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Abstract

Receiver Operating Characteristic (ROC)
curves are a standard way to display the per-
formance of a set of binary classifiers for all
feasible ratios of the costs associated with
false positives and false negatives. For lin-
ear classifiers, the set of classifiers is typically
obtained by training once, holding constant
the estimated slope and then varying the in-
tercept to obtain a parameterized set of clas-
sifiers whose performances can be plotted in
the ROC plane. In this paper, we consider
the alternative of varying the asymmetry of
the cost function used for training. We show
that the ROC curve obtained by varying the
intercept and the asymmetry—and hence the
slope—always outperforms the ROC curve
obtained by varying only the intercept. In
addition, we present a path-following algo-
rithm for the support vector machine (SVM)
that can compute efficiently the entire ROC
curve, that has the same computational prop-
erties as training a single classifier. Finally,
we provide a theoretical analysis of the rela-
tionship between the asymmetric cost model
assumed when training a classifier and the
cost model assumed in applying the classifier.
In particular, we show that the mismatch
between the step function used for testing
and its convex upper bounds usually used for
training leads to a provable and quantifiable
difference around extreme asymmetries.

1 INTRODUCTION

Receiver Operating Characteristic (ROC) analysis has
seen increasing attention in the recent statistics and

∗This work was done during a summer internship at
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machine-learning literature (Pepe, 2000, Provost and
Fawcett, 2001, Flach, 2003). The ROC is a represen-
tation of choice for displaying the performance of a
classifier when the costs assigned by end users to false
positives and false negatives are not known at the time
of training. For example, when training a classifer for
identifying cases of undesirable unsolicited email, end
users may have different preferences about the likeli-
hood of a false negative and false positive. The ROC
curve for such a classifier reveals the ratio of false neg-
atives and positives at different probability thresholds
for classifying an email message as unsolicited or nor-
mal email.

In this paper, we consider linear binary classifica-
tion of points in an Euclidean space—noting that it
can be extended in a straightforward manner to non-
linear classification problems by using Mercer ker-
nels (Schölkopf and Smola, 2002). That is, given data
x ∈ R

d, d > 1, we consider classifiers of the form
f(x) = sign(w>x+ b), where w ∈ R

d and b ∈ R are re-
ferred to as the slope and the intercept. To date, ROC
curves have been usually constructed by training once,
holding constant the estimated slope and varying the
intercept to obtain the curve. In this paper, we show
that, while the latter procedure appears to be the most
practical thing to do, it may lead to classifiers with
poor performance in some parts of the ROC curve.

The crux of our approach is that we allow the asym-
metry of the cost function to vary—i.e., we vary the
ratio of the cost of a false positive and the cost of a
false negative. For each value of the ratio, we obtain
a different slope and intercept, each optimized for this
ratio. In a naive implementation, varying the asymme-
try would require a retraining of the classifier for each
point of the ROC curve, which would be computation-
ally expensive. In Section 3.1, we present an algorithm
that can compute the solution of an SVM (Schölkopf
and Smola, 2002) for all possible costs of false posi-
tives and false negatives, with the same computational
complexity as obtaining the solution for only one cost



function. The algorithm extends to asymmetric costs
the algorithm of Hastie et al. (2005) and is based on
path-following techniques that take advantage of the
piecewise linearity of the path of optimal solutions.
In Section 3.2, we show how the path-following algo-
rithm can be used to obtain the best possible ROC
curve (in expectation). In particular, by allowing both
the asymmetry and the intercept to vary, we can ob-
tain provably better ROC curves than by methods that
simply vary the intercept.

In Section 4, we provide a theoretical analysis of the
link between the asymmetry of costs assumed in train-
ing a classifier and the asymmetry desired in its appli-
cation. In particular, we show that—even in the popu-
lation (i.e., infinite sample) case—the use of a training
loss function which is a convex upper bound on the
true or testing loss function (a step function) creates
classifiers with sub-optimal accuracy. We quantify this
problem around extreme asymmetries for several clas-
sical convex-upper-bound loss functions—the square
loss and the erf loss, an approximation of the logistic
loss based on normal cumulative distribution functions
(also referred to as the “error function”, and usually
abbreviated as erf). The analysis is carried through
for Gaussian and mixture of Gaussian class-conditional
distributions (see Section 4 for more details). As we
shall see, the consequences of the potential mismatch
between the cost functions assumed in testing versus
training underscore the value of using the algorithm
that we introduce in Section 4.3. Even when costs are
known (i.e., when only one point on the ROC curve
is needed), the classifier resulting from our approach
which builds the entire ROC curve is never less accu-
rate and can be more accurate than one trained with
the known costs using a convex-upper-bound loss func-
tion.

