φi(xi) and φj = Φj(xj). Let φG = (φG1 , . . . , φ

G
m) denote a jointly Gaussian

vector with the same mean and covariance as φ = (φ1, . . . , φm). The vector φG will be
used as the random vector on which the learning of graphical model structure is based.

Note that the suf£cient statistics for this vector are {Φi(xi),Φi(xi)Φj(xj)
>}, and are in-

herently pairwise. No dependency involving strictly more than two variables is modeled
explicitly, which makes our scoring metric easy to compute. In Section 6, we present em-
pirical evidence that good models can be learned using only pairwise information.

3.3 Computing sample covariances using kernel trick

We are given a random sample {x1, . . . , xN} of elements of X1 × . . .× Xm. By mapping
into the feature spaces, we de£ne Nm elements φki = Φi(x

k
i). We assume that for each i

the data in feature space {φ1
i , . . . , φ

N
i } have been centered, i.e.,

∑N
k=1 φ

k
i = 0. The sample

covariance matrix Ĉij is then equal to Ĉij = 1
N

∑N
k=1 φ

k
i (φ

k
j)
>. Note that a Gaussian with

covariance matrix Ĉ has zero variance along directions that are orthogonal to the images
of the data. Consequently, in order to compute the mutual information, we only need to
compute the covariance matrix of the projection of φ onto the linear span of the data, that
is, for all i, j, s, t:

(φsi)
>Ĉij φ

t
j =

1

N

N
∑

k=1

(φsi)
>φki (φ

k
j)
>φtj =

1

N

N
∑

k=1

(Ki)sk(Kj)tk =
1

N
δ>s KiKjδt, (1)

where δs denotes theN×1 vectors with only zeros except at position s, and Ki is the Gram
matrix of the centered points, the so-called centered Gram matrix of the i-th component,
de£ned from the Gram matrix Li of the original (non-centered) points as Ki = (I −
1
N 1) Li (I −

1
N 1), where 1 is a N × N matrix composed of ones [8]. From Eq. (1), we

see that the sample covariance matrix of φ in the “data basis” has blocks 1
NKiKj .

3.4 Regularization

When the feature space has in£nite dimension (as in the case of a Gaussian kernel on R),
then the covariance we are implicitly £tting with a kernel method has an in£nite number
of parameters. In order to avoid over£tting and control the capacity of our models, we

regularize by smoothing the Gaussian φG by another Gaussian with small variance (for
an alternative interpretation and further details, see [6]). Let κ be a small constant. We
add to φG an isotropic Gaussian with covariance 2κI in an orthonormal basis. In the data
basis, the covariance of this Gaussian is exactly the block diagonal matrix with blocks
2κKi. Consequently, our regularized Gaussian covariance C̃ has blocks C̃ij = 1

NKiKj if
i 6= j and C̃ii = 1

NK
2
i + 2κKi. Since κ is a small constant, we can use C̃ii ≈ 1

N (Ki +

NκI)2 = 1
NK

2
i + 2κKi + O(κ2), which leads to a more compact correlation matrix

R, with blocks Rij = RiRj for i 6= j, and Rii = I , where Ri = Ki(Ki + NκI)−1.
These cross-correlation matrices have exact dimension N , but since the eigenvalues of
Ki are softly thresholded to zero or one by the regularization, the effective dimension is
di = tr(Ki(Ki + NκI)−1). This dimensionality di will be used as the dimension of our
Gaussian variables for the MDL/BIC criterion, in Section 4.

3.5 Ef£cient implementation

Direct manipulation of N × N matrices would lead to algorithms that scale as O(N 3).
Gram matrices, however, are known to be well approximated by matrices of low rank M .
The approximation is exact when the feature space has £nite dimension d (e.g., with dis-
crete kernels), and M can be chosen less than d. In the case of continuous data with the
Gaussian kernel, we have shown that M can be chosen to be upper bounded by a constant
independent of N [6]. Finding a low-rank decomposition can thus be done through incom-
plete Cholesky decomposition in linear time in N (for a detailed treatment of this issue,
see [6]).

Using the incomplete Cholesky decomposition, for each matrix Ki we obtain the factor-
ization Ki ≈ GiG

>
i , where Gi is an N×Mi matrix with rank Mi, where Mi ¿ N . We

perform a singular value decomposition of Gi to obtain an N×Mi matrix Ui with orthog-
onal columns (i.e., such that U>i Ui = I), and an Mi×Mi diagonal matrix Λi such that
Ki ≈ GiG

>
i = UiΛiU

>
i .

