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Abstract

This paper introduces a general multi-class
approach to weakly supervised classifica-
tion. Inferring the labels and learning the
parameters of the model is usually done
jointly through a block-coordinate descent
algorithm such as expectation-maximization
(EM), which may lead to local minima. To
avoid this problem, we propose a cost func-
tion based on a convex relaxation of the
soft-max loss. We then propose an al-
gorithm specifically designed to efficiently
solve the corresponding semidefinite pro-
gram (SDP). Empirically, our method com-
pares favorably to standard ones on different
datasets for multiple instance learning and
semi-supervised learning, as well as on clus-
tering tasks.

1. Introduction

Discriminative supervised classifiers have proved to be
very accurate data-driven tools for learning the rela-
tionship between input variables and certain labels.
Usually, for these methods to work, the labeling of the
training data needs to be complete and precise. How-
ever, in many practical situations, this requirement is
impossible to meet because of the challenges posed by
the acquisition of detailed data annotations. This typ-
ically leads to partial or ambiguous labelings.

Different weakly supervised methods have been pro-
posed to tackle this issue. In the semi-supervised
framework (Chapelle et al., 2006), only a small num-
ber of points are labeled, and the goal is to use the un-
labeled points to improve the performance of the clas-
sifier. In the multiple-instance learning (MIL) frame-
work introduced by Dietterich & Lathrop (1997), bags
of instances are labeled together instead of individu-
ally, and some instances belonging to the same bag
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may have different true labels. Finally, in the am-
biguous labeling setting (Jin & Ghahramani, 2003;
Hullermeier & Beringer, 2006), each point is associ-
ated with multiple potential labels.

More generally, in all these frameworks, the points are
associated with observable partial labels and the im-
plicit or explicit goal is to jointly estimate their true
latent labels and learn a classifier based on these la-
bels. This usually leads to a non-convex cost function
which is often optimized with a greedy method or a
coordinate descent algorithm such as the expectation-
maximization (EM) procedure. These methods usu-
ally converge to a local minimum, and their initializa-
tion remains an open practical problem.

In this paper, we propose a simple and general frame-
work which can be used for any of the aforementioned
problems. We explicitly learn the true latent label and
the classifier parameters. We also propose a convex re-
laxation of our cost function and an efficient algorithm
to minimize it. More precisely, we use a discrimative
classifier with a soft-max loss, and our convex relax-
ation extends the work of Guo & Schuurmans (2008).
Our main contributions are:

• a full convex relaxation of the soft-max loss func-
tion with intercept, which can be applied to a
large set of multiclass problems with any level of
supervision,

• a novel convex cost function for weakly supervised
and unsupervised problems and,

• a dedicated and efficient optimization procedure.

We develop our framework for the general weakly su-
pervised case. We propose results on both toy exam-
ples as proof of concept of our claims, and on standard
MIL and semi-supervised learning (SSL) datasets.

1.1. Related work

Multiple instance learning (MIL) has received
much attention because of its wide range of applica-
tions. First used for drug activity prediction, it has
also been used in the vision community for different
problems such as scene classification (Maron & Ratan,
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1998), object detection (Viola et al., 2006), object
tracking in video (Babenko et al., 2009), and image
database retrieval (Yang, 2000). Many MIL methods
have been developed in the past decade. For example,
some are based on boosting (Auer & Ortner, 2004),
others on nearest neighbors (Wang & Zucker, 2000),
on neural networks (Zhang & Zhou, 2006), on decision
trees (Blockeel et al., 2005), or the construction of an
appropriate kernel (Wang et al., 2008; Gärtner et al.,
2002; Kwok & Cheung, 2007). Much of the work in
the MIL community has focused on the use of dis-
criminative classifiers, the most popular one being the
support vector machine (SVM) (Andrews et al., 2003;
Chen & Wang, 2004; Gehler & Chapelle, 2007). In
this paper, we concentrate on the logisitic loss which
makes little difference with the hinge loss with the ad-
ditional advantage of being twice differentiable. Note
that this loss has already been used in the context
of MIL (Xu & Frank, 2004; Ray & Craven, 2005), but
with different optimization schemes.