2 PROBLEM OVERVIEW

Given data x ∈ R
d and labels y ∈ {−1, 1}, we consider

linear classifiers of the form f(x) = sign(w>x + b),
where w is the slope of the classifier and b the in-
tercept. A classifier is determined by the parameters
(w, b) ∈ R

d+1. In Section 2.1, we introduce notation
and definitions; in Section 2.2, we lay out the necessary
concepts of ROC analysis. In Section 2.3, we describe
how these classifiers and ROC curves are typically ob-
tained from data.

2.1 ASYMMETRIC COST AND LOSS
FUNCTIONS

Positive (resp. negative) examples are those for which
y = 1 (resp. y = −1). The two types of misclassifi-
cation, false positives and false negatives, are assigned

two different costs, and the total expected cost is equal
to

R(C+, C−, w, b) = C+P{w
>x+ b < 0, y = 1}

+C−P{w
>x+ b > 0, y = −1}

If we let φ0−1(u) = 1u<0 be the 0-1 loss, we can write
the expected cost as

R(C+, C−, w, b) = C+E{1y=1φ0−1(w
>x+ b)}

+C−E{1y=−1φ0−1(−w
>x− b)}

where E denotes the expectation with respect to the
joint distribution of (x, y). The expected cost defined
using the 0-1 loss is the cost that end users are usu-
ally interested in during the use of the classifier, while
the other cost functions that we define below are used
solely for training purposes. The convexity of these
cost functions makes learning algorithms convergent
without local minima, and leads to attractive asymp-
totic properties (Bartlett et al., 2004).

A traditional set-up for learning linear classifiers from
labeled data is to consider a convex upper bound φ on
the 0-1 loss φ0−1, and use the expected φ-cost :

Rφ(C+, C−, w, b) = C+E{1y=1φ(w>x+ b)}

+C−E{1y=−1φ(−w>x− b)}

We refer to the ratio C+/(C−+C+) as the asymmetry.
We shall use training asymmetry to refer to the asym-
metry used for training a classifier using a φ-cost, and
the testing asymmetry to refer to the asymmetric cost
characterizing the testing situation (reflecting end user
preferences) with the actual cost based on the 0-1 loss.
In Section 4, we will show that these may be different
in the general case.

We shall consider several common loss functions. Some
of the loss functions (square loss, hinge loss) lead
to attractive computational properties, while others
(square loss, erf loss) are more amenable to theoret-
ical manipulations (see Figure 1 for the plot of the
loss functions, as they are commonly used and defined
below1):

• square loss : φsq(u) = 1
2 (u− 1)2; the classifier is

equivalent to linear regression,

• hinge loss : φhi(u) = max{1 − u, 0}; the classi-
fier is the support vector machine (Schölkopf and
Smola, 2002),

• erf loss : φerf (u) = 2
[

u
2ψ
(

u
2

)
− u

2 + ψ′ (u
2

)]
,

where ψ is the cumulative distribution of the
standard normal distribution, i.e. : ψ(v) =

1√
2π

∫ v

−∞ e−t2/2dt, and ψ′(v) = 1√
2π
e−v2/2.

1Note that by rescaling, all of these loss functions can
be made to be an upper bound on the 0-1 loss which is
tight at zero.
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Figure 1: Loss functions: (left) plain: 0-1 loss, dotted:
hinge loss, dashed: erf loss, dash-dotted: square loss.
(Right) plain: 0-1 loss, dotted: probit loss, dashed:
logistic loss.

The erf loss provides a good approximation of the
logistic loss log(1 + e−u) as well as its derivative,
and is amenable to closed-form computations for
Gaussians and mixture of Gaussians (see Section 4
for more details). Note that the erf loss is differ-
ent from the probit loss − logψ(u), which leads to
probit regression (Hastie et al., 2001).

