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Outline

• Supervised learning and regularization

– Kernel methods vs. sparse methods

• MKL: Multiple kernel learning

– Non linear sparse methods

• HKL: Hierarchical kernel learning

– Non linear variable selection

• Extensions

– Structured sparsity, sparse PCA (dictionary learning)



Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f : X → Y:

n
∑

i=1

ℓ(yi, f(xi)) +
µ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss

2. Function space / norm



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory (see, e.g., Wahba, 1990; Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004)
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• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory (see, e.g., Wahba, 1990; Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004)

2. Sparsity-inducing norms

– Usually restricted to linear predictors on vectors f(x) = w⊤x

– Main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|

– Perform model selection as well as regularization

– Theory “in the making”



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

µ

2
‖w‖2

2
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• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

µ

2
‖w‖2

2

• Representer theorem (Kimeldorf and Wahba, 1971): solution must

be of the form w =
∑n

i=1 αiΦ(xi)

– Equivalent to solving: min
α∈Rn

n
∑

i=1

ℓ(yi, (Kα)i) +
µ

2
α⊤Kα

– Kernel matrix Kij = k(xi, xj) = Φ(xi)
⊤Φ(xj)



Kernel methods: regularization by ℓ2-norm

• Running time O(n2κ + n3) where κ complexity of one kernel

evaluation (often much less) - independent from p

• Kernel trick: implicit mapping if κ = o(p) by using only k(xi, xj)

instead of Φ(xi)

• Examples:

– Polynomial kernel: k(x, y) = (1 + x⊤y)d ⇒ F = polynomials

– Gaussian kernel: k(x, y) = e−α‖x−y‖2
2 ⇒F = smooth functions

– Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)



Kernel methods: regularization by ℓ2-norm

• Running time O(n2κ + n3) where κ complexity of one kernel

evaluation (often much less) - independent from p

• Kernel trick: implicit mapping if κ = o(p) by using only k(xi, xj)

instead of Φ(xi)

• Examples:

– Polynomial kernel: k(x, y) = (1 + x⊤y)d ⇒ F = polynomials

– Gaussian kernel: k(x, y) = e−α‖x−y‖2
2 ⇒F = smooth functions

– Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

• + : Implicit non linearities and high-dimensionality

• − : Problems of interpretability, dimension too high?



ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

n
∑

i=1

ℓ(yi, w
⊤xi) + µ‖w‖1

Error on data + Regularization

• square loss ⇒ basis pursuit (signal processing) (Chen et al., 2001),

Lasso (statistics/machine learning) (Tibshirani, 1996)



ℓ2-norm vs. ℓ1-norm

• ℓ1-norms lead to sparse/interpretable models

• ℓ2-norms can be run implicitly with very large feature spaces



ℓ2-norm vs. ℓ1-norm

• ℓ1-norms lead to sparse/interpretable models

• ℓ2-norms can be run implicitly with very large feature spaces

• Algorithms:

– Smooth convex optimization vs. nonsmooth convex optimization

– First-order methods (Fu, 1998; Wu and Lange, 2008)

– Homotopy methods (Markowitz, 1956; Efron et al., 2004)

• Theory:

– Advantages of parsimony?

– Consistent estimation of the support?



Lasso - Two main recent theoretical results

1. Support recovery condition (Meinshausen and Bühlmann, 2006;

Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin,

2007): the Lasso is sign-consistent if and only if

‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1,

where Q = 1
n

∑n
i=1 xix

⊤
i ∈ R

p×p.
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‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1,

where Q = 1
n

∑n
i=1 xix

⊤
i ∈ R

p×p.

