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Abstract

Active learning refers to algorithmic frameworks aimed at selecting training data points in
order to reduce the number of required training data points and/or improve the generaliza-
tion performance of a learning method. In this paper, we present an asymptotic analysis of
active learning for generalized linear models. Our analysis holds under the common practical
situation of model misspecification, and is based on realistic assumptions regarding the nature
of the sampling distributions, which are usually neither independent nor identical. We derive
unbiased estimators of generalization performance, as well as estimators of expected reduction
in generalization error after adding a new training data point, that allow us to optimize its
sampling distribution through a convex optimization problem. Our analysis naturally leads to
an algorithm for sequential active learning which is applicable for all tasks supported by gener-
alized linear models (e.g., binary classification, multi-class classification, regression) and can be
applied in non-linear settings through the use of Mercer kernels.

1 Introduction

The goal of active learning is to select training data points so that the number of required training
data points for a given performance is smaller than the number which is required when randomly
sampling those points. Active learning has emerged as a dynamic field of research in machine learning
and statistics, from early works in optimal experimental design [1], to recent theoretical results [2]
and applications, in text retrieval [3], image retrieval [4] or bioinformatics [5].

Despite the numerous successful applications of active learning to reduce the number of required
training data points, many authors have also reported cases where widely applied active learning
heuristic schemes such as maximum uncertainty sampling perform worse than random selection [6, 7],
casting doubt into the practical applicability of active learning: why would a practitioner use an
active learning strategy that is not ensuring, unless the data satisfy possibly unrealistic and usually
non verifiable assumptions, that it performs better than random? The objectives of this paper are
(1) to provide a theoretical analysis of active learning with realistic assumptions and (2) to derive a
principled algorithm for active learning with guaranteed consistency.
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In this paper, we consider generalized linear models [8], which provide flexible and widely used tools
for many supervised learning tasks (Section 2). Our analysis is based on asymptotic arguments, and
follows previous asymptotic analysis of active learning [9, 10, 7, 11]; however, as shown in Section 4,
we do not rely on correct model specification and assume that the data are not identically distributed
and may not be independent. As shown in Section 5, our theoretical results naturally lead to convex
optimization problems for selecting training data point in a sequential design. In Section 6, we
present simulations on synthetic data, illustrating our algorithms and comparing them favorably to
usual active learning schemes.

2 Generalized linear models

Given data x ∈ R
d, and targets y in a set Y, we consider the problem of modeling the conditional

probability p(y|x) through a generalized linear model (GLIM) [8]. We assume that we are given an
exponential family adapted to our prediction task, of the form p(y|η) = exp(η>T (y)− ψ(η)), where
T (y) is a k-dimensional vector of sufficient statistics, η ∈ R

k is vector of natural parameters and
ψ(η) is the convex log-partition function. We then consider the generalized linear model defined as
p(y|x, θ) = exp(tr(θ>xT (y)>)−ψ(θ>x)), where θ ∈ Θ ⊂ R

d×k. The framework of GLIMs is general
enough to accomodate many supervised learning tasks [8], in particular:

• Binary classification: the Bernoulli distribution leads to logistic regression, with Y = {0, 1},
T (y) = y and ψ(η) = log(1 + eη).

• k-class classification: the multinomial distribution leads to softmax regression, with Y = {y ∈

{0, 1}k,
∑k

i=1 yi = 1}, T (y) = y and ψ(η) = log(
∑k

i=1 e
ηi).

• Regression: the normal distribution leads to Y = R, T (y) = (y,− 1
2y

2)> ∈ R
2, and ψ(η1, η2) =

− 1
2 log η2+ 1

2 log 2π+
η2
1

2η2
. When both η1 and η2 depends linearly on x, we have an heteroscedas-

tic model, while if η2 is constant for all x, we obtain homoscedastic regression (constant noise
variance).

Maximum likelihood estimation We assume that we are given independent and identically
distributed (i.i.d.) data sampled from the distribution p0(x, y) = p0(x)p0(y|x). The maximum
likelihood population estimator θ0 is defined as the minimizer of the expectation under p0 of the
negative log-likelihood `(y, x, θ) = − tr(θ>xT (y)>) + ψ(θ>x). The function `(y, x, θ) is convex in
θ and by taking derivatives and using the classical relationship between the derivative of the log-
partition and the expected sufficient statistics [8], the population maximum likelihood estimate is
defined by:

Ep0(x,y)∇`(y, x, θ0) = Ep0(x)

{
x(Ep(y|x,θ0)T (y) −Ep0(y|x)T (y))>

}
= 0 (1)

Given i.i.d data (xi, yi), i = 1, . . . , n, we use the penalized maximum likelihood estimator, which
minimizes

∑n
i=1 `(yi, xi, θ) + 1

2λ tr θ>θ. The minimization is performed by Newton’s method [12].

Model specification A GLIM is said well-specified is there exists a θ ∈ R
d×k such that for

all x ∈ R
d, Ep(y|x,θ)T (y) = Ep0(y|x)T (y). A sufficient condition for correct specification is that

there exist θ ∈ R
d×k such that for all x ∈ R

d, y ∈ Y, p(y|x, θ) = p0(y|x). This condition is
necessary for the Bernoulli and multinomial exponential family, but not for example for the normal
distribution. In practice, the model is often misspecified and it is thus of importance to consider
potential misspecification while deriving asymptotic expansions.

Kernels The theoretical results of this paper mainly focus on generalized linear models; however,
they can be readily generalized to non-linear settings by using Mercer kernels [13], for example
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leading to kernel logistic regression or kernel ridge regression. When the data are given by a kernel
matrix, we can use the incomplete Cholesky decomposition [14] to find an approximate basis of the
feature space on which the usual linear methods can be applied. Note that our asymptotic results do
not hold when the number of parameters may grow with the data (which is the case for kernels such
as the Gaussian kernel). However, our dimensionality reduction procedure uses a non-parametric
method on the entire (usually large) training dataset and we then consider a finite dimensional
problem on a much smaller sample. If the whole training dataset is large enough, then the finite
dimensional problem may be considered deterministic and our criteria may apply.

3 Active learning set-up

We consider the following “pool-based” active learning scenario: we have a large set of i.i.d. data
points xi ∈ R

d, i = 1, . . . ,m sampled from p0(x). The goal of active learning is to select the points
to label, i.e., the points for which the corresponding yi will be observed. We assume that given
xi, i = 1, . . . , n, the targets yi, i = 1, . . . , n are independent and sampled from the corresponding
conditional distribution p0(yi|xi). This active learning set-up is well studied and appears naturally
in many applications where the input distribution p0(x) is only known through i.i.d. samples [3, 15].
For alternative scenarii, where the density p0(x) is known, see e.g. [16, 17, 18].