2.2 ROC ANALYSIS

The aim of ROC analysis is to display in a single graph
the performance of classifiers for all possible costs of
misclassification. In this paper, we consider sets of
classifiers fγ(x), parameterized by a variable γ ∈ R (γ
can either be the intercept or the training asymmetry).

For a classifier f(x), we can define a point (u, v) in the
“ROC plane,” where u is the proportion of false posi-
tives u = P (f(x) = 1|y = −1), and v is the proportion
of true positives v = P (f(x) = 1|y = 1).

When γ is varied, we obtain a curve in the ROC plane,
the ROC curve (see Figure 2 for an example). Whether
γ is the intercept or the training asymmetry, the ROC
curve always passes through the point (0, 0) and (1, 1),
which corresponds to classifying all points as negative
(resp. positive).

The upper convex envelope of the curve is the set of
optimal ROC points that can be achieved by the set
of classifiers; indeed, if a point in the envelope is not
one of the original points, it must lie in a segment
between two points (u(γ0), v(γ0)) and (u(γ1), v(γ1)),
and all points in a segment between two classifiers can
always be attained by choosing randomly between the
two classifiers (note that this classifier itself is not a
linear classifier; this performance can only be achieved
by a mixture of two linear classifiers).

Denoting p+ = P (y = 1) and p− = P (y = −1),
the expected (C+, C−)-cost for a classifier (u, v) in
the ROC space, is simply p+C+(1 − v) + p−C−u,
and thus optimal classifiers for the (C+, C−)-cost can
be found by looking at lines of slope that are nor-
mal to (p−C−,−p+C+)—and thus proportional to
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Figure 2: (Left) ROC curve: (plain) regular ROC
curve; (dashed) convex envelope. The points a
and c are ROC-consistent and the point b is ROC-
inconsistent. (Right) ROC curve and dashed equi-cost
lines: All lines have direction (p+C+, p−C−), the plain
line is optimal and the point “a” is the optimal classi-
fier.

(p+C+, p−C−)—and which intersects the ROC curve
and are as close as the point (0, 1) as possible (see
Figure 2).

A point (u(γ), v(γ)) is said to be ROC-consistent if
it lies on the upper convex envelope; In this case,
the tangent direction (du/dγ, dv/dγ) defines a cost
(C+(γ), C−(γ)) for which the classifier is optimal
(for the testing cost, which is defined using the 0-
1 loss), by having (p+C+(γ), p−C−(γ)) proportional
to (du/dγ, dv/dγ). This leads to an optimal testing

asymmetry β(γ), defined as β(γ) = C+(γ)
C+(γ)+C

−
(γ) =

1

1+
p+

p
−

dv
dγ

(γ)/ du
dγ

(γ)
.

If a point (u(γ), v(γ)) is ROC-inconsistent, then the
quantity β(γ) has no meaning, and such a classifier is
generally useless, because, for all settings of the mis-
classification cost, that classifier can be outperformed
by the other classifiers or a combination of classifiers.

In Section 4, we relate the optimal asymmetry of cost
in the testing or eventual use of a classifer in the real
world, to the asymmetry of cost used to train that
classifier; in particular, we show that they differ and
quantify this difference for extreme asymmetries (i.e.,
close to the corner points (0, 0) and (1, 1)). This anal-
ysis highlights the value of generating the entire ROC
curve, even when only one point is needed, as we will
present in Section 4.3.

2.3 LEARNING FROM DATA

Given n labelled data points (xi, yi), the empirical cost
is equal to:

R̂(C+, C−, w, b) = C+

n #{yi(w
>xi + b) < 0, yi = 1}

+C
−

n #{yi(w
>xi + b) < 0, yi = −1}

while the empirical φ-cost is equal to

R̂φ(C+, C−, w, b) = C+

n

∑
i∈I+

φ(yi(w
>xi + b))

+C
−

n

∑
i∈I

−

φ(yi(w
>xi + b)),



where I+ = {i, yi = 1} and I− = {i, yi = −1}.
When learning a classifier from data, a classical
setup is to minimize the sum of the empirical φ-cost
and a regularization term 1

2n ||w||
2, i.e., to minimize

Ĵφ(C+, C−, w, b) = R̂φ(C+, C−, w, b) + 1
2n ||w

2||.