Many semi-supervised learning (SSL) methods
have also been proposed in the past decade (see,
e.g., Chapelle et al., 2006; Zhu, 2006). For example,
some are based on maximizing the margin with an
SVM framework (Joachims, 1999; Bennett & Demiriz,
1998; Xu & Schuurmans, 2005), and others use the
unlabeled data for regularization (Belkin et al., 2004)
or co-training of weak classifiers (Blum & Mitchell,
1998).

Discriminative clustering provides a principled
way to reuse existing supervised learning machin-
ery while explicitly estimating the latent labels. For
example, following the SVM approach of Xu et al.
(2005), algorithms using linear discriminant anal-
ysis (De la Torre & Takeo, 2006) or ridge regres-
sion (Bach & Harchaoui, 2007) have been proposed.
These methods often fail in the multiclass case,
whereas we show that the soft-max loss with intercept
works well in this setting. A common issue for discrim-
inative clustering is that a perfect separation is reached
by assigning the same label to all of the points. In most
of the previously cited methods, this issue is adressed
by adding linear constraints on the size of each clus-
ter. In this paper we use instead a natural cluster-size
balancing term corresponding to an entropy penaliza-
tion (Chapelle et al., 2006; Joulin et al., 2010).

The link between SSL and MIL has been widely
studied in the community. For example, in the
context of image segmentation with text annota-
tion, Barnard et al. (2003) propose a general weakly
supervised model based on a multi-modal extension to
a mixture of latent Dirichlet allocation. An impor-
tant issue with this family of generative models is that
learning the parameters is often untractable. Another
example is Zhou & Xu (2007) who use the relation be-
tween MIL and SSL to develop a method for MIL.

The idea of using a convex cost function in the weakly
supervision context has been already studied in dif-
ferent contexts such as, for example, ambiguous la-
beling (Cour et al., 2009) or discriminative cluster-
ing (Xu et al., 2005; Bach & Harchaoui, 2007). In this
paper, we are interested in the convex relaxation of
a general multiclass loss function, i.e., the soft-max
loss. Guo & Schuurmans (2008) propose a related re-
laxation but do not consider the intercept in the linear
classifier. We extend their work to the case of linear
classifiers with an intercept and show in the exper-
iment section, why this difference is crucial when it
comes to classification. Note that by using kernels, we
can use non-linear classifiers as well. Also, our ded-
icated optimization scheme is more scalable than the
one developed in Guo & Schuurmans (2008) and could
be applied to their problem as well.

2. Proposed model

2.1. Notations

We suppose that we observe I bags of instances. For i
in {1, . . . , I}, Ni is the set of instances in the i-th bag,
and Ni = |Ni| is its cardinality. We denote by N =
∑

i Ni the total number of instances. In each bag i, an
instance n in Ni is associated with a feature xn ∈ X
and a label yn in L, in certain feature and label space.
In this paper, we suppose that this label is common
to all the instances of a same bag and explain only
partially the instances contained in the bag. We are
thus interested in finding a latent label zn ∈ P which
would give a better understanding of the data. We
denote by P and L the cardinalities of P and L. We
also assume that the latent label zn of an instance n
can only take its values in a subset Pyn

of P which
depends on the label yn of the bag. The variables yn
and zn are associated with their canonical vectorial
representation, i.e., znp = 1 if the instance n has a
latent label of p and 0 otherwise. We denote by z
the N × P matrix with rows zn.