We have Ri = (Ki + NκI)−1Ki = UiDiU
>
i , where where Di is the diagonal matrix

obtained from the diagonal matrix Λi by applying the function λ 7→ λ/(λ + Nκ) to its
elements. Thus φGi has a correlation matrix with blocks Rij = DiU

>
i UjDj in the new

basis de£ned by the columns of the matrices Ui, and these blocks will be used to compute
the various mutual information terms.

3.6 KGV-mutual information

We now show how to compute the mutual information between φG1 , . . . , φ
G
m, and we make

a link with the mutual information of the original variables x1, . . . , xm.

Let y1, . . . , ym be m jointly Gaussian random vectors with covariance matrix Σ, de£ned
in terms of blocks Σij = cov(yi, yj). The mutual information between the variables
y1, . . . , ym is equal to (see, e.g., [9]):

I(y1, . . . , ym) = −
1

2
log

|Σ|

|Σ11| · · · |Σmm|
, (2)

where |A| denotes the determinant of the matrix A. The ratio of determinants in this ex-
pression is usually referred to as the generalized variance, and is independent of the basis
which is chosen to compute Σ.

Following Eq. (2), the mutual information between φG1 , . . . , φ
G
m, which depends solely on

the distribution of x, is equal to

IK(x1, . . . , xm) = −
1

2
log

|R|

|R11| · · · |Rmm|
. (3)

We refer to this quantity as the KGV -mutual information (KGV stands for kernel gen-
eralized variance). It is always nonnegative and can also be de£ned for partitions of the
variables into subsets, by simply partitioning the correlation matrix R accordingly.

The KGV has an interesting relationship to the mutual information among the original
variables, x1, . . . , xm. In particular, as shown in [6], in the case of two discrete variables,
the KGV is equal to the mutual information up to second order, when expanding around the
manifold of distributions that factorize in the trivial graphical model (i.e. with independent
components). Moreover, in the case of continuous variables, when the width σ of the
Gaussian kernel tend to zero, the KGV necessarily tends to a limit, and also provides a
second-order expansion of the mutual information around independence.

This suggests that the KGV-mutual information might also provide a useful,
computationally-tractable surrogate for the mutual information more generally, and in par-
ticular substitute for mutual information terms in objective functions for model selection,
where even a rough approximation might suf£ce to rank models. In the remainder of the
paper, we investigate this possibility empirically.

4 Structure learning using local search

In this approach, an objective function J : G 7→ R measures the goodness of £t of the
directed graphical model G, and is minimized. The MDL/BIC objective function for our
Gaussian variables is easily derived. Let πi = πi(G) be the set of parents of node i in G.
We have J(G) =

∑

i J(i, πi), with

J(i, πi) =
N

2
log
|R{i}∪πi,{i}∪πi

|

|Rπi,πi
||Ri,i|

+
dπi

di
2

logN, (4)

where dπi
=

∑

j∈πi(G) dj . Given the scoring metric J(G), we are faced with an NP-
hard optimization problem on the space of directed acyclic graphs [10]. Because the score
decomposes as a sum of local scores, local greedy search heuristics are usually exploited.
We adopt such heuristics in our simulations, using hillclimbing. It is also possible to use
Markov-chain Monte Carlo (MCMC) techniques to sample from the posterior distribution
de£ned by P (G|D) ∝ exp(−J(G)) within our framework; this would in principle allow
us to output several high-scoring networks.

5 Conditional independence tests using KGV

In this section, we indicate how conditional independence tests can be performed using the
KGV, and show how these tests can be used to estimate Markov blankets of nodes.

Likelihood ratio criterion. In the case of marginal independence, the likelihood ratio
criterion is exactly equal to a power of the mutual information (see, e.g, [11] in the case
of Gaussian variables). This generalizes easily to conditional independence, where the
likelihood ratio criterion to test the conditional independence of y and z given x is equal to
exp[−N(I(x, y, z)−I(x, y)−I(x, z))], where N is the number of samples and the mutual
information terms are computed using empirical distributions.

Applied to our Gaussian variables φG, we obtain a test statistic based on linear combination
of KGV-mutual information terms: IK(x, y, z)−IK(x, y)−IK(x, z). Theoretical thresh-
old values exist for conditional independence tests with Gaussian variables [7], but instead,
we prefer to use the value given by the MDL/BIC criterion, i.e., 1

2
logN
N dydz (where dy and

dz are the dimensions of the Gaussians), so that the same decision regarding conditional
independence is made in the two approaches (scoring metric or independence tests) [12].