Note that the objective function is no longer homo-
geneous in (C+, C−); the sum C+ + C− is referred
to as the total amount of regularization. Thus,
two end-user–defined parameters are needed to train
a linear classifier: the total amount of regulariza-
tion C+ + C− ∈ R

+, and the asymmetry C+

C++C
−

∈

[0, 1]. In Section 3.1, we show how the minimum of

Ĵφ(C+, C−, w, b), with respect to w and b, can be com-
puted efficiently for the hinge loss, for many values of
(C+, C−), with a computational cost that is within a
constant factor of the computational cost of obtaining
a solution for one value of (C+, C−).

Building an ROC curve from data If a suffi-
ciently large validation set is available, we can train
on the training set and use the empirical distribution
of the validation data to plot the ROC curve. If suf-
ficient validation data is not available, then we can
use 10 random half splits of the data, train a classi-
fier on one half and use the other half to obtain the
ROC scores. Then, for each value of the parameter
γ that defines the ROC curve (either the intercept or
the training asymmetry), we average the 10 scores. We
can also use this approach to obtain confidence inter-
vals (Flach, 2003).

3 BUILDING ROC CURVES FOR

THE SVM

In this section, we will present an algorithm to com-
pute ROC curves for the SVM that explores the two-
dimensional space of cost parameters (C+, C−) effi-
ciently. We first show how to obtain optimal solutions
of the SVM without solving the optimization problems
many times for each value of (C+, C−). This method
generalizes the results of Hastie et al. (2005) to the
case of asymmetric cost functions. We then describe
how the space (C+, C−) can be appropriately explored
and how ROC curves can be constructed.

3.1 BUILDING PATHS OF CLASSIFIERS

Given n data points xi, i = 1, . . . , n which belong to
R

d, and n labels yi ∈ {−1, 1}, minimizing the regu-
larized empirical hinge loss is equivalent to solving the
following convex optimization problem (Schölkopf and
Smola, 2002):

min
w,b,ξ

∑
i Ciξi + 1

2 ||w||
2 s.t. ∀i, ξi > 0,

∀i, ξi > 1 − yi(w
>xi + b)

where Ci = C+ if yi = 1 and Ci = C− if yi = −1.

The dual problem is the following:

max
α∈Rn

− 1
2α

> Diag(y)K Diag(y)α+ 1>α

s.t. α>y = 0 and ∀i, 0 6 αi 6 Ci

Following Hastie et al. (2005), from the KKT optimal-
ity conditions, for an optimal set of primal-dual vari-
ables (w, b, α), we can separate data points into three
disjoint sets: M = {i, αi ∈ [0, Ci], yi(w

>xi + b) = 1},
L = {i, αi = Ci, yi(w

>xi + b) < 1}, R = {i, αi =
0, yi(w

>xi + b) > 1}.

These sets are usually referred to as active sets (Boyd
and Vandenberghe, 2003). If the sets M, L and R
are known, then it is straightforward to show that,
in the domain where the active sets remain constant,
the optimal primal-dual variables (w,α, b) are affine
functions of (C+, C−). This implies that the optimal
variables (w,α, b) are piecewise affine continuous func-
tions of the vector (C+, C−), with “kinks” where the
active sets change.

Following a path The active sets remain the same
as long as all constraints defining the active sets are
satisfied, i.e., (a) yi(w

>xi + b) − 1 is positive for all
i ∈ R and negative for all i ∈ L, and (b) for each
i ∈ M, αi remains between 0 and Ci. This defines
a set of linear inequalities in (C+, C−). The facets of
the polytope defined by these inequalities can always
be found in linear time in n, when efficient convex hull
algorithms are used (Avis et al., 1997). However, when
we only follow a straight line in the (C+, C−)-space,
the polytope is then a segment and its extremities are
trivial to find (also in O(n)).

Following Hastie et al. (2005), if a solution is known for
one value of (C+, C−), we can follow the path along a
line, by simply monitoring which constraint is violated
first and changing the active sets accordingly.