Instance reweighting. In many problems, a set of
instances can be bigger than the other, this is the case
for example in a one-vs-all classifer where the number
of positive instances is often very small compared to
the number of negative examples. A side-contribution
of this work is to consider explicitly a reweighting of
the data to avoid undesired side effects: Each point
is associated with a weight πn ≥ 0 which denotes its
importance compared to others. Some examples are
the uniform case, i.e., πn = 1

N or when bags have to

be reweighted, i.e., πn = 1
INi

for n in the bag i. We
denote by π the vector with entries equal to πn. Note
that π ≥ 0 and

∑

n πn = 1.

This setting is very general, so let us now show how it
applies to several concrete settings.
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Semi-supervised learning. Given a set of true la-
bels P and Nl points with known label, there are Nl+1
bags, i.e., one for each labeled point and one for all the
unlabeled instances. The set L is equal to P plus a la-
bel for the unlabeled bag (i.e., L = P + 1). The true
label of an instance in a positive bag is fixed whereas
in the unlabeled bag it can take any value in P.

Unsupervised learning. This is an extreme case
of the semi-supervised framework with only the unla-
beled bag.

Multiple instance learning. There are two possible
labels for a bag (L = 2), i.e., positive (yn = 1) or
negative (yn = 0). The true label zn of an instance n in
a negative bag is necessarily negative (zn = 0) and in a
positive bag it can be either positive or negative (P1 =
{0, 1}).

Ambiguous labelling. Each bag is associated with
a set of possible true labels Pl. The set of partial labels
is thus the combination of all possible subsets of P, i.e.,
each label l ∈ L represents a subset of P (L = 2P ).

2.2. Problem formulation

The goal of a discriminative weakly supervised classi-
fier is to find the latent labels z that minimize the value
of a regularized discriminative loss function. More
precisely, given some latent label z and some feature
map φ : X 7→ IRd (note that φ could be explicitly
defined or implicitly given through a positive-definite
kernel), we train a multi-class discriminative classifier
to find the parameters w ∈ IRP×d and b ∈ IRP that
minimize:

L(z, w, b) =

N
∑

n=1

πnℓ(zn, w
Tφ(xn) + b),

where ℓ : IRP × IRP 7→ IR is a loss function. In
this paper, we are interested in the multi-class set-
ting where a natural choice for ℓ is the soft-max
loss function (Hastie et al., 2001). Note that for a
given instance n, the set of possible true labels de-
pends on the the label y of its bag, our loss func-
tion ℓ(zn, w

Tφ(xn) + b) then takes the following form:

−
∑

l∈L

ynl
∑

p∈Pl

znp log

(

exp(wT
p φ(xn) + bp)

∑

k∈Pl
exp(wT

k φ(xn) + bk)

)

,

where wT
p is the p–th row of wT and bp the p–th entry

of b.

Cluster-size balancing term. In many unsuper-
vised or weakly supervised problems, a common issue
is that assigning the same label to all the instances
leads to perfect separation. In the MIL community,
this is equivalent to considering all the bags as neg-
ative and a common solution is to add a non-convex
constraint which enforces at least one point per pos-
itive bag to be positive. Another solution used in

the discriminative clustering community is to add con-
straints on the number of elements per class and per
bag (Xu et al., 2005; Bach & Harchaoui, 2007). De-
spite good results, this solution introduces extra pa-
rameters and may be hard to extend to other frame-
works such as MIL, where a positive bag may not
have any negative instances. Another common tech-
nique is to encourage the proportion of points per
class and per bag to be close to uniform. An ap-
propriate penalty term for achieving this is the en-
tropy (i.e., h(v) = −

∑

k vk log(vk)) of the proportions
of points per bag and per latent label, leading to:

H(z) =
∑

i∈I

h

(

∑

n∈Ni

πnzn

)

.

Penalizing by this entropy turns out to be equivalent
to maximizing the log-likelihood of a graphical model
where the features xn explain the labels yn through
the latent labels zn (Joulin et al., 2010). An important
consequence is that the natural weight of this penalty
in the cost function is 1, so we do not add any extra
parameters.