More precisely, we assume that the points xi are selected sequentially, and we let denote qi(xi|x1, . . . , xi−1)
the sampling distribution of xi given the previously observed points. In situations where the data
are not sampled from the testing distribution, it has proved advantageous to consider likelihood
weighting techniques [11, 17], and we thus consider weights wi = wi(xi|x1, . . . , xi−1). We let θ̂n

denote the weighted penalized ML estimator, defined as the minimum with respect to θ of

∑n
i=1 wi`(yi, xi, θ) + λ

2 tr θ>θ. (2)

In this paper, we work with two different assumptions regarding the sequential sampling distribu-
tions: (1) the variables xi are independent, i.e., qi(xi|x1, . . . , xi−1) = qi(xi), (2) the variable xi de-

pends on x1, . . . , xi−1 only through the current empirical ML estimator θ̂i, i.e., qi(xi|x1, . . . , xi−1) =

q(xi|θ̂i), where q(xi|θ) is a pre-specified sampling distribution. The first assumption is not realistic,
but readily leads to asymptotic expansions. The second assumption is more realistic, as most of
the heuristic schemes for sequential active learning satisfy this assumption. It turns out that in our
situation, the asymptotic expansions of the expected generalization performance for both sets of
assumptions are identical.

4 Asymptotic expansions

In this section, we derive the asymptotic expansions that will lead to active learning algorithms in
Section 5. Throughout this section, we assume that p0(x) has a compact support K and has a twice
differentiable density with respect to the Lebesgue measure, and that all sampling distributions have
a compact support included in the one of p0(x) and have twice differentiable densities.

We first make the assumption that the variables xi are independent, i.e., we have sampling distri-
butions qi(xi) and weights wi(xi), both measurable, and such that wi(xi) > 0 for all xi ∈ K. In
Section 4.4, we extend some of our results to the dependent case.
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4.1 Bias and variance of ML estimator

The following proposition is a simple extension to non identically distributed observations, of classical
results on maximum likelihood for misspecified generalized linear models [19, 11]. We let ED and
varD denote the expectation and variance with respect to the data D = {(xi, yi), i = 1, . . . , n}.

Proposition 1 We let θn denote the minimizer of
∑n

i=1Eqi(xi)p0(yi|xi)wi(xi)`(yi, xi, θ). If (a) the
weight functions wn and the sampling densities qn are pointwise strictly positive and such that
wn(x)qn(x) converges in the L∞-norm, and (b) Eqn(x)w

2
n(x) is bounded , then θ̂n − θn converges to

zero in probability and we have

ED θ̂n = θn +O(n−1) and varD θ̂n = 1
nJ

−1
n InJ

−1
n +O(n−2) (3)

where Jn = 1
n

∑n
i=1Eqi(x)wi(x)∇

2`(x, θn) can be consistently estimated by Ĵn = 1
n

∑n
i=1 wihi

and In = 1
n

∑n
i=1Eqi(x)p0(y|x)wi(x)

2∇`(y, x, θn)∇`(y, x, θn)> can be consistently estimated by În =
1
n

∑n
i=1 w

2
i gig

>
i , where gi = ∇`(yi, xi, θ̂n) and hi = ∇2`(xi, θ̂n).

From Proposition 1, it is worth noting that in general θn will not converge to the population max-
imum likelihood estimate θ0, i.e., using a different sampling distribution than p0(x) may introduce
a non asymptotically vanishing bias in estimating θ0. Thus, active learning requires to ensure that
(a) our estimators have a low bias and variance in estimating θn, and (b) that θn does actually con-
verge to θ0. This double objective is taken care of by our estimates of generalization performance
in Propositions 2 and 3.

There are two situations, however, where θn is equal to θ0. First, if the model is well specified,
then whatever the sampling distributions are, θn is the population ML estimate (which is a simple
consequence of the fact that Ep(y|x,θ0)T (y) = Ep0(y|x)T (y), for all x, implies that, for all q(x),

Eq(x)p0(y|x)∇`(y, x, θ) = Eq(x)

{
x(Ep(y|x,θ0)T (y) − Ep0(y|x)T (y))>

}
= 0).

Second, When wn(x) = p0(x)/qn(x), then θn is also equal to θ0, and we refer to this weighting scheme
as the unbiased reweighting scheme, which was used by [17] in the context of active learning. We
refer to the weights wu

n = p0(xn)/qn(xn) as the importance weights. Note however, that restricting
ourselves to such unbiased estimators, as done in [17] might not be optimal because they may lead
to higher variance [11] (see simulations in Section 6).

4.2 Expected generalization performance

We let Lu(θ) = Ep0(x)p0(y|x)`(y, x, θ) denote the generalization performance1 of the parameter θ. We

now provide an unbiased estimator of the expected generalization error of θ̂n, which generalized the
Akaike information criterion [20] (for a proof, see the appendix):

Proposition 2 In addition to the assumptions of Proposition 1, we assume that Eqn(x) (p0(x)/qn(x))
2

is bounded. Let

Ĝ = 1
n

∑n
i=1 w

u
i `(yi, xi, θ̂n) + 1

n

(
1
n

∑n
i=1 w

u
i wig

>
i (Ĵn)−1gi

)
, (4)

where wu
i = p0(xi)/qi(xi). Ĝ is an asymptotically unbiased estimator of EDL

u(θ̂n), i.e., EDĜ =

EDL
u(θ̂n) +O(n−2).

1In this paper, we use the log-likelihood as a measure of performance, which allows simple asymptotic expansions,

and the focus of the paper is about the differences between testing and training sampling distributions. The study of

potentially different costs for testing and training is beyond the scope of this paper.
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The criterion Ĝ is a sum of two terms: the second term corresponds to a variance term and will
converge to zero in probability at rate O(n−1); the first term, however, which corresponds to a
selection bias induced by a specific choice of sampling distributions, will not always go to zero.
Thus, in order to ensure that our active learning method are consistent, we have to ensure that this
first term is going to zero. One simple way to achieve this is to always optimize our weights so that
the estimate Ĝ is smaller than the estimate for the unbiased reweighting scheme (see Section 5).