Path initialization Hastie et al. (2005) requires
that the training datasets are balanced in order to
avoid solving a quadratic program to enter the path,
i.e., if n+ (resp. n−) is the number of positive (resp.
negative) training examples, then they require that
n+ = n−. In our situation, we can explore the two
dimensional space (C+, C−). Thus, the requirements
become C+n+ = C−n− along the path. We can start
the path by following the line C+n+ = C−n− and
avoid the need to solve a quadratic program.

Computational complexity As shown by Hastie
et al. (2005), if the appropriate online linear algebra
tools are used, the complexity of obtaining one path of
classifiers across one line is the same as obtaining the
solution for one SVM using classical techniques such
as sequential minimal optimization (Platt, 1998).
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Figure 3: Lines in the (C+, C−)-space. The line
C+n+ = C−n− is always followed first; then several
lines with constant C+ + C− are followed in parallel,
around the optimal line for the validation data (bold
curve).

3.2 CONSTRUCTING THE ROC CURVE

Given the tools of Section 3.1, we can learn paths of
linear classifiers from data. In this section, we present
an algorithm to build ROC curves from the paths. We
do this by exploring relevant parts of the (C+, C−)
space, selecting the best classifiers among the ones that
are visited.

We assume that we have two separate datasets, one
for training and one for testing. This approach gener-
alizes to cross-validation settings in a straightforward
manner.

Exploration phase In order to start the path-
following algorithm, we need to start at C+ = C− = 0
and follow the line C+n+ = C−n−. We follow this line
up to a large upper bound on C+ + C−. For all clas-
sifiers along that line, we compute a misclassification
cost on the testing set, with given asymmetry (C0

+, C
0
−)

(as given by the user, and usually, but not necessarily,
close to a point of interest in the ROC space). We then
compute the best performing pair (C1

+, C
1
−) and we se-

lect pairs of the form (rC1
+, rC

1
−), where r belongs to

a set R of the type R = {1, 10, 1/10, 100, 1/100, . . . }.
The set R provides further explorations for the total
amount of regularization C+ + C−.

Then, for each r, we follow the paths of direction
(1,−1) and (−1, 1) starting from the point (rC1

+, rC
1
−).

Those paths have a fixed total amount of regulariza-
tion but vary in asymmetry. In Figure 3, we show all
of lines that are followed in the (C+, C−) space.

Selection phase After the exploration phase, we
have |R|+ 1 different lines in the (C+, C−) space: the
line C−n− = C+n+, and the |R| lines C+ + C− =
r(C1

+ + C1
−), r ∈ R. For each of these lines, we know

the optimal solution (w, b) for any cost settings on that
line. The line C−n− = C+n+ is used for computa-
tional purposes (i.e., to enter the path), so we do not
use it for testing purposes.

From R lines in the (C+, C−)-plane, we build the three
ROC curves shown in Figure 4, for a finite sample
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Figure 4: Two examples of ROC curves for bimodal
class conditional densities, varying intercept (dotted),
varying asymmetry (plain) and varying both (dashed).
(Top) obtained from 10 random splits, using the data
shown on the left side (one class is plotted as circles,
the other one as crosses), (Bottom) obtained from pop-
ulation densities (one class with plain density contours,
the other one with dotted contours).

problem and for an infinite sample problem (for the
infinite sample, the solution of the SVM was obtained
by working directly with densities):

• Varying intercept : we extract the slope w corre-
sponding to the best setting (C1

+ +C1
−), and vary

the intercept b from −∞ to ∞. This is the tradi-
tional method for building an ROC curve for an
SVM.

• Varying asymmetry : we only consider the line
C+ + C− = C1

+ + C1
− in the (C+, C−)-plane; the

classifiers that are used are the optimal solutions
of the convex optimization problem. Note that for
each value of the asymmetry, we obtain a different
value of the slope and the intercept.

• Varying intercept and asymmetry : for each of the
points on the R lines in the (C+, C−)-plane, we
discard the intercept b and keep the slope w ob-
tained from the optimization problem; we then use
all possible intercept values; this leads to R two-
dimensional surfaces in the ROC plane. We then
compute the convex envelope of these, to obtain a
single curve.

Since all classifiers obtained by varying only the in-
tercept (resp. the asymmetry) are included in the set
used for varying both the intercept and the asymme-
try, the third ROC curve always outperforms the first
two curves (i.e., it is always closer to the top left cor-
ner). This is illustrated in Figure 4.