• The Lasso alone cannot find in general the good model

• Two step-procedures

– Adaptive Lasso (Zou, 2006; van de Geer et al., 2010)

⇒ penalize by
∑p

j=1
|wj|

|ŵj|

– Resampling (Bach, 2008a; Meinshausen and Bühlmann, 2008)

⇒ use the bootstrap to select the model



Lasso - Two main recent theoretical results

1. Support recovery condition (Meinshausen and Bühlmann, 2006;

Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin,

2007): the Lasso is sign-consistent if and only if
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2. (sub-)exponentially many irrelevant variables (Zhao and Yu,

2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008;

Meinshausen and Yu, 2009): under appropriate assumptions,

consistency is possible as long as

log p = O(n)
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Multiple kernel learning (MKL)

(Lanckriet et al., 2004; Bach et al., 2004a)

• Sparse methods are most often linear

• Sparsity with non-linearities

– replace f(x) =
∑p

j=1 w⊤
j xj with xj ∈ R and wj ∈ R

– by f(x) =
∑p

j=1 w⊤
j Φj(x) with Φj(x) ∈ Fj an wj ∈ Fj

• Replace the ℓ1-norm
∑p

j=1 |wj| by “block” ℓ1-norm
∑p

j=1 ‖wj‖2

• Remarks

– Hilbert space extension of the group Lasso (Yuan and Lin, 2006)

– Alternative sparsity-inducing norms (Ravikumar et al., 2008)



Multiple kernel learning (MKL)

(Lanckriet et al., 2004; Bach et al., 2004a)

• Multiple feature maps / kernels on x ∈ X :

– p “feature maps” Φj : X 7→ Fj, j = 1, . . . , p.

– Minimization with respect to w1 ∈ F1, . . . , wp ∈ Fp

– Predictor: f(x) = w1
⊤Φ1(x) + · · · + wp

⊤Φp(x)

x

Φ1(x)⊤ w1

ր ... ... ց

−→ Φj(x)⊤ wj −→

ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

– Generalized additive models (Hastie and Tibshirani, 1990)

– Link between regularization and kernel matrices



Regularization for multiple features

x

Φ1(x)⊤ w1

ր ... ... ց

−→ Φj(x)⊤ wj −→

ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖
2
2 is equivalent to using K =

∑p
j=1 Kj

– Summing kernels is equivalent to concatenating feature spaces



Regularization for multiple features

x

Φ1(x)⊤ w1

ր ... ... ց

−→ Φj(x)⊤ wj −→

ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖
2
2 is equivalent to using K =

∑p
j=1 Kj

• Regularization by
∑p

j=1 ‖wj‖2 imposes sparsity at the group level

• Main questions when regularizing by block ℓ1-norm:

1. Algorithms (Bach et al., 2004a,b; Rakotomamonjy et al., 2008)

2. Analysis of sparsity inducing properties (Bach, 2008b)

3. Sparse kernel combinations
∑p

j=1 ηjKj (Bach et al., 2004a)

4. Application to data fusion and hyperparameter learning
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• Question: is it possible to build a sparse algorithm that can learn

from more than 1080 features?



Lasso - Two main recent theoretical results

1. Support recovery condition

2. (sub-)exponentially many irrelevant variables (Zhao and Yu,

2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008;

Meinshausen and Yu, 2009): under appropriate assumptions,

consistency is possible as long as

log p = O(n)

• Question: is it possible to build a sparse algorithm that can learn

from more than 1080 features?

– Some type of recursivity/factorization is needed!



Hierarchical kernel learning (Bach, 2008c)

• Many kernels can be decomposed as a sum of many “small” kernels

indexed by a certain set V : k(x, x′) =
∑

v∈V

kv(x, x′)

• Example with x = (x1, . . . , xq) ∈ R
q (⇒ non linear variable selection)

– Gaussian/ANOVA kernels: p = #(V ) = 2q

q
∏

j=1

(

1 + e−α(xj−x′
j)

2
)

=
∑

J⊂{1,...,q}

∏

j∈J

e−α(xj−x′
j)

2

=
∑

J⊂{1,...,q}

e−α‖xJ−x′
J‖

2
2

– NB: decomposition is related to Cosso (Lin and Zhang, 2006)

• Goal: learning sparse combination
∑

v∈V ηvkv(x, x′)