4.3 Expected performance gain

We now look at the following situation: we are given the first n data points (xi, yi) and the current

estimate θ̂n, the gradients gi = ∇`(yi, xi, θ̂n), the Hessians hi = ∇2`(xi, θ̂n) and the third derivatives

Ti = ∇3`(xi, θ̂n), we consider the following criterion, which depends on the sampling distributions
and weights of the (n+ 1)-th point:

Ĥ(qn+1, wn+1|α, β) = 1
n3

∑n
i=1 αiw

u
i wn+1(xi)

qn+1(xi)
p0(xi)

+
∑n

i=1 βiw
u
i wn+1(xi)

2 qn+1(xi)
p0(xi)

(5)

where αi = −(n+ 1)ng̃>i ĴnA− wiw
u
i g̃

>
i hig̃i + wu

i g̃
>
i Ĵng̃i − 2g̃>i B

−wig̃
>
i Ĵ

u
n g̃i + Ti[g̃i, C] − 2wig̃

>
i hiA+ Ti[A, g̃i, g̃i] (6)

βi =
1

2
g̃>i Ĵ

u
n g̃i +A>hig̃i (7)

with g̃i = Ĵ−1
n gi, A = Ĵ−1

n
1
n

∑n
i=1 w

u
i gi, B =

∑n
i=1 w

u
i wihig̃i, C =

∑n
i=1 wiw

u
i g̃ig̃

>
i , Ĵu

n = 1
n

∑n
i=1 w

u
i hi.

The following proposition shows that Ĥ(qn+1, wn+1|α, β) is an estimate of the expected performance
gain and may be used as an objective function for learning the distributions qn+1, wn+1 (for a
proof, see the appendix). In Section 5, we show that if the distributions and weights are properly
parameterized, this leads to a convex optimization problem.

Proposition 3 We assume that Eqn(x)w
2
n(x) and Eqn(x) (p0(x)/qn(x))

2
are bounded. We let denote

θ̂n denote the weighted ML estimator obtained from the first n points, and θ̂n+1 the one-step estimator
obtained from the first n+1 points, i.e., θ̂n+1 is obtained by one Newton step from θ̂n [21]; then the

criterion defined in Eq. (5) is such that EDĤ(qn+1, wn+1) = EDL
u(θ̂n) − EDL

u(θ̂n+1) + O(n−3),
where ED denotes the expectation with respect to the first n+1 points. Moreover, for n large enough,
all values of βi are positive.

Note that many of the terms in Eq. (6) and Eq. (7) are dedicated to weighting schemes for the first
n points other than the unbiased reweighting scheme. For the unbiased reweighting scheme where
wi = wu

i , for i = 1, . . . , n, then A = 0 and the equations may be simplified.

4.4 Dependent observations

In this section, we show that under a certain form of weak dependence between the data points
xi, i = 1, . . . , n, then the results presented in Propositions 1 and 2 still hold. For simplicity
and brevity, we restrict ourselves to the unbiased reweighting scheme, i.e., wn(xn|x1, . . . , xn−1) =
p0(xn)/qn(xn|x1, . . . , xn−1) for all n, and we assume that those weights are uniformly bounded away
from zero and infinity. In addition, we only prove our result in the well-specified case, which leads
to a simpler argument for the consistency of the estimator.

Many sequential active learning schemes select a training data point with a distribution or criterion
that depends on the estimate so far (see Section 6 for details). We thus assume that the sampling

distribution qn is of the form q(xn|θ̂n), where q(x|θ) is a fixed set of smooth parameterized densities.
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Proposition 4 (for a proof, see the appendix) Let

Ĝ = 1
n

∑n
i=1 wi`(yi, xi, θ̂n) + 1

n

(
1
n

∑n
i=1 w

2
i g

>
i (Ĵn)−1gi

)
, (8)

where wi = wu
i = p0(xi)/q(xi|θ̂i). Ĝ is an asymptotically unbiased estimator of EDL

u(θ̂n), i.e.,

EDĜ = EDL
u(θ̂n) +O(log(n)n−2).

The estimator is the same as in Proposition 2. The effect of the dependence is asymptotically negli-
gible and only impacts the result with the presence of an additional log(n) term. In the algorithms
presented in Section 5, the distribution qn is obtained as the solution of a convex optimization prob-
lem, and thus the previous theorem does not readily apply. However, when n gets large, qn depends
on the previous data points only through the first two derivatives of the objective function of the
convex problem, which are empirical averages of certain functions of all currently observed data
points; we are currently working out a generalization of Proposition 4 that allows the dependence
on certain empirical moments.

5 Algorithms

In Section 4, we have derived a criterion Ĥ in Eq. (5) that enables to optimize the sampling density

of the (n + 1)-th point, and an estimate Ĝ in Eq. (4) and Eq. (8) of the generalization error. Our
algorithms are composed of the following three ingredients:

1. Those criterion assumes that the variance of the importance weights wu
n = p0(xn)/qn(xn) is

controlled. In order to make sure that those results apply, our algorithms will ensure that this
condition is met.

2. The sampling density qn+1 will be obtained by minimizing Ĥ(wn+1, qn+1|α, β) for a certain
parameterization of qn+1 and wn+1. It turns out that those minimization problems are convex,
and can thus be efficiently solved, without local minima.

3. Once a new sample has been selected, and its label observed, Proposition 4 is used in a way
similar to [11], in order to search for the best mixture between the current weights (wi) and
the importance weights (wu

i ), i.e., we look at weights of the form wγ
i (wu

i )1−γ and perform a

grid search on γ to find γ such that Ĝ in Eq. (4) is minimum.

The main interest of the first and third points is that we obtain a final estimator of θ0 which
is at least provably consistent: indeed, although our criteria are obtained from an assumption of
independence, the generalization performance result also holds for “weakly” dependent observations
and thus ensures the consistency of our approach. Thus, as opposed to most previous active learning
heuristics, our estimator will always converge (in probability) to the ML estimator. In Section 6, we
show empirically that usual heuristic schemes do not share this property.