Markov blankets. For Gaussian variables, it is well-known that some conditional indepen-
dencies can be read out from the inverse of the joint covariance matrix [7]. More precisely,

If y1, . . . , ym are m jointly Gaussian random vectors with dimensions di, and with covari-
ance matrix Σ de£ned in terms of blocks Σij = cov(yi, yj), then yi and yj are independent
given all the other variables if and only if the block (i, j) of K = Σ−1 is equal to zero.
Thus in the sample case, we can read out the edges of the undirected model directly fromK,

using the test statistic lij = − 1
2 log

|Kjj−KjiK
−1

ii
Kij |

|Kjj |
with the threshold value didj

2
logN
N .

Applied to the variables yi = φGi and for all pairs of nodes, we can £nd an undirected
graphical model in polynomial time, and thus a set of Markov blankets [4].

We may also be interested in constructing a directed model from the Markov blankets;
however, this transformation is not always possible [7]. Consequently, most approaches
use heuristics to de£ne a directed model from a set of conditional independencies [4, 13].
Alternatively, as a pruning step in learning a directed graphical model, the Markov blanket
can be safely used by only considering directed models whose moral graph is covered by
the undirected graph.

6 Experiments

We compare the performance of three hillclimbing algorithms for directed graphical mod-
els, one using the KGV metric (with κ = 0.01 and σ = 1), one using the MDL/BIC metric
of [2] and one using the BDe metric of [1] (with equivalent prior sample size N ′ = 1).

When the domain includes continuous variables, we used two discretization strategies; the
£rst one is to use K-means with a given number of clusters, the second one uses the adaptive
discretization scheme for the MDL/BIC scoring metric of [14]. Also, to parameterize the
local conditional probabilities we used mixture models (mixture of Gaussians, mixture
of softmax regressions, mixture of linear regressions), which provide enough ¤exibility
at reasonable cost. These models were £tted using penalized maximum likelihood, and
invoking the EM algorithm whenever necessary. The number of mixture components was
less than four and determined using the minimum description length (MDL) principle.

When the true generating network is known, we measure the performance of algorithms by
the KL divergence to the true distribution; otherwise, we report log-likelihood on held-out
test data. We use as a baseline the log-likelihood for the maximum likelihood solution to a
model with independent components and multinomial or Gaussian densities as appropriate
(i.e., for discrete and continuous variables respectively).

Toy examples. We tested all three algorithms on a very simple generative model on m
binary nodes, where nodes 1 through m− 1 point to node m. For each assignment y of the
m − 1 parents, we set p(xm = 1|y) by sampling uniformly at random in [0, 1]. We also
studied a linear Gaussian generative model with the identical topology, with regression
weights chosen uniformly at random in [−1, 1]. We generated N = 1000 samples.

We report average results (over 20 replications) in Figure 1 (left), for m ranging from 1
to 10. We see that on the discrete networks, the performance of all three algorithms is
similar, degrading slightly as m increases. On the linear networks, on the other hand, the
discretization methods degrade signi£cantly as m increases. The KGV approach is the
only approach of the three capable of discovering these simple dependencies in both kinds
of networks.

Discrete networks. We used three networks commonly used as benchmarks1, the ALARM
network (37 variables), the INSURANCE network (27 variables) and the HAILFINDER net-
work (56 variables). We tested various numbers of samples N . We performed 40 repli-
cations and report average results in Figure 1 (right). We see that the performance of our
metric lies between the (approximate Bayesian) BIC metric and the (full Bayesian) BDe

1Available at http://www.cs.huji.ac.il/labs/compbio/Repository/.

2 4 6 8 10
0

0.5

1

m

2 4 6 8 10
0

0.5

1

m

Network N (×10
3) BIC BDe KGV

ALARM 0.5 0.85 0.47 0.66
1 0.42 0.25 0.39
4 0.17 0.07 0.15

16 0.04 0.02 0.06
INSURANCE 0.5 1.84 0.92 1.53

1 0.93 0.52 0.83
4 0.27 0.15 0.40

16 0.05 0.04 0.19
HAILFINDER 0.5 2.98 2.29 2.99

1 1.70 1.32 1.77
4 0.63 0.48 0.63

16 0.25 0.17 0.32

Figure 1: (Top left) KL divergence vs. size of discrete network m: KGV (plain), BDe
(dashed), MDL/BIC (dotted). (Bottom left) KL divergence vs. size of linear Gaussian
network: KGV (plain), BDe with discretized data (dashed), MDL/BIC with discretized
data (dotted x), MDL/BIC with adaptive discretization (dotted +). (Right) KL divergence
for discrete network benchmarks.