To avoid over-fitting, we penalize the norm of w, lead-
ing to the following cost function:

f(z, w, b) = L(z, w, b)−H(z) +
λ

2P
‖w‖2F ,

where λ > 0 is the regularization parameter and the
problem thus takes the following form:

min
∀n≤N, zn∈SPyn

min
w∈IRd×P , b∈IRP

f(z, w, b), (1)

where SP = {t ∈ IRP | t ≥ 0, tT 1P = 1} is the sim-
plex in IRP . To avoid cumbersome double subscripts,
we suppose that any instance n in a bag with a la-
bel yn (which is common to the entire bag), has a
latent label zn in P instead of Pyn

.

In the next section we show how to obtain a convex
relaxation of this problem.

3. Convex relaxation

An interesting feature of the soft-max cost function
is its link to the entropy through the Fenchel conju-
gate (Boyd & Vandenberghe, 2003), i.e., given a P -
dimensional vector t, the log-partition can be written

as log
(

∑P
p=1 exp(tp)

)

= maxv∈SP

∑P
p=1 vptp + h(v).

Substituting in the loss function, the weakly super-
vised problem defined in Eq. (1) can be reformulated
as:

min
z∈SN

P

max
q∈SN

P

∑

i∈I

∑

n∈Ni

πnh(qn)−H(z) + g(z, q), (2)
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step Inner loop update Inner loop duality gap Outer loop proximal Outer loop duality gap

complexity O(N2) O(N2) O(N3) O(N)

Figure 1. Complexity of the different steps in our algorithm.

where q is an N × P matrix with n-th row qTn ,
and g(z, q) is equal to:

min
w∈IRP×d

b∈IRP

∑

i∈I

∑

n∈Ni

πn(qn − zn)
T (wTφ(xn) + b) +

λ

2P
‖w‖2F .

Minimizing this function w.r.t. the intercept b leads
to an intercept constraint on the dual variables, i.e,
(q − z)Tπ = 0. The minimization w.r.t. w leads to a
closed-form expression for g:

g(z, q) = −
P

2λ
tr
(

(q − z)(q − z)TK
)

,

where K is the positive definite kernel matrix asso-
ciated with the reweighted mapping φ, i.e., with en-
tries equal to Knm = πnφ(xn)

Tφ(xm)πm. The cost
function is not convex in general in z since it is the
maximum over a set indexed by q of concave functions
in z. A common way of dealing with this issue is to
relax the problem into a semidefinite program (SDP)
in zzT . Unfortunately, our cost function does not di-
rectly depend on zzT , but a reparametrization in terms
of q inspired by Guo & Schuurmans (2008) allows us
to get around this technical difficulty.

Reparametrization in q. We reparametrize the
problem by introducing an N × N matrix Ω such
that q = Ωz (Guo & Schuurmans, 2008). The in-
tercept constraint and the normalization constraint
on q (i.e., q1K = 1N ) become constraints over Ω, i.e.,
respectively ΩTπ = π and Ω1N = 1N . Translating
the addition of an intercept to a linear classifier into a
simple constraint on the columns of Ω provides a sig-
nificant improvement over Guo & Schuurmans (2008),
as shown in Section 5.1. This reparametrization has
the side-effect of introducing a non-convex term in the
cost function since the entropies over qn in Eq. (2) is
replaced by an entropy over the n–th row of Ωz which
is not jointly concave/convex in Ω and z.

Tight upper-bound on the entropy. We show in
the supplementary material that the entropy in q can
be bounded by a difference of entropy in Ω and z, up
to an additive constant C0:

∑

i∈I

∑

n∈Ni

πnh(qn) ≤ −
∑

n

πnh(Ωn) +H(z) + C0. (3)

This upper-bound is tight in the sense that given a dis-
crete value of z (i.e., before the relaxation), the maxi-
mum of the left part among discrete values of q is equal
to the maximum of the right part among correspond-
ing discrete values of Ω. Note also that the term in z
appearing in Eq. (3) cancels out with the entropy term

in Eq. (2). This relaxation leads to the minimizition
of the following function of z:

max
Ω∈O

−
P

2λ
tr
(

zzT (I − Ω)TK(I − Ω)
)

−
∑

n

πnh(Ωn),

where O = {Ω | Ω1N = 1N , ΩTπ = π, Ω ≥ 0}. This
problem depends on z solely through the matrix zzT ,
and can thus be relaxed into an SDP in zzT .