Convex optimization problem We assume that we have a fixed set of candidate distributions
sk(x) of the form sk(x) = p0(x)rk(x). Note that the multiplicative form of our candidate distribu-
tions allows efficient sampling from a pool of samples of p0. We look at distributions qn+1(x) with
mixture density of the form s(x|η) =

∑
k ηksk(x) = p0(x)r(x), where the weights η are non-negative

and sum to one. The criterion Ĥ(qn+1, wn+1|α, β) in Eq. (5) is thus a function H(η|α, β) of η. We
consider two weighting schemes: (a) one with all weights equal to one (unit weighting scheme) which
leads to H0(η|α, β), and (b) the unbiased reweighting scheme, where wn+1(x) = p0(x)/qn+1(x),
which leads to H1(η|α, β). We have

H0(η|α, β) = 1
n3

∑
k ηk (

∑n
i=1(αi + βi)w

u
i sk(xi)) (9)

H1(η|α, β) = 1
n3

∑n
i=1 αiw

u
i +

∑n
i=1

βiw
u
i∑

k ηksk(xi)
(10)
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The function H0(η) is linear in η, while the function H1(η) is the sum of a constant and positive
inverse functions, and is thus convex [12].

Unless natural candidate distributions sk(x) can be defined for the active learning problem, we use
the set of distributions obtained as follows: we perform K-means clustering with a large number p
of clusters (e.g., 100 or 200), and then consider functions rk(x) of the form rk(x) = 1

Zk
e−αk‖x−µk‖

2

,
where αk is one element of a finite given set of parameters, and µk is one of the p centroids y1, . . . , yp,
obtained from K-means. We let w̃i denote the number of data points assigned to the centroid yi. We
normalize by Zk =

∑p
i=1 w̃ie

−αk‖yi−µk‖
2

/
∑p

i=1 w̃i. We thus obtained O(p) candidate distributions
rk(x), which, if p is large enough, provides a flexible yet tractable set of mixture distributions.

One additional element is the constraint on the variance of the importance weights. The variance
of wu

n+1 can be estimated as varwu
n+1 =

∑m
i=1

w̃i

r(xi)
− 1 =

∑m
i=1

w̃i∑
k ηkrk(xi)

− 1 = V (η), which

is convex in η. Thus constraining the variance of the new weights lead to a convex optimization
problem, with convex objective and convex constraints, which can be solved efficiently by the log-
barrier method [12], with cubic complexity in the number of candidate distributions.

Algorithms We have three versions of our algorithm, one with unit weights (referred to as “no
weight”) which optimized H0(η|α, β) at each iteration, one with the unbiased reweighting scheme,
which optimizes H1(η|α, β) (referred to as ”unbiased”) and one which does both and chooses the

best one, as measured by Ĥ (referred to as ”full”): in the initialization phase, K-means is run to
generate candidate distributions that will be used throughout the sampling of new points. Then, in
order to select the new training data point xn+1, the scores α and β are computed from Eq. (6) and
Eq. (7), then the appropriate cost function, H0(η|α, β), H1(η|α, β) (or both) is minimized and once
η is obtained, we sample xn+1 from the corresponding distribution, and compute the weights wn+1

and wu
n+1. As described earlier, we then find γ such that Ĝ((wγ

i (wu
i )1−γ)i) in Eq. (4) is minimized

and update weights accordingly.

Regularization parameter In the active learning set-up, the number of samples used for learn-
ing varies a lot. It is thus not possible to use a constant regularization parameter. We thus learn it
by cross-validation every 10 new samples.

6 Simulation experiments

In this section, we present simulation experiments on synthetic examples, for the task of binary
and 3-class classification. We compare our algorithms to the following three active learning frame-
works. In the maximum uncertainty framework (referred to as “maxunc”), the next training data

point is selected such that the entropy of p(y|x, θ̂n) is maximal [15]. In the maximum variance
reduction framework [22, 7] (referred to as “varred”), the next point is selected so that the vari-
ance of the resulting estimator has the lowest determinant, which is equivalent to finding x such
that tr∇(x, θ̂n)Ĵ−1

n is minimum. Note that this criterion has theoretical justification under correct
model specification. In the minimum prediction error framework (referred to as “minpred”), the
next point is selected so that it reduces the most the expected log-loss, with the current model as
an estimate of the unknown conditional probability p0(y|x) [3, 6].

Sampling densities In Figure 1, we look at the limit selected sampling densities, i.e., we assume
that a large number of points has been sampled, and we look at the criterion Ĥ in Eq. (5). We
show the density obtained from the unbiased reweighting scheme (middle of Figure 1), as well as

the function γ(x) (right of Figure 1) such that, for the unit weighting scheme, Ĥ(qn+1(x), 1) =∫
γ(x)qn+1(x)dx. In this framework, minimizing the cost without any constraint leads to a Dirac

at the maximum of γ(x), while minimizing with a constraint on the variance of the corresponding
importance weights will select point with high values of γ(x). We also show the line θ>0 x = 0. From
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Figure 1: Proposal distributions: (Left) density p0(x) with the two different classes (red and blue),

(Middle) best density with unbiased reweighting, (Right) function γ(x) such that Ĥ(qn+1(x), 1) =∫
γ(x)qn+1(x)dx (see text for details).

0 50 100

0.1

0.15

0.2

number of samples

er
ro

r 
ra

te

random
full

0 50 100

0.1

0.15

0.2

number of samples

er
ro

r 
ra

te

random
no weight
unbiased

0 50 100

0.1

0.15

0.2

number of samples

er
ro

r 
ra

te

random
minpred
varred
maxunc

Figure 2: Error rates vs. number of samples averaged over 10 replications sampled from same distri-
bution as in Figure 1: (Left) random sampling and active learning ”full”, with standard deviations,
(Middle) Comparison of the two schemes “unbiased” and ”no weight”, (Right) Comparison with
other methods.

Figure 1, we see that (a) the unit weighting scheme tends to be more selective (i.e., finer grain)
than the unbiased scheme, and (b) that the mode of the optimal densities are close to the maximum
uncertainty hyperplane but some parts of this hyperplane are in fact leading to negative cost gains
(e.g., the part of the hyperplane crossing the central blob), hinting at the bad potential behavior of
the maximum uncertainty framework.

Comparison with other algorithms In Figure 2 and Figure 1, we compare the performance of
our active learning algorithms. In the left of Figure 2, we see that our active learning framework does
perform better on average but also leads to smaller variance. In the middle of Figure 2, we compare
the two schemes “no weight” and “unbiased”, showing the superiority of the unit weighting scheme
and the significance of our asymptotic results in Proposition 2 and 3 which extend the unbiased
framework of [11]. In the right of Figure 2 and in Figure 3, we compare with the other usual
heuristic schemes: our “full” algorithm outperforms other schemes; moreover, in those experiments,
the other schemes do perform worse than random sampling and converge to the wrong estimator, a
bad situation that our algorithms provably avoid.