Intuitively, the ROC curve obtained by varying the
asymmetry should be better than the ROC generated
by varying the intercept because, for each point, the
slope of the classifier is optimized. Empirically, this is
generally true, but is not always the case, as displayed



in Figure 4. This is not a small sample effect, as the
infinite sample simulation shows. Another troubling
fact is that the ROC curve obtained by varying asym-
metry, exhibits strong concavities, i.e., there are many
ROC-inconsistent points: for those points, the solution
of the SVM with the corresponding asymmetry is far
from being the best linear classifier when performance
is measured with the same asymmetry but with the
exact 0-1 loss. In addition, even for ROC-consistent
points, the training asymmetry and the testing asym-
metry differ. In the next section, we analyze why they
may differ and characterize their relationships in some
situations.

4 TRAINING VS. TESTING

ASYMMETRY

We observed in Section 3.2 that the training cost asym-
metry can differ from the testing asymmetry. In this
section, we analyze their relationships more closely for
the population (i.e., infinite sample) case. Although
a small sample effect might alter some of the results
presented in this section, we argue that most of the
discrepancies come from using a convex surrogate to
the 0 − 1 loss.

The Bayes optimal classifier for a given asymmetry
(C+, C−), is the (usually non-linear) classifier with
minimal expected cost. A direct consequence of results
in Bartlett et al. (2004) is that, if the Bayes optimal
classifier is linear, then using a convex surrogate has
no effect, i.e., using the expected φ-cost will lead to
the minimum expected cost. Thus, if the Bayes op-
timal classifier is linear, then, in the population case
(infinite sample), there should be no difference. How-
ever, when the Bayes optimal classifier is not linear,
then we might expect to obtain a difference, and we
demonstrate that we do have one and quantify it for
several situations.

Since we are using population densities, we can get
rid of the regularization term and thus only the asym-
metry will have an influence on the results, i.e., we
can restrict ourselves to C+ + C− = 1. We let
γ = C+/(C+ + C−) = C+ denote the training asym-
metry. For a given training asymmetry γ and a loss
function φ, in Section 2.2, we defined the optimal test-
ing asymmetry β(γ) for the training asymmetry γ. In
this section, we will refer to the β(γ) simply as the
testing asymmetry.

Although a difference might be seen empirically for all
possible asymmetries, we analyze the relationship be-
tween the testing cost asymmetry and training asym-
metry in cases of extreme asymmetry, i.e., in the ROC
framework, close to the corner points (0, 0) and (1, 1).
We prove that, depending on the class conditional den-

sities, there are two possible different regimes for ex-
treme asymmetries: either the optimal testing asym-
metry is more extreme, or it is less extreme. We also
provide, under certain conditions, a simple test that
can determine the regime given class conditional den-
sities.

In this section, we choose class conditional densities
that are either Gaussian or a mixture of Gaussians, be-
cause (a) any density can be approximated as well as
desired by mixtures of Gaussians (Hastie et al., 2001),
and (b) for the square loss and the erf loss, they en-
able closed-form calculations that lead to Taylor ex-
pansions.

4.1 OPTIMAL SOLUTIONS FOR
EXTREME COST ASYMMETRIES

We assume that the class conditional densities are mix-
tures of Gaussian, i.e., the density of positive (resp.
negative) examples is a mixture of k+ Gaussians, with
means µi

+ and covariance matrix Σi
+, and mixing

weights π+
i , i ∈ {1, . . . ,m+} (resp. k− Gaussians,

with means µi
− and covariance matrix Σi

−, and mix-
ing weights π+

−, i ∈ {1, . . . ,m−} ). We denote p+ and
p− as the marginal class densities, p+ = P (y = 1),
p− = P (y = −1). We assume that all mixing weights
πi
± are strictly positives and that all covariance matri-

ces Σi
± have full rank.

In the following sections, we provide Taylor expansions
of various quantities around the null training asymme-
try γ = 0. They trivially extend around the reverse
asymmetry γ = 1. We start with an expansion of the
unique global minimum (w, b) of the φ-cost with asym-
metry γ. For the square loss, (w, b) can be obtained in
closed form for any class conditional densities so the
expansion is easy to obtain, while for the erf loss, an
asymptotic analysis of the optimality conditions has
to be carried through, and is only valid for mixture of
Gaussians (see Bach et al. (2004) for proofs).

