Hierarchical kernel learning

Francis Bach

Willow project, INRIA - Ecole Normale Supérieure

March 2010

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Non linear variable selection
- Extensions
 - Structured sparsity, sparse PCA (dictionary learning)

Supervised learning and regularization

- Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, $i = 1, \dots, n$
- Minimize with respect to function $f : \mathcal{X} \to \mathcal{Y}$:

- Two theoretical/algorithmic issues:
 - 1. Loss
 - 2. Function space / norm

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:
 - 1. Euclidean and Hilbertian norms (i.e., ℓ^2 -norms)
 - Non linear predictors
 - Non parametric supervised learning and kernel methods
 - Well developped theory (see, e.g., Wahba, 1990; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:
 - 1. Euclidean and Hilbertian norms (i.e., ℓ^2 -norms)
 - Non linear predictors
 - Non parametric supervised learning and kernel methods
 - Well developped theory (see, e.g., Wahba, 1990; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)
 - 2. Sparsity-inducing norms
 - Usually restricted to linear predictors on vectors $f(x) = w^\top x$
 - Main example: ℓ_1 -norm $||w||_1 = \sum_{i=1}^p |w_i|_i$
 - Perform model selection as well as regularization
 - Theory "in the making"

- Data: $x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, ..., n$, with features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$ - Predictor $f(x) = w^{\top} \Phi(x)$ linear in the features
- Optimization problem: $\lim_{w \in \mathbb{R}^p} \sum_{n=1}^{n}$

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(y_i, w^{\top} \Phi(x_i)) + \frac{\mu}{2} \|w\|_2^2$$

• Data: $x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, ..., n$, with features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$ - Predictor $f(x) = w^{\top} \Phi(x)$ linear in the features

• Optimization problem:
$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(y_i, w^\top \Phi(x_i)) + \frac{\mu}{2} ||w||_2^2$$

• Representer theorem (Kimeldorf and Wahba, 1971): solution must be of the form $w = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$

- Equivalent to solving:
$$\lim_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \ell(y_i, (K\alpha)_i) + \frac{\mu}{2} \alpha^\top K \alpha$$

- Kernel matrix $K_{ij} = k(x_i, x_j) = \Phi(x_i)^\top \Phi(x_j)$

- Running time $O(n^2\kappa + n^3)$ where κ complexity of one kernel evaluation (often much less) independent from p
- Kernel trick: implicit mapping if $\kappa = o(p)$ by using only $k(x_i, x_j)$ instead of $\Phi(x_i)$
- Examples:
 - Polynomial kernel: $k(x,y) = (1 + x^{\top}y)^d \Rightarrow \mathcal{F} = \text{polynomials}$
 - Gaussian kernel: $k(x,y) = e^{-\alpha ||x-y||_2^2} \implies \mathcal{F} = \text{smooth functions}$
 - Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

- Running time $O(n^2\kappa + n^3)$ where κ complexity of one kernel evaluation (often much less) independent from p
- Kernel trick: implicit mapping if $\kappa = o(p)$ by using only $k(x_i, x_j)$ instead of $\Phi(x_i)$
- Examples:
 - Polynomial kernel: $k(x,y) = (1 + x^{\top}y)^d \Rightarrow \mathcal{F} = \text{polynomials}$
 - Gaussian kernel: $k(x, y) = e^{-\alpha ||x-y||_2^2} \Rightarrow \mathcal{F} = \text{smooth functions}$
 - Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)
- + : Implicit non linearities and high-dimensionality
- — : Problems of interpretability, dimension too high?

ℓ_1 -norm regularization (linear setting)

- Data: covariates $x_i \in \mathbb{R}^p$, responses $y_i \in \mathcal{Y}$, $i = 1, \dots, n$
- Minimize with respect to loadings/weights $w \in \mathbb{R}^p$:

$$\sum_{i=1}^{n} \ell(y_i, w^{\top} x_i) + \mu \|w\|_1$$

Error on data + Regularization

 square loss ⇒ basis pursuit (signal processing) (Chen et al., 2001), Lasso (statistics/machine learning) (Tibshirani, 1996)

ℓ^2 -norm vs. ℓ^1 -norm

- ℓ^1 -norms lead to sparse/interpretable models
- ℓ^2 -norms can be run implicitly with very large feature spaces

ℓ^2 -norm vs. ℓ^1 -norm

- ℓ^1 -norms lead to **sparse**/interpretable models
- ℓ^2 -norms can be run implicitly with very large feature spaces
- Algorithms:
 - Smooth convex optimization vs. nonsmooth convex optimization
 - First-order methods (Fu, 1998; Wu and Lange, 2008)
 - Homotopy methods (Markowitz, 1956; Efron et al., 2004)
- Theory:
 - Advantages of parsimony?
 - Consistent estimation of the support?

 Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

 $\|\mathbf{Q}_{\mathbf{J}^{c}\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leq 1,$

where $\mathbf{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$.

 Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

 $\|\mathbf{Q}_{\mathbf{J}^{c}\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leq 1,$

where $\mathbf{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$.

- The Lasso alone cannot find in general the good model
- Two step-procedures
 - Adaptive Lasso (Zou, 2006; van de Geer et al., 2010) \Rightarrow penalize by $\sum_{j=1}^{p} \frac{|w_j|}{|\hat{w}_j|}$
 - Resampling (Bach, 2008a; Meinshausen and Bühlmann, 2008) \Rightarrow use the bootstrap to select the model

 Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

 $\|\mathbf{Q}_{\mathbf{J}^{c}\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leq 1,$

where $\mathbf{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$.

(sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Non linear variable selection
- Extensions
 - Structured sparsity, sparse PCA (dictionary learning)

Multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004a)

- Sparse methods are most often linear
- Sparsity with non-linearities

- replace
$$f(x) = \sum_{j=1}^{p} w_j^{\top} x_j$$
 with $x_j \in \mathbb{R}$ and $w_j \in \mathbb{R}$

- by
$$f(x) = \sum_{j=1}^{p} w_j^{\top} \Phi_j(x)$$
 with $\Phi_j(x) \in \mathcal{F}_j$ an $w_j \in \mathcal{F}_j$

- Replace the ℓ^1 -norm $\sum_{j=1}^p |w_j|$ by "block" ℓ^1 -norm $\sum_{j=1}^p |w_j|_2$
- Remarks
 - Hilbert space extension of the group Lasso (Yuan and Lin, 2006)
 - Alternative sparsity-inducing norms (Ravikumar et al., 2008)

Multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004a)

- Multiple feature maps / kernels on $x \in \mathcal{X}$:
 - p "feature maps" $\Phi_j : \mathcal{X} \mapsto \mathcal{F}_j, j = 1, \dots, p$.
 - Minimization with respect to $w_1 \in \mathcal{F}_1, \ldots, w_p \in \mathcal{F}_p$
 - Predictor: $f(x) = w_1^{\top} \Phi_1(x) + \dots + w_p^{\top} \Phi_p(x)$

- Generalized additive models (Hastie and Tibshirani, 1990)
- Link between regularization and kernel matrices

Regularization for multiple features

- Regularization by $\sum_{j=1}^{p} \|w_j\|_2^2$ is equivalent to using $K = \sum_{j=1}^{p} K_j$
 - Summing kernels is equivalent to concatenating feature spaces

Regularization for multiple features

- Regularization by $\sum_{j=1}^{p} \|w_j\|_2^2$ is equivalent to using $K = \sum_{j=1}^{p} K_j$
- Regularization by $\sum_{j=1}^{p} \|w_j\|_2$ imposes sparsity at the group level
- Main questions when regularizing by block ℓ^1 -norm:
 - 1. Algorithms (Bach et al., 2004a,b; Rakotomamonjy et al., 2008)
 - 2. Analysis of sparsity inducing properties (Bach, 2008b)
 - 3. Sparse kernel combinations $\sum_{j=1}^{p} \eta_j K_j$ (Bach et al., 2004a)
 - 4. Application to data fusion and hyperparameter learning

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Non linear variable selection
- Extensions
 - Structured sparsity, sparse PCA (dictionary learning)

- 1. Support recovery condition
- (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

- 1. Support recovery condition
- (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

• Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?

- 1. Support recovery condition
- (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

- Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?
 - Some type of recursivity/factorization is needed!