7 Conclusion

We have presented a theoretical asymptotic analysis of active learning for generalized linear models,
under realistic sampling assumptions. From this analysis, we obtain convex criteria which can
be optimized to provide algorithms for online optimization of the sampling distributions. This
work naturally leads to several extensions. First, our framework is not limited to generalized linear
models, but can be readily extended to any convex differentiable M -estimators [21]. Second, it seems
advantageous to combine our active learning analysis with semi-supervised learning frameworks, in
particular ones based on data-dependent regularization [23]. Finally, we are currently investigating
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Figure 3: Error rates vs. number of samples averaged over 10 replications for 3 classes: comparisons
of methods.

applications to large scale image retrieval tasks, where unlabelled data are abundant but labelled
data are expensive.
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A Proof of Proposition 2

Throughout the first two proofs, where the data (xi) are assume independent, we use the following

notations. We let denote wi = wi(xi) and wu
i = p0(xi)

qi(xi)
. We use the following functions of the

parameter θ:

log-likelihood: L̂(θ) =
1

n

n∑

i=1

wi(xi)`(yi, xi, θ) =
1

n

n∑

i=1

wi`(yi, xi, θ)

unbiased log-likelihood: L̂u(θ) =
1

n

n∑

i=1

p0(xi)

qi(xi)
`(yi, xi, θ) =

1

n

n∑

i=1

wu
i `(yi, xi, θ)

generalization performance: Lu(θ) = EDL̂
u(θ) =

∫
p0(y|x)p0(x)`(y, x, θ)dxdy

expected log-likelihood: L(θ) = EDL̂(θ) =
1

n

n∑

i=1

∫
p0(y|x)qi(x)wi(x)`(y, x, θ)dxdy.

Note that L̂ and L̂u are random functions while L and Lu are deterministic.

Constraints on weights The constraints on the weights, namely that

Eqn(x)w
2
n(x)

and
Eqn(x) (p0(x)/qn(x))

2

are bounded are sufficient to ensure that the weak law of large numbers holds [24], and that expec-
tations can be consistently estimated by sample means.

Regularization In the proofs, we omit the regularization term. If the regularization constant
does not grow with n, then it mostly disappears in all the asymptotic expansions we consider.

Proof The proof follows the same principle as the proof of the Akaike information criterion
(AIC) [20, 25], i.e., two Taylor expansions, of the empirical unbiased log-likelihood L̂u and of the
generalization performance Lu, around θn.

We let denote ∆θ2 = θ̂n − θn. By proposition 1, ∆θ2 = Op(n
−1/2) (see [21] for precise definitions of

asymptotic notations “in probability”). From a second order Taylor expansion of Lu around θn, we
have:

Lu(θ̂n) = Lu(θn) + ∇Lu(θn)∆θ2 +
1

2
tr∇2Lu(θn)∆θ2∆θ

>
2 +Op(n

−3/2).

Taking expectations, we get:

EDL
u(θ̂n) = Lu(θn) + ∇Lu(θn)ED∆θ2 +

1

2
tr∇2Lu(θn)ED∆θ2∆θ

>
2 +O(n−3/2). (11)

Similarly, we get for the unbiased empirical log-likelihood:

L̂u(θ̂n) = L̂u(θn) + ∇L̂u(θn)>∆θ2 +
1

2
tr∇2L̂u(θn)∆θ2∆θ

>
2 +Op(n

−3/2)

= L̂u(θn) + ∇L̂u(θn)>∆θ2 +
1

2
tr∇2Lu(θn)∆θ2∆θ

>
2 +Op(n

−3/2)

11



EDL̂
u(θ̂n) = Lu(θn) + ED

(
∇L̂u(θn)>∆θ2

)
+

1

2
tr∇2Lu(θn)ED∆θ2∆θ

>
2 +O(n−3/2). (12)

By taking differences of Eq. (11) and Eq. (12), we get

EDL
u(θ̂n) − EDL̂

u(θ̂n) = ED

{
(∇Lu(θn) −∇L̂u(θn))>∆θ2

}
. (13)

A classical result in asymptotic theory [21] states that ∆θ2 = −J−1
n ∇L̂(θn)+Op(n

−1). We can thus

expand the sums defining ∇L̂u and ∇L̂ to obtain:

EDL
u(θ̂n) − EDL̂

u(θ̂n) = ED

{
1

n2

n∑

i=1

wiw
u
i ∇`(yi, xi, θn)>J−1

n ∇`(yi, xi, θn)

}
+O(n−3/2)

=
1

n2

n∑

i=1

∫
wi(x)p0(x, y)∇`(y, x, θn)>J−1

n ∇`(y, x, θn)dxdy +O(n−3/2).

Following the same argument than in the AIC/TIC proofs [20, 25], the quantity

1

n2

n∑

i=1

∫
wi(x)p0(x, y)∇`(y, x, θn)>J−1

n `(y, x, θn)dxdy

is consistently estimated by

1

n

(
1

n

n∑

i=1

wu
i wig

>
i (Ĵn)−1gi

)
.

Proposition 2 follows.

B Proof of Proposition 3

In this proof, we assume that θ̂n = θ̂n(x1, y1, . . . , xn, yn) is the weighted maximum likelihood esti-

mator obtained from the first n points, while θ̂n+1 = θ̂n+1(x1, y1, . . . , xn+1, yn+1) is the “one-step”

estimator on the first n+ 1 points, i.e., obtained after one full Newton step from θ̂n. Proposition 3
isolates the effect of the sampling density and weight qn+1 and wn+1, and computes an estimator
of the difference of the expected generalization errors of θ̂n and θ̂n+1, where expectation ED are
expectation over the first n+ 1 data points.

The principle of the proof is as follows: (a) expand Lu(θ̂n+1) around θn, (b) consistently estimate
all required quantities from the available data.

B.1 Taylor expansion of L
u(θ̂n+1)

Let ∆θ1 = θ̂n+1 − θ̂n = Op(n
−1) and ∆θ2 = θ̂n − θn = Op(n

−1/2).

A second order Taylor expansion around θ̂n leads to:

Lu(θ̂n+1) = Lu(θ̂n) + ∇Lu(θ̂n)>∆θ1 +
1

2
tr∇2Lu(θ̂n)∆θ1∆θ

>
1 +Op(n

−3).

12



We also have Taylor expansions of ∇Lu and ∇2Lu around θn:

∇Lu(θ̂n) = ∇Lu(θn) + ∇2Lu(θn)∆θ2 +
1

2
∇3Lu(θn) [∆θ2,∆θ2] +Op(n

−3/2)

∇2Lu(θ̂n) = ∇2Lu(θn) +Op(n
−1).