Network N D C d-5 d-10 KGV
ABALONE 4175 1 8 10.68 10.53 11.16
VEHICLE 846 1 18 21.92 21.12 22.71
PIMA 768 1 8 3.18 3.14 3.30
AUSTRALIAN 690 9 6 5.26 5.11 5.40
BREAST 683 1 10 15.00 15.03 15.04
BALANCE 625 1 4 1.97 2.03 1.88
HOUSING 506 1 13 14.71 14.25 14.16
CARS1 392 1 7 6.93 6.58 6.85
CLEVE 296 8 6 2.66 2.57 2.68
HEART 270 9 5 1.34 1.36 1.32

Table 1: Performance for hybrid networks. N is the number of samples, and D and C
are the number of discrete and continuous variables, respectively. The best performance in
each row is indicated in bold font.

metric. Thus the performance of the new metric appears to be competitive with standard
metrics for discrete data, providing some assurance that even in this case pairwise suf£-
cient statistics in feature space seem to provide a reasonable characterization of Bayesian
network structure.

Hybrid networks. It is the case of hybrid discrete/continuous networks that is our principal
interest—in this case the KGV metric can be applied directly, without discretization of the
continuous variables. We investigated performance on several hybrid datasets from the
UCI machine learning repository, dividing them into two subsets, 4/5 for training and 1/5
for testing. We also log-transformed all continuous variables that represent rates or counts.
We report average results (over 10 replications) in Table 1 for the KGV metric and for the
BDe metric—continuous variables are discretized using K-means with 5 clusters (d-5) or
10 clusters (d-10). We see that although the BDe methods perform well in some problems,
their performance overall is not as consistent as that of the KGV metric.

7 Conclusion

We have presented a general method for learning the structure of graphical models, based
on treating variables as Gaussians in a high-dimensional feature space. The method seam-
lessly integrates discrete and continuous variables in a uni£ed framework, and can provide

improvements in performance when compared to approaches based on discretization of
continuous variables.

The method also has appealing computational properties; in particular, the Gaussianity as-
sumption enables us make only a single pass over the data in order to compute the pairwise
suf£cient statistics. The Gaussianity assumption also provides a direct way to approxi-
mate Markov blankets for undirected graphical models, based on the classical link between
conditional independence and zeros in the precision matrix.

While the use of the KGV as a scoring metric is inspired by the relationship between the
KGV and the mutual information, it must be emphasized that this relationship is a local one,
based on an expansion of the mutual information around independence. While our empir-
ical results suggest that the KGV is also an effective surrogate for the mutual information
more generally, further theoretical work is needed to provide a deeper understanding of the
KGV in models that are far from independence.

Finally, our algorithms have free parameters, in particular the regularization parameter and
the width of the Gaussian kernel for continuous variables. Although the performance is
empirically robust to the setting of these parameters, learning those parameters from data
would not only provide better and more consistent performance, but it would also provide
a principled way to learn graphical models with local structure [15].

Acknowledgments

The simulations were performed using Kevin Murphy’s Bayes Net Toolbox for MATLAB.
We would like to acknowledge support from NSF grant IIS-9988642, ONR MURI N00014-
00-1-0637 and a grant from Intel Corporation.

References

[1] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combina-
tion of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

[2] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL
principle. Computational Intelligence, 10(4):269–293, 1994.

[3] D. Geiger and D. Heckerman. Learning Gaussian networks. In Proc. UAI, 1994.

[4] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.

[5] S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty. Inducing features of random £elds. IEEE
Trans. PAMI, 19(4):380–393, 1997.

[6] F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine
Learning Research, 3:1–48, 2002.

[7] S. L. Lauritzen. Graphical Models. Clarendon Press, 1996.

[8] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

[9] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley & Sons, 1991.

[10] D. M. Chickering. Learning Bayesian networks is NP-complete. In Learning from Data: Arti-
£cial Intelligence and Statistics 5. Springer-Verlag, 1996.

[11] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley & Sons, 1984.

[12] R. G. Cowell. Conditions under which conditional independence and scoring methods lead to
identical selection of Bayesian network models. In Proc. UAI, 2001.

[13] D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In Adv. NIPS
12, 2000.

[14] N. Friedman and M. Goldszmidt. Discretizing continuous attributes while learning Bayesian
networks. In Proc. ICML, 1996.

[15] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In Learning
in Graphical Models. MIT Press, 1998.