Hierarchical kernel learning (Bach, 2008c)

- Many kernels can be decomposed as a sum of many "small" kernels indexed by a certain set V: $k(x,x') = \sum_{v \in V} k_v(x,x')$
- Example with $x = (x_1, \ldots, x_q) \in \mathbb{R}^q$ (\Rightarrow non linear variable selection)
 - Gaussian/ANOVA kernels: $p=\#(V)=2^q$

$$\prod_{j=1}^{q} \left(1 + e^{-\alpha(x_j - x'_j)^2} \right) = \sum_{J \subset \{1, \dots, q\}} \prod_{j \in J} e^{-\alpha(x_j - x'_j)^2} = \sum_{J \subset \{1, \dots, q\}} e^{-\alpha \|x_J - x'_J\|_2^2}$$

- NB: decomposition is related to Cosso (Lin and Zhang, 2006)
- Goal: learning sparse combination $\sum_{v \in V} \eta_v k_v(x, x')$
- Universally consistent non-linear variable selection requires all subsets

Restricting the set of active kernels

- Assume one separate predictor w_v for each kernel k_v
 - Final prediction: $f(x) = \sum_{v \in V} w_v^\top \Phi_v(x)$
- With flat structure
 - Consider block ℓ_1 -norm: $\sum_{v \in V} \|w_v\|_2$
 - cannot avoid being linear in $p=\#(V)=2^q$
- Using the structure of the small kernels
 - 1. for computational reasons
 - 2. to allow more irrelevant variables

Restricting the set of active kernels

- V is endowed with a directed acyclic graph (DAG) structure:
 select a kernel only after all of its ancestors have been selected
- Gaussian kernels: $V = power \text{ set of } \{1, \ldots, q\}$ with inclusion DAG
 - Select a subset only after all its subsets have been selected

DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

$$D(v) \text{ is the set of descendants of } v \in V:$$
$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$

• Main property: If v is selected, so are all its ancestors

DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

- D(v) is the set of descendants of
$$v \in V$$
:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$

- \bullet Main property: If v is selected, so are all its ancestors
- Hierarchical kernel learning (Bach, 2008c) :
 - polynomial-time algorithm for this norm
 - necessary/sufficient conditions for consistent kernel selection
 - Scaling between p, q, n for consistency
 - Applications to variable selection or other kernels

Scaling between p, n and other graph-related quantities

- n = number of observations
- p = number of vertices in the DAG
- $\deg(V)$ = maximum out degree in the DAG
- $\operatorname{num}(V) = \operatorname{number} \operatorname{of} \operatorname{connected} \operatorname{components} \operatorname{in} \operatorname{the} \mathsf{DAG}$
- **Proposition** (Bach, 2009): Assume consistency condition satisfied, Gaussian noise and data generated from a sparse function, then the support is recovered with high-probability as soon as:

 $\log \deg(V) + \log \operatorname{num}(V) = O(n)$

Scaling between p, n and other graph-related quantities

- n = number of observations
- p = number of vertices in the DAG
- deg(V) = maximum out degree in the DAG
- $\operatorname{num}(V) = \operatorname{number} \operatorname{of} \operatorname{connected} \operatorname{components} \operatorname{in} \operatorname{the} \operatorname{DAG}$
- **Proposition** (Bach, 2009): Assume consistency condition satisfied, Gaussian noise and data generated from a sparse function, then the support is recovered with high-probability as soon as:

 $\log \deg(V) + \log \operatorname{num}(V) = O(n)$

• Unstructured case: $\operatorname{num}(V) = p \Rightarrow \left| \log p = O(n) \right|$

• Power set of q elements: $\deg(V) = q \Rightarrow \left| \log q = \log \log p = O(n) \right|$

Mean-square errors (regression)