Putting everything together, we get (only keeping the terms of order equal or less than 2):

Lu(θ̂n+1) = Lu(θ̂n) + ∆θ>1 ∇Lu(θn) + ∆θ>1 ∇2Lu(θn)∆θ2 +

+
1

2
tr∇2Lu(θn)∆θ1∆θ

>
1

+
1

2
∆θ>1 ∇3Lu(θn) [∆θ2,∆θ2] +Op(n

−5/2).

Note that this expansion can be obtained directly from a third order Taylor expansion around θn,
and using θ̂n+1 − θn = ∆θ1 + ∆θ2. Taking expectations, we obtained the expected generalization
error of θ̂n+1:

EDL
u(θ̂n+1) = ED

{
Lu(θ̂n)

}
+ ED

{
∆θ>1 ∇Lu(θn)

}
︸ ︷︷ ︸

A1

+ED

{
∆θ>1 ∇2Lu(θn)∆θ2

}
︸ ︷︷ ︸

A2

+ED

{
1

2
tr∇2Lu(θn)∆θ1∆θ

>
1

}

︸ ︷︷ ︸
A3

+ED

{
1

2
∆θ>1 ∇3Lu(θn) [∆θ2,∆θ2]

}

︸ ︷︷ ︸
A4

+O(n−5/2). (14)

We can now expand the Newton step ∆θ1, which is equal to

∆θ1 = −
wn+1(xn+1)

n

(
∇2L̂(θ̂n) +

1

n
wn+1∇

2`(xn+1, θ̂n)

)−1

∇`(yn+1, xn+1, θ̂n)

= −
wn+1(xn+1)

n

(
Ĵn +

1

n
wn+1∇

2`(xn+1, θ̂n)

)−1

∇`(yn+1, xn+1, θ̂n).

In order to expand it, we need the following Taylor expansion:

∇`(yn+1, xn+1, θ̂n) = ∇`(yn+1, xn+1, θn) + ∇2`(yn+1, xn+1, θn)∆θ2

+
1

2
∇3`(yn+1, xn+1, θn)[∆θ2,∆θ2] +Op(n

−3/2).
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We then obtain:

∆θ1 = −
wn+1(xn+1)

n
Ĵ−1

n ∇`(yn+1, xn+1, θn)
︸ ︷︷ ︸

B1=Op(n−1)

−
wn+1(xn+1)

n
Ĵ−1

n ∇2`(yn+1, xn+1, θn)∆θ2
︸ ︷︷ ︸

B2=Op(n−3/2)

−
wn+1(xn+1)

2n
Ĵ−1

n ∇3`(yn+1, xn+1, θn)[∆θ2,∆θ2]
︸ ︷︷ ︸

B3=Op(n−2)

+
wn+1(xn+1)

2

n2
Ĵ−1

n ∇2`(yn+1, xn+1, θn)Ĵ−1
n ∇`(yn+1, xn+1, θn)

︸ ︷︷ ︸
B4=Op(n−2)

.

We let denote

L̂w(θ) =
1

n

n∑

i=1

p0(xi)

qi(xi)

qn+1(xi)

p0(xi)
wn+1(xi)`(yi, xi, θ)

=
1

n

n∑

i=1

ww
i `(yi, xi, θ)

Lw(θ) = EDL̂
w(θ) =

∫
p0(y|x)qn+1(x)wn+1(x)`(y, x, θ),

where

ww
i = wu

i wn+1(xi)
qn+1(xi)

p0(xi)
. (15)

We also use the notations:

Ju
n = ∇2Lu(θn)

Jw
n = ∇2Lw(θn).

We can now expand all the terms in Eq. (14):

(A1) EDA1 = (A11) −
1

n
∇Lu(θn)>(EDĴ

−1
n )∇Lw(θn)

(A12) −
1

n
∇Lu(θn)>ED

{
Ĵ−1

n ∇2Lw(θn)∆θ2

}

(A13) −
1

2n
∇Lu(θn)>J−1

n ∇3Lw(θn)ED∆θ2∆θ
>
2

(A14) +
1

n2
∇Lu(θn)>J−1

n

∫
p0(y|x)qn+1(x)wn+1(x)

2∇2`(x, θ)J−1
n ∇`(y, x, θn)

(A2) EDA2 = (A21)
1

n
tr∇2Lu(θn)ED

{
Ĵ−1

n ∇Lw(θn)∆θ>2

}

(A22) −
1

n
tr∇2Lu(θn)J−1

n ∇2Lw(θn)ED∆θ2∆θ
>
2

(A3) EDA3 =
1

2n2
tr∇2Lu(θn)

∫
wn+1(x)

2J−1
n ∇`(x, y, θn)∇`(x, y, θn)>J−1

n

(A4) EDA4 = −
1

2n
∇3Lu[J−1

n ∇Lw(θn), ED∆θ2θ
>
2 ].
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B.2 Consistent empirical estimates

In practice, we need to obtain, for the four terms (A1), (A2), (A3), A4, empirical estimates of all
quantities. For all terms of order O(n−2), we can immediately replace expectations by consistent
estimators (sample means). However for terms of higher order, we need to take into account the
fact that we use empirical estimates and that those estimators may lead to additional unwanted
correlations (this is essentially the same effect than the appearance of the factor 1 instead of 1/2 in
AIC).

This may only be the case for the first three terms of A1 and the first term of A2.

We can first estimate A3 as:

A3 =
1

2n3

n∑

i=1

wn+1(xi)w
w
i g

>
i Ĵ

−1
n Ĵu

n Ĵ
−1
n gi (16)

and A14 as

A14 =
1

n3
∇Lu(θ̂n)>Ĵ−1

n

n∑

i=1

wn+1(xi)w
w
i HiĴ

−1
n gi (17)

We have up to order O(n−1) (from Taylor expansions):

∇L̂u(θ̂n) = ∇L̂u(θn) + ∇2L̂u(θn)∆θ2 +
1

2
∇3L̂u(θn)[∆θ2∆θ

>
2 ] +Op(n

−3/2)

∇L̂w(θ̂n) = ∇L̂w(θn) + ∇2L̂w(θn)∆θ2 +
1

2
∇3L̂w(θn)[∆θ2∆θ

>
2 ] +Op(n

−3/2).

which can be put together as:

∇L̂w(θ̂n)>Ĵ−1
n ∇L̂u(θ̂n) = ∇L̂w(θn)>Ĵ−1

n ∇L̂u(θn)

+∆θ>2 ∇2L̂u(θn)Ĵ−1
n ∇L̂w(θn)

+∆θ>2 ∇2L̂w(θn)Ĵ−1
n ∇L̂u(θn)

+∆θ>2 ∇2L̂w(θn)Ĵ−1
n ∇2L̂u(θn)∆θ2

+
1

2
∇3L̂w(θn)[Ĵ−1

n ∇L̂u(θn),∆θ2∆θ
>
2 ]

+
1

2
∇3L̂u(θn)[Ĵ−1

n ∇L̂w(θn),∆θ2∆θ
>
2 ] +Op(n

−3/2).