Proposition 1 (square loss) Under previous as-
sumptions, we have the following expansions:

w = 2
p+

p−
γΣ−1

− (µ+ − µ−) +O(γ2)

b = −1 +
p+

p−
γ[2 − 2µ>

−(µ+ − µ−)] +O(γ2)

where m = µ+ − µ−, and Σ± and µ± are the class
conditional means and variances.

Proposition 2 (erf loss) Under previous assump-
tions, we have the following expansions:

w = (2 log(1/γ))
−1/2

Σ̃−(µ̃+ − µ̃−) + o
(
log(1/γ)−1/2

)

b = − (2 log(1/γ))
1/2

+ o
(
log(1/γ)1/2

)



where m̃ = µ̃+ − µ̃−, and Σ̃± and µ̃± are convex
combinations of the mixture means and covariances,
i.e., there exists strictly positive weights π̃i

±, that sum

to one for each sign, such that Σ̃± =
∑

i π̃
i
±Σi

± and
µ̃± =

∑
i π̃

i
±µ

i
±.

The weights π̃i
± can be expressed as the solution of a

convex optimization problem (see Bach et al. (2004)
for more details). When there is only one mixture
component (Gaussian densities), then π̃1

± = 1.

4.2 EXPANSION OF TESTING
ASYMMETRIES

Using the expansions of Proposition 1 and 2, we can
readily derive an expansion of the ROC coordinates
for small γ, as well as the testing asymmetry β(γ).
We have (see Bach et al. (2004) for proofs):

Proposition 3 (square loss) Under previous as-
sumptions, we have the following expansion:

log

(
p−
p+

(β(γ)−1−1)

)
=

p2
−

8p2
+γ

2

(
1

m>Σ−1
− Σ

i
−

− Σ−1
− m

−
1

m>Σ−1
− Σ

i+
+ Σ−1

− m

)
+ o(1/γ2) (1)

where i− (resp. i+) is one of the negative (resp. posi-
tive) mixture component.

Proposition 4 (erf loss) Under previous assump-
tions, we have the following expansion:

log

(
p−
p+

(β(γ)−1−1)

)
=2 log(1/γ)

(
1

m̃>Σ̃−1
− Σ

i
−

− Σ̃−1
− m̃

−
1

m̃>Σ̃−1
− Σ

i+
+ Σ̃−1

− m̃

)
+ o(log(1/γ)) (2)

where i− (resp. i+) is one of the negative (resp. posi-
tive) mixture component.

The rest of the analysis is identical for both losses
and thus, for simplicity, we focus primarily on the
square loss. For the square loss, we have two different
regimes, depending on the sign of m>Σ−1

− Σ
i
−

− Σ−1
− m−

m>Σ−1
− Σ

i+
+ Σ−1

− m:

• if m>Σ−1
− Σ

i
−

− Σ−1
− m > m>Σ−1

− Σ
i+
+ Σ−1

− m, then
from the expansion in Eq. (1) and Eq. (2), we see
that the testing asymmetry tends to 1 exponen-
tially fast. Because this is an expansion around
the null training asymmetry, the ROC curve must
be starting on the bottom right part of the main
diagonal and the points close to γ = 0 are not
ROC-consistent, i.e., the classifiers with training
asymmetry too close to zero are useless as they
are too extreme.
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Figure 5: Training asymmetry vs. testing asym-
metry, square loss: (Left) Gaussian class condi-
tional densities, (right) testing asymmetry vs. train-
ing asymmetry; from top to bottom, the values
of (m>Σ−1

− Σ
i
−

− Σ−1
− m)−1 − (m>Σ−1

− Σ
i+
+ Σ−1

− m)−1 are
0.12, -6, 3, -0.96.

• if m>Σ−1
− Σ

i
−

− Σ−1
− m < m>Σ−1

− Σ
i+
+ Σ−1

− m , then
from the expansion in Eq. (1) and Eq. (2), we see
that the testing asymmetry tends to 0 exponen-
tially fast, in particular, the derivative dβ/dγ is
null at γ = 0, meaning, that the testing asymme-
try is significantly smaller than the training asym-
metry, i.e., less extreme.