dataset	n	p	k	#(V)	L2	greedy	MKL	HKL
abalone	4177	10	pol4	$\approx 10^7$	44.2±1.3	43.9 ± 1.4	$44.5 {\pm} 1.1$	43.3±1.0
abalone	4177	10	rbf	$pprox 10^{10}$	43.0±0.9	$45.0 {\pm} 1.7$	$43.7 {\pm} 1.0$	$43.0 {\pm} 1.1$
boston	506	13	pol4	$\approx 10^9$	17.1±3.6	$24.7{\pm}10.8$	22.2±2.2	18.1 ± 3.8
boston	506	13	rbf	$pprox 10^{12}$	16.4±4.0	32.4±8.2	$20.7{\pm}2.1$	$17.1{\pm}4.7$
pumadyn-32fh	8192	32	pol4	$\approx 10^{22}$	57.3±0.7	56.4±0.8	56.4±0.7	$56.4{\pm}0.8$
pumadyn-32fh	8192	32	rbf	$pprox 10^{31}$	57.7±0.6	72.2 ± 22.5	$56.5{\pm}0.8$	$55.7{\pm}0.7$
pumadyn-32fm	8192	32	pol4	$\approx 10^{22}$	$6.9{\pm}0.1$	$6.4{\pm}1.6$	$7.0{\pm}0.1$	3.1±0.0
pumadyn-32fm	8192	32	rbf	$pprox 10^{31}$	$5.0{\pm}0.1$	$46.2{\pm}51.6$	$7.1{\pm}0.1$	$3.4{\pm}0.0$
pumadyn-32nh	8192	32	pol4	$\approx 10^{22}$	84.2±1.3	73.3±25.4	83.6±1.3	36.7±0.4
pumadyn-32nh	8192	32	rbf	$pprox 10^{31}$	$56.5 {\pm} 1.1$	$81.3{\pm}25.0$	83.7±1.3	$35.5{\pm}0.5$
pumadyn-32nm	8192	32	pol4	$\approx 10^{22}$	$60.1{\pm}1.9$	69.9±32.8	$77.5 {\pm} 0.9$	5.5±0.1
pumadyn-32nm	8192	32	rbf	$\approx 10^{31}$	15.7±0.4	67.3±42.4	77.6±0.9	$7.2{\pm}0.1$

Extensions to other kernels

• Extension to graph kernels, string kernels, pyramid match kernels

- Exploring large feature spaces with structured sparsity-inducing norms
 - Opposite view than traditional kernel methods
 - Interpretable models
- Other structures than hierarchies or DAGs

Grouped variables

- Supervised learning with known groups:
 - The ℓ_1 - ℓ_2 norm

$$\sum_{G \in \mathbf{G}} \|w_G\|_2 = \sum_{G \in \mathbf{G}} \left(\sum_{j \in G} w_j^2\right)^{1/2}, \text{ with } \mathbf{G} \text{ a partition of } \{1, \dots, p\}$$

- The ℓ_1 - ℓ_2 norm sets to zero non-overlapping groups of variables (as opposed to single variables for the ℓ_1 norm)

Grouped variables

- Supervised learning with known groups:
 - The ℓ_1 - ℓ_2 norm

$$\sum_{G \in \mathbf{G}} \|w_G\|_2 = \sum_{G \in \mathbf{G}} \left(\sum_{j \in G} w_j^2\right)^{1/2}, \text{ with } \mathbf{G} \text{ a partition of } \{1, \dots, p\}$$

- The ℓ_1 - ℓ_2 norm sets to zero non-overlapping groups of variables (as opposed to single variables for the ℓ_1 norm)
- However, the ℓ_1 - ℓ_2 norm encodes **fixed/static prior information**, requires to know in advance how to group the variables
- \bullet What happens if the set of groups ${\bf G}$ is not a partition anymore?

Structured Sparsity (Jenatton et al., 2009a)

• When penalizing by the ℓ_1 - ℓ_2 norm

$$\sum_{G \in \mathbf{G}} \|w_G\|_2 = \sum_{G \in \mathbf{G}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
- Inside the groups, the ℓ_2 norm does not promote sparsity
- \bullet Intuitively, the zero pattern of w is given by

$$\{j \in \{1, \dots, p\}; \ w_j = 0\} = \bigcup_{G \in \mathbf{G}'} G$$
 for some $\mathbf{G}' \subseteq \mathbf{G}$.

• This intuition is actually true and can be formalized

Examples of set of groups G(1/3)

• Selection of contiguous patterns on a sequence, p=6

- \mathbf{G} is the set of blue groups
- Any union of blue groups set to zero leads to the selection of a contiguous pattern

Examples of set of groups G(2/3)

 \bullet Selection of rectangles on a 2-D grids, p=25

- G is the set of blue/green groups (with their complements, not displayed)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

Examples of set of groups G(3/3)

• Selection of diamond-shaped patterns on a 2-D grids, p=25

- It is possible to extent such settings to 3-D space, or more complex topologies
- Applications to sparse PCA / dictionary learning

Structured matrix factorizations (Bach et al., 2008)