For all terms which are Op(n
−1), we can replace sample means by expectations, but we cannot for

the first three terms which are Op(n
−1/2):

(C) ∇L̂w(θ̂n)>Ĵ−1
n ∇L̂u(θ̂n) = (C1) ∇L̂w(θn)>Ĵ−1

n ∇L̂u(θn)

(C2) + ∆θ>2 ∇2L̂u(θn)Ĵ−1
n ∇L̂w(θn)

(C3) + ∆θ>2 ∇2L̂w(θn)Ĵ−1
n ∇L̂u(θn)

(C4) + ∆θ>2 ∇2Lw(θn)J−1
n ∇2Lu(θn)∆θ2 +

(C4) +
1

2
∇3Lw(θn)[J−1

n ∇Lu(θn),∆θ2∆θ
>
2 ]

(C4) +
1

2
∇3Lu(θn)[J−1

n ∇Lw(θn),∆θ2∆θ
>
2 ] +O(n−3/2).
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The expectation of the last three terms is equal to:

EDC4 = tr
(
ED∆θ2∆θ

>
2

)
∇2Lw(θn)J−1

n ∇2Lu(θn)

+
1

2
∇3Lw(θn)[J−1

n ∇Lu(θn), ED∆θ2∆θ
>
2 ]

+
1

2
∇3Lu(θn)[J−1

n ∇Lw(θn), ED∆θ2∆θ
>
2 ]

= −n(A22 +A13 +A4).

For the following expansions, we need the classical expression Ĵ−1
n = J−1

n − J−1
n (Ĵn − Jn)J−1

n +
Op(n

−1): The expectation of the first term is:

EDC1 = ED∇L̂
w(θn)>Ĵ−1

n ∇L̂u(θn)

= (C11) ED∇L
w(θn)>Ĵ−1

n ∇Lu(θn)

(C12) + ED∇L̂
w(θn)>J−1

n ∇L̂u(θn) − ED∇L
w(θn)>J−1

n ∇Lu(θn)

(C13) − ED(∇L̂w(θn) −∇Lw(θn))>J−1
n (Ĵn − Jn)J−1

n ∇Lu(θn)

(C14) − ED(∇L̂u(θn) −∇Lu(θn))>J−1
n (Ĵn − Jn)J−1

n ∇Lw(θn)

= −nA11 + C12 + C13 + C14.

In order to estimate C12, C13 and C14, we simply need to expand the sums and take expectations, and
replace expectations by sample means (which are consistent estimates by the law of large numbers
for non indentically distributed data (see, .e.g, triangular arrays in [24])).

C12 =
1

n2

n∑

i=1

wu
i w

w
i g

>
i Ĵ

−1
n gi −

1

n
∇L̂w(θ̂n)>Ĵ−1

n ∇L̂u(θ̂n)

C14 = −ED(∇L̂u(θn) − Lu(θn))>J−1
n (Ĵn − Jn)J−1

n ∇Lw(θn)

= −ED

(
∇wL(θn)>J−1

n (∇2L̂(θn) −∇2L(θn) + ∇3L(θn)[∆θ2])J
−1
n ∇L̂u(θn)

)

= −
1

n2
∇wL(θn)>Ĵ−1

n

n∑

i=1

wiw
u
i HiĴ

−1
n gi

+
1

n2
∇3L[Ĵ−1

n ∇Lw(θ̂n), Ĵ−1
n

n∑

i=1

wiw
u
i gig

>
i Ĵ

−1
n ]

C13 = −
1

n2
∇uL(θn)>Ĵ−1

n

n∑

i=1

wiw
w
i HiĴ

−1
n gi

+
1

n2
∇3L[Ĵ−1

n ∇Lu(θ̂n), Ĵ−1
n

n∑

i=1

wiw
w
i gig

>
i Ĵ

−1
n ]
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With the same technique, the expectation of the second term is

EDC2 = ED∆θ>2 ∇2L̂u(θn)Ĵ−1
n ∇L̂w(θn)

= ED∆θ>2 ∇2Lu(θn)Ĵ−1
n ∇Lw(θn)

+ED∆θ>2 (∇2L̂u(θn) −∇2Lu(θn))Ĵ−1
n ∇L̂w(θn)

+ED∆θ>2 ∇2Lu(θn)Ĵ−1
n (∇L̂w(θn) −∇Lw(θn))

= tr∇2Lu(θn)ED

{
Ĵ−1

n ∇Lw(θn)∆θ>2

}

+ED∆θ>2 (∇2L̂u(θn) −∇2Lu(θn))J−1
n ∇Lw(θn)

+ED∆θ>2 ∇2Lu(θn)J−1
n (∇L̂w(θn) −∇Lw(θn))

= tr∇2Lu(θn)ED

{
Ĵ−1

n ∇Lw(θn)∆θ>2

}

−
1

n

n∑

i=1

EDw
u
i wig

>
i J

−1
n HiJ

−1
n ∇Lw(θn)

−
1

n

n∑

i=1

EDw
w
i wig

>
i J

−1
n Ju

nJ
−1
n gi

= −nA21

−
1

n

n∑

i=1

EDw
u
i wig

>
i J

−1
n HiJ

−1
n ∇Lw(θn)

−
1

n

n∑

i=1

EDw
w
i wig

>
i J

−1
n Ju

nJ
−1
n gi.