• Universally consistent non-linear variable selection requires all subsets



Restricting the set of active kernels

• Assume one separate predictor wv for each kernel kv

– Final prediction: f(x) =
∑

v∈V w⊤
v Φv(x)

• With flat structure

– Consider block ℓ1-norm:
∑

v∈V ‖wv‖2

– cannot avoid being linear in p = #(V ) = 2q

• Using the structure of the small kernels

1. for computational reasons

2. to allow more irrelevant variables



Restricting the set of active kernels

• V is endowed with a directed acyclic graph (DAG) structure:

select a kernel only after all of its ancestors have been selected

• Gaussian kernels: V = power set of {1, . . . , q} with inclusion DAG

– Select a subset only after all its subsets have been selected

23 341413 24

123 234124 134

1234

12

1 2 3 4



DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

‖wD(v)‖2 =
∑

v∈V





∑

t∈D(v)

‖wt‖
2
2





1/2

• Main property: If v is selected, so are all its ancestors

23 341413 24

123 234124 134

1234

12

1 2 3 4 2 3 4

12 23 3414 24

234124

13

134

1234

123

1



DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

‖wD(v)‖2 =
∑

v∈V





∑

t∈D(v)

‖wt‖
2
2





1/2

• Main property: If v is selected, so are all its ancestors

• Hierarchical kernel learning (Bach, 2008c) :

– polynomial-time algorithm for this norm

– necessary/sufficient conditions for consistent kernel selection

– Scaling between p, q, n for consistency

– Applications to variable selection or other kernels



Scaling between p, n

and other graph-related quantities
n = number of observations

p = number of vertices in the DAG

deg(V ) = maximum out degree in the DAG

num(V ) = number of connected components in the DAG

• Proposition (Bach, 2009): Assume consistency condition satisfied,

Gaussian noise and data generated from a sparse function, then the

support is recovered with high-probability as soon as:

log deg(V ) + log num(V ) = O(n)



Scaling between p, n

and other graph-related quantities
n = number of observations

p = number of vertices in the DAG

deg(V ) = maximum out degree in the DAG

num(V ) = number of connected components in the DAG

• Proposition (Bach, 2009): Assume consistency condition satisfied,

Gaussian noise and data generated from a sparse function, then the

support is recovered with high-probability as soon as:

log deg(V ) + log num(V ) = O(n)

• Unstructured case: num(V ) = p ⇒ log p = O(n)

• Power set of q elements: deg(V ) = q ⇒ log q = log log p = O(n)



Mean-square errors (regression)

dataset n p k #(V ) L2 greedy MKL HKL
abalone 4177 10 pol4 ≈107 44.2±1.3 43.9±1.4 44.5±1.1 43.3±1.0
abalone 4177 10 rbf ≈1010 43.0±0.9 45.0±1.7 43.7±1.0 43.0±1.1
boston 506 13 pol4 ≈109 17.1±3.6 24.7±10.8 22.2±2.2 18.1±3.8
boston 506 13 rbf ≈1012 16.4±4.0 32.4±8.2 20.7±2.1 17.1±4.7

pumadyn-32fh 8192 32 pol4 ≈1022 57.3±0.7 56.4±0.8 56.4±0.7 56.4±0.8
pumadyn-32fh 8192 32 rbf ≈1031 57.7±0.6 72.2±22.5 56.5±0.8 55.7±0.7
pumadyn-32fm 8192 32 pol4 ≈1022 6.9±0.1 6.4±1.6 7.0±0.1 3.1±0.0
pumadyn-32fm 8192 32 rbf ≈1031 5.0±0.1 46.2±51.6 7.1±0.1 3.4±0.0
pumadyn-32nh 8192 32 pol4 ≈1022 84.2±1.3 73.3±25.4 83.6±1.3 36.7±0.4
pumadyn-32nh 8192 32 rbf ≈1031 56.5±1.1 81.3±25.0 83.7±1.3 35.5±0.5
pumadyn-32nm 8192 32 pol4 ≈1022 60.1±1.9 69.9±32.8 77.5±0.9 5.5±0.1
pumadyn-32nm 8192 32 rbf ≈1031 15.7±0.4 67.3±42.4 77.6±0.9 7.2±0.1