• Data $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{p imes n}$ to decompose in $\mathbf{D} = (\mathbf{d}_1, \dots, \mathbf{d}_k)$

$$\min_{\mathbf{D},\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2 + \mu \sum_{i=1}^n \|\boldsymbol{\alpha}_i\|_{\bullet} \text{ s.t. } \forall j, \|\mathbf{d}_j\|_{\star} \leq 1$$

- α_i decomposition coefficients (or "code"), d_j dictionary elements
- Two related/equivalent problems:
 - Sparse PCA = sparse dictionary (ℓ_1 -norm on \mathbf{d}_j)
 - Dictionary learning = sparse decompositions (ℓ_1 -norm on α_i) (Olshausen and Field, 1997; Elad and Aharon, 2006)
- Structured regularization on d_j or α_i (Jenatton, Obozinski, and Bach, 2009b; Jenatton, Mairal, Obozinski, and Bach, 2010)

Application to face databases (1/3)

raw data

(unstructured) NMF

• NMF obtains partially local features

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

• Quantitative performance evaluation on classification task

Hierarchical dictionary learning (Jenatton, Mairal, Obozinski, and Bach, 2010)

- Hierarchical norms on decomposition coefficients $lpha_i$
 - Equivalent to assume tree-structure among dictionary elements
 - Efficient optimization through proximal methods
- Modelling of text corpora
 - Each document is modelled through word counts
 - Low-rank matrix factorization of word-document matrix
- Experiments:
 - Qualitative: NIPS abstracts (1714 documents, 8274 words)
 - Quantitative: newsgroup articles (1425 documents, 13312 words)

Modelling of text corpora - Dictionary tree

Modelling of text corpora

• Comparison on predicting newsgroup article subjects

Conclusion

• Structured sparsity

- Sparsity-inducing norms
- Supervised learning: non-linear variable selection
- Unsupervised learning: dictionary learning

• Further/current work

- Universal consistency of non-linear variable selection
- Algorithms
- Norm design, norms on matrices
- Applications to computer vision, audio, neuroscience

References

- F. Bach. High-Dimensional Non-Linear Variable Selection through Hierarchical Kernel Learning. Technical Report 0909.0844, arXiv, 2009.
- F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In *Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML)*, 2008a.
- F. Bach. Consistency of the group Lasso and multiple kernel learning. *Journal of Machine Learning Research*, pages 1179–1225, 2008b.
- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008c.
- F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2004a.
- F. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels. In Advances in Neural Information Processing Systems 17, 2004b.
- F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical Report 0812.1869, ArXiv, 2008.
- P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 2008. To appear.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Rev.*, 43(1):129–159, 2001. ISSN 0036-1445.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.

- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Trans. Image Proc.*, 15(12):3736–3745, 2006.
- W. Fu. Penalized regressions: the bridge vs. the Lasso. *Journal of Computational and Graphical Statistics*, 7(3):397–416, 1998).
- T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman & Hall, 1990.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. *J. Math. Anal. Applicat.*, 33:82–95, 1971.
- G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *Journal of Machine Learning Research*, 5:27–72, 2004.
- Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression. *Annals of Statistics*, 34(5):2272–2297, 2006.
- K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. *Electronic Journal of Statistics*, 2, 2008.
- H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly*, 3:111–133, 1956.

- N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. *Annals of statistics*, 34(3):1436, 2006.
- N. Meinshausen and P. Bühlmann. Stability selection. Technical report, arXiv: 0809.2932, 2008.
- N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. *Ann. Stat.*, 2009. to appear.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. *Journal of Machine Learning Research*, to appear, 2008.
- P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman. SpAM: Sparse additive models. In Advances in Neural Information Processing Systems (NIPS), 2008.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- S. van de Geer, P. Buhlmann, and S. Zhou. Prediction and variable selection with the adaptive lasso. Technical Report 1001.5176, ArXiv, 2010.
- G. Wahba. Spline Models for Observational Data. SIAM, 1990.
- M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.

- T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. *Ann. Appl. Stat.*, 2(1):224–244, 2008.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.
- M. Yuan and Y. Lin. On the non-negative garrotte estimator. *Journal of The Royal Statistical Society Series B*, 69(2):143–161, 2007.
- P. Zhao and B. Yu. On model selection consistency of Lasso. JMLR, 7:2541-2563, 2006.
- H. Zou. The adaptive Lasso and its oracle properties. JASA, 101:1418–1429, 2006.