With the same technique, the expectation of the third term is obtained similarly:

EDC3 = ED∆θ>2 ∇2L̂w(θn)Ĵ−1
n ∇L̂u(θn)

= ED∆θ>2 ∇2Lw(θn)Ĵ−1
n ∇Lu(θn)

+ED∆θ>2 (∇2L̂w(θn) −∇2Lw(θn))Ĵ−1
n ∇L̂u(θn)

+ED∆θ>2 ∇2Lw(θn)Ĵ−1
n (∇L̂u(θn) −∇Lu(θn))

= tr∇2Lw(θn)ED

{
Ĵ−1

n ∇Lu(θn)∆θ>2

}

+ED∆θ>2 (∇2L̂w(θn) −∇2Lw(θn))J−1
n ∇Lu(θn)

+ED∆θ>2 ∇2Lw(θn)J−1
n (∇L̂u(θn) −∇Lu(θn))

= tr∇2Lw(θn)ED

{
Ĵ−1

n ∇Lu(θn)∆θ>2

}

−
1

n

n∑

i=1

EDw
w
i wig

>
i J

−1
n HiJ

−1
n ∇Lu(θn)

−
1

n

n∑

i=1

EDw
u
i wig

>
i J

−1
n Jw

n J
−1
n gi

= −nA12

−
1

n

n∑

i=1

EDw
w
i wig

>
i J

−1
n HiJ

−1
n ∇Lu(θn)

−
1

n

n∑

i=1

EDw
u
i wig

>
i J

−1
n Jw

n J
−1
n gi .
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By putting everything together and noting that many terms cancel, we finally obtain the following
criterion:

−Ĥ =

(
1

n
+

1

n2

)
∇L̂w(θ̂n)>Ĵ−1

n ∇L̂u(θ̂n)

(J2) +
1

n3

n∑

i=1

wiw
u
i g

>
i Ĵ

−1
n Ĵw

n Ĵ
−1
n gi

(J3) −
1

n3

n∑

i=1

wu
i w

w
i g

>
i Ĵ

−1
n gi

(J4) +
2

n3

n∑

i=1

wu
i wig

>
i Ĵ

−1
n HiĴ

−1
n ∇L̂w(θ̂n)

(J5) +
1

n3

n∑

i=1

wiw
w
i g

>
i Ĵ

−1
n Ju

n Ĵ
−1
n gi

(J6) −
1

2n3

n∑

i=1

wn+1(xi)w
w
i g

>
i Ĵ

−1
n Ĵu

n Ĵ
−1
n gi

(J7) −
1

n3
∇3L̂[Ĵ−1

n ∇L̂w(θ̂n), Ĵ−1
n

n∑

i=1

wiw
u
i gig

>
i Ĵ

−1
n ]

(J8) −
1

n3
∇Lu(θ̂n)>Ĵ−1

n

n∑

i=1

wn+1(xi)w
w
i HiĴ

−1
n gi

(J9) +
2

n3

n∑

i=1

ww
i wig

>
i Ĵ

−1
n HiĴ

−1
n ∇L̂u(θ̂n)

(J10) −
1

n3
∇3L̂[Ĵ−1

n ∇L̂u(θ̂n), Ĵ−1
n

n∑

i=1

wiw
w
i gig

>
i Ĵ

−1
n ]

where ∇L̂w(θ̂n) = 1
n

∑
i w

w
i gi and ∇L̂u(θ̂n) = 1

n

∑
i w

u
i gi, which is just that EDĤ = EDL

u(θ̂n) −

EDL
u(θ̂n+1).

Proposition 3 follows from expressing everything in terms of ww
i .

C Proof of Proposition 4

The proof follows 4 steps: (1) consistency of θ̂n, (2) convergence at rate Op(n
−1/2), (3) application

of weak laws of large numbers for dependent data, (4) final expansion.

C.1 Step 1

When the model is well-specified, the any sampling distribution for x leads to the population ML
estimator, as long as the labels yi are i.i.d. given the input points xi. Thus, in probability, the
estimator θ̂n converges to the maximum likelihood estimator θ0. We are currently working out a
proof for the misspecified case and other weighting schemes than the unbiased reweighting scheme.
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C.2 Step 2

From the consistency of θ̂n, we can use a Taylor expansion to obtain:

∇L̂(θ0) + (∇2L̂(θ0) + oP (1))(θ̂n − θ0) = 0. (18)

From our compactness assumption, the Hessian of the log-likelihood is bounded away from zero and
from infinity, i.e., there exists a � 0 and A such that a 4 ∇2L̂(θ0) 4 A (partial order of symmetric

matrices). We thus obtain that ED‖θ̂n − θ0‖
2 is bounded by a constant times ED‖L̂(θ0)‖

2.

We can now expand L̂(θ0) = 1
n

∑n
i=1 wi∇`(yi, xi, θ0). Since we have chosen the unbiased reweighting

scheme, the expectation of each term is equal to zero. We have:

sn = var

{
n∑

i=1

wi∇`(yi, xi, θ0)

}

= var(x1,y1,...,xn−1,yn−1)

{
n−1∑

i=1

wi∇`(yi, xi, θ0) + 0

}

+E(x1,y1,...,xn−1,yn−1) varxn,yn|θ̂n−1
{wn∇`(yn, xn, θ0)}

= sn−1 + Exn,yn|θ̂n−1

{
w2

n∇`(yn, xn, θ0)
>∇`(yn, xn, θ0)

}

= sn−1 +

∫
p0(x, y)

q(x|θ̂n−1)
∇`(y, x, θ0)

>∇`(y, x, θ0)dxdy

= sn−1 +

∫
p0(x, y)

q(x|θ0)
∇`(y, x, θ0)

>∇`(y, x, θ0)dxdy +A(θ̂n−1 − θ0),

by a Taylor expansion where A involves the first derivative of q(x|θ). We then get sn = sn−1 +

B + o(1), where B =
∫ p0(x,y)

q(x|θ0)
∇`(y, x, θ0)

>∇`(y, x, θ0)dxdy. By Cesaro’s theorem, we get that sn/n

converges to B. And thus ED‖θ̂n − θ0‖
2 = Op(n

−1), from which we get θ̂n − θ0 = Op(n
−1/2).

C.3 Step 3

In order to apply laws of large numbers which will allow us to use sample means as consistent
estimators of expectations, we simply need to prove that the variance of the average goes to zero [24]
(this implies convergence in probability). By using the same type of expansions as in Step 2, we
obtain var L̂(θ0) = O(n−1), and thus L̂(θ0) converges to L(θ0) in probability.

C.4 Step 4

Looking at the expansion in Section C.2, we can prove that: n var L̂(θ0) converges to

∫
p0(x, y)

q(x|θ0)
∇`(y, x, θ0)

>∇`(y, x, θ0)dxdy,

which leads to proposition 4. In addition, a further calculation would show that the next term in
the expansion has order n−2 log n instead of n−2.
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