• if m>Σ−1
− Σ

i
−

− Σ−1
− m = m>Σ−1

− Σ
i+
+ Σ−1

− m, then
the asymptotic expansion does not provide any
information relating to the behavior of the test-
ing asymmetry. We are currently investigating
higher-order expansions in order to study the be-
havior of this limiting case. Note that when the
two class conditional densities are Gaussians with
identical covariance (a case where the Bayes op-
timal classifier with symmetric cost is indeed lin-
ear), we are in the present case.

The strength of the effects we have described above
depends on the norm of m = µ+ − µ−: if m is large,
i.e., the classification problem is simple, then those ef-
fects are less strong, while when m is small, they are
stronger. In Figure 5, we provide several examples
for the square loss, with the two regimes and different
strengths. It is worth noting, that, although the theo-
retical results obtained in this section are asymptotic
expansions around the corners (i.e., extreme asymme-
tries), the effects also remain valid far from the corners.

We thus must test to identify which regime we are
in, namely testing for the sign of m>Σ−1

− Σ
i
−

− Σ−1
− m =

m>Σ−1
− Σ

i+
+ Σ−1

− m. This test requires knowledge of the
class conditional densities; it can currently always be
performed in closed form for the square loss, while for
the erf loss, it requires to solve a convex optimization
problem, described by Bach et al. (2004).



Dataset γ one asym. all asym.
Pima 0.68 41 ± 0.4 22 ± 1
Breast 0.99 0.9 ± 0.03 0.09 ± 0.04
Ionosphere 0.82 10 ± 0.5 4 ± 0.8
Liver 0.32 27 ± 1.8 23.8 ± 0.02
Ringnorm 0.94 6.3 ± 0.06 4.3 ± 0.1
Twonorm 0.16 15 ± 0.2 1.2 ± 0.2
Adult 0.70 12.8 ± 0.8 11.5 ± 0.3

Table 1: Training with the testing asymmetry γ vs.
training with all cost asymmetries: we report valida-
tion costs obtained from 10 half-random splits (pre-
multiplied by 100). Only the asymmetry with the
largest difference is reported. Given an asymmetry
γ we use the cost settings C+ = 2γ, C− = 2(1 − γ)
(which leads to the misclassification error if γ = 1/2).

4.3 BUILDING THE ENTIRE ROC
CURVE FOR A SINGLE POINT

As shown empirically in Section 3.2, and demonstrated
theoretically in this section, training and testing asym-
metries differ; and this difference suggests that even
when the user is interested in only one cost asymmetry,
the training procedure should explore more cost asym-
metries, i.e. build the ROC curve as presented in Sec-
tion 3.2 and chose the best classifier as follows: a given
asymmetry in cost for the test case leads to a unique
slope in the ROC space, and the optimal point for this
asymmetry is the point on the ROC curve whose tan-
gent has the corresponding slope and which is closest
to the upper-left corner.

We compare in Figure 1, for various datasets and linear
classifiers, the performance with cost asymmetry γ of
training a classifier with cost asymmetry γ to the per-
formance of training with all cost asymmetries. Using
all asymmetries always perform better than assuming
a single asymmetry—we simply have more classifiers
to choose from. In Figure 1, we report only the perfor-
mance for the cost asymmetries which show the great-
est differences, showing that in some cases, it is very
significant, and that a simple change in the training
procedure may lead to substantial gains.

5 CONCLUSION

We have presented an efficient algorithm to build ROC
curves by varying the training cost asymmetries for
SVMs. The algorithm is based on the piecewise lin-
earity of the path of solutions when the cost of false
positives and false negatives vary. We have also pro-
vided a theoretical analysis of the relationship between
the potentially different cost asymmetries assumed in
training and testing classifiers, showing that they differ
under certain circumstances. We have characterized

key relationships, and have worked to highlight the
potential value of building the entire ROC curve even
when a single point may be needed. Such an approach
can lead to a significant improvement of performance
with little added computational cost. Finally, we note
that, although we have focused in this paper on the
single kernel learning problem, our approach can be
readily extended to the multiple kernel learning set-
ting (Bach et al., 2005) with appropriate numerical
path following techniques.
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