Extensions to other kernels

• Extension to graph kernels, string kernels, pyramid match kernels

ABBABAAAA AAB

BBBAABAA

BA

BAB BBA BBBBAA

• Exploring large feature spaces with structured sparsity-inducing norms

– Opposite view than traditional kernel methods

– Interpretable models

• Other structures than hierarchies or DAGs



Grouped variables

• Supervised learning with known groups:

– The ℓ1-ℓ2 norm

∑

G∈G

‖wG‖2 =
∑

G∈G

(

∑

j∈G

w2
j

)1/2
, with G a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero non-overlapping groups of variables

(as opposed to single variables for the ℓ1 norm)



Grouped variables

• Supervised learning with known groups:

– The ℓ1-ℓ2 norm

∑

G∈G

‖wG‖2 =
∑

G∈G

(

∑

j∈G

w2
j

)1/2
, with G a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero non-overlapping groups of variables

(as opposed to single variables for the ℓ1 norm)

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups G is not a partition anymore?



Structured Sparsity (Jenatton et al., 2009a)

• When penalizing by the ℓ1-ℓ2 norm

∑

G∈G

‖wG‖2 =
∑

G∈G

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

• Intuitively, the zero pattern of w is given by

{j ∈ {1, . . . , p}; wj = 0} =
⋃

G∈G′

G for some G′ ⊆ G.

• This intuition is actually true and can be formalized



Examples of set of groups G (1/3)

• Selection of contiguous patterns on a sequence, p = 6

– G is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Examples of set of groups G (2/3)

• Selection of rectangles on a 2-D grids, p = 25

– G is the set of blue/green groups (with their complements, not

displayed)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups G (3/3)

• Selection of diamond-shaped patterns on a 2-D grids, p = 25

– It is possible to extent such settings to 3-D space, or more complex

topologies

– Applications to sparse PCA / dictionary learning



Structured matrix factorizations (Bach et al., 2008)

• Data (x1, . . . ,xn) ∈ R
p×n to decompose in D = (d1, . . . ,dk)

min
D,α1,...,αn

n
∑

i=1

‖xi −Dαi‖
2
2 + µ

n
∑

i=1

‖αi‖• s.t. ∀j, ‖dj‖⋆ 6 1

• αi decomposition coefficients (or “code”), dj dictionary elements

• Two related/equivalent problems:

– Sparse PCA = sparse dictionary (ℓ1-norm on dj)

– Dictionary learning = sparse decompositions (ℓ1-norm on αi)

(Olshausen and Field, 1997; Elad and Aharon, 2006)

• Structured regularization on dj or αi (Jenatton, Obozinski, and

Bach, 2009b; Jenatton, Mairal, Obozinski, and Bach, 2010)



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task

20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

45

Dictionary size

%
 C

or
re

ct
 c

la
ss

ifi
ca

tio
n

 

 

raw data
PCA
NMF
SPCA
shared−SPCA
SSPCA
shared−SSPCA



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Hierarchical norms on decomposition coefficients αi

– Equivalent to assume tree-structure among dictionary elements

– Efficient optimization through proximal methods

• Modelling of text corpora

– Each document is modelled through word counts

– Low-rank matrix factorization of word-document matrix

• Experiments:

– Qualitative: NIPS abstracts (1714 documents, 8274 words)

– Quantitative: newsgroup articles (1425 documents, 13312 words)



Modelling of text corpora - Dictionary tree



Modelling of text corpora

• Comparison on predicting newsgroup article subjects
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Conclusion

• Structured sparsity

– Sparsity-inducing norms

– Supervised learning: non-linear variable selection

– Unsupervised learning: dictionary learning

• Further/current work

– Universal consistency of non-linear variable selection

– Algorithms

– Norm design, norms on matrices

– Applications to computer vision, audio, neuroscience
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