Reparametrization in z. With the change of vari-
able Z = zzT , we have the maximum of a set of linear
functions of Z, which is convex. However, the set Z of
possible values for Z is non-convex since it is defined
by:

{

diag(Z) = 1N , Z ≥ 0, Z � 0,

rank(Z) = k − 1.
(4)

Let us review these constraints:

• In practice, the piecewise-positivity constraint is
not necessary and removing it leads to a matrix Z
with entries in [−1, 1] since Z is positive semi-
definite with ones on the diagonal.

• The rank constraint is the main source of non-
convexity, and will be removed, thus leading to a
convex relaxation.

• The rest of the constraints defines the elliptope:

EN = {Z ∈ IRN×N | diag(Z) = 1N , Z � 0}.

Note that an additional linear constraint may be
needed depending on the considered weakly supervised
problem. We give below some examples:

• In the case of MIL, this constraint takes the form
of Z− = 1N−

1TN−
, where N− is the number of

negative examples, and Z− is the restriction of Z
to the negative bags.

• “Must-not-link” constraints on the instances can
be handled: If two bags i and j have labels yi
and yj such that the set of possible latent labels
are dissimilar (i.e., Pli ∩ Plj = ∅), we can con-
strain the submatrix Zij to be equal to 0. These
constraints are of particular interest in the case
of SSL, where labeled bags with different labels
should not be assigned to the same latent label.

In the rest of this paper, we consider the specific cases
of SSL, MIL and discriminative clustering:

• In SSL, we can reduce the dimensionality of Z:
Since all the values of z with a same known label
are equal, it is equivalent to replace them by a
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single element in Z. Denoting by Nu is the num-
ber of unlabeled points, P the number of labels
and NR = Nu + P , this is equivalent to consid-
ering a matrix RTZR instead of Z, where R is
a N × NR matrix whose restriction to the unla-
beled bags is the identity and all other entries are
zero except for Rn(Nu+l) which is equal to 1 if the
instance n has a known label l.

• In MIL, the same reduction can be done with P =
1 and Nu denoting the total number of positive
instances.

• Discriminative clustering is similar to SSL
with P = 0.

By taking into account all of these modifications and
by dropping the rank constraint, we replace the non-
convex set Z by the elliptope ENR

, leading to the min-
imization of g(Z) over ENR

, where g(Z) is equal to:

max
Ω∈O

−
P

2λ
tr
(

ZR(I − Ω)TK(I − Ω)RT
)

−
∑

n

πnh(Ωn). (5)

In the next section we propose an efficient algorithm
to solve this convex optimization problem.

4. Optimization

Since our optimization involves a maximization in our
inner loop, it cannot be solved directly by a general-
purpose toolbox. We propose an algorithm dedicated
to our case. In the rest of this paper we refer to the
maximization as the inner loop and the overall mini-
mization of our cost function as the outer loop.

4.1. Inner loop

Evaluating the cost function defined in Eq. (5) involves
the maximization of the sum of the entropy of Ω and
a function T defined as:

T (Ω) = −
1

2λ
tr
(

(I − Ω)RTZR(I − Ω)TK
)

.

We use a proximal method with a reweighted
Kullback-Leibler (KL) divergence which naturally en-
forces the point-wise positivity contraint in W, and
leads to an efficient Bregman projection with a KL di-
vergence (an I-projection to be more precise) on the
rest of the constraints defining W. More precisely,
given a point Ω0, the proximal update is given by max-
imizing the following function:

lD(Ω)=tr
(

ΩT∇T (Ω0)
)

−
∑

n

πnh(Ωn)−LDπ(Ω ‖Ω0), (6)

where L is the Lipschitz constant of ∇T and Dπ is a
reweighted KL divergence defined as:

Dπ(Ω ‖ Ω0) =
∑

i

∑

n∈Ni

πn

N
∑

m=1

Ωnm log

(

Ωnm

Ω0
nm

)

.

The I-projection can be done efficiently with an iter-
ative proportional fitting procedure (IPFP), which is
guaranteed to converge to the global minimum with
linear convergence rate (Fienberg, 1970).

Note that to obtain a faster convergence of the inner
loop, we may take advantage of a low-rank decomposi-
tion of K and RTZR and we use an accelerated prox-
imal scheme on the logarithm of Ω (Beck & Teboulle,
2009). To control the distance from the optimum Ω∗,
we can use a provably correct duality gap which can be
computed efficiently (details are in the supplementary
material).

4.2. Outer loop

The outer loop minimizes g(Z) as defined in Eq. (5)
over the elliptope ENR

. Many approaches have
been proposed to solve this type of problems
(Goemans & Williamson, 1995; Burer & Monteiro,
2003; Journée et al., 2010) but, to the best of our
knowledge, they all assume that the function and its
gradient can be computed efficiently and put the em-
phasis on the projection. This is not the case in our
problem, and we thus propose a method adapted to
our particular setting.

First, to simplify the projection on the ENR
, we re-

place our cost function g(Z) by its diagonally rescaled
version gR(Z) = g(diag(Z)−1/2Zdiag(Z)−1/2). Note
that even if this function is in general non-convex, it
coincides with g(Z) on ENR

, making its restriction to
this set convex. This modification allows us to rescale
the diagonal of any update Z to a diagonal equal to 1N
without modifying the value of our cost function.

Our minimization of gR over the elliptope is also
based on a proximal method with a Bregman diver-
gence to guarantee updates that stay in the feasible
set. A natural choice for the Bregman divergence is
the KL divergence based on the von Neumann en-
tropy, i.e, the entropy of the eigenvalues of a ma-
trix (see more details in the supplementary material).
This divergence guarantees that each update has non-
negative eigenvalues. Given a point Z0, its update
can then be obtained in closed-form as the diagonally
rescaled version of VDiag(exp(diag( 1tE)))V T , where V
and E are the eigenvectors and the eigenvalues of
−∇gR(Z0)+t log(Z0) and t is a positive step size com-
puted using a line-search with backtracking.

As in the inner loop, we use a computationnally
tractable provable duality gap, i.e., −NRλmin, where
λmin is the lowest eigenvalue of ∇gR(Z) (see details in
the supplementary material).

4.3. Rounding

Many rounding schemes can be applied with simi-
lar performances. Following Bach & Harchaoui (2007)
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(a) (b) (c) (d) (e)
Figure 2. (a) The clustering problem, (b) the given kernel matrix K = xx

T , (c) the matrix Z obtained with
(Bach & Harchaoui, 2007), (d) the matrix Z obtained with no intercept and (e) our method (best seen in color).
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Figure 3. (a) The matrix obtained with our method and
(b) its corresponding clusters. (c) Comparison with k-
means on noise robustness (P = 3, N = 300).

and Joulin et al. (2010), we use k-means clustering on
the eigenvectors associated with the k highest eigen-
values (Ng et al., 2001) to obtain a rounded solution
z∗. This z∗ is then used to initialize an EM procedure
to solve the problem defined in Eq. (1) and obtain the
parameters (w, b) of the classifier, leading to finer de-
tails not caught by the convex relaxation.

A specificity of the MIL framework is that strictly no
point from a negative bag should be classified as pos-
itive, which leads to adding to Eq. (1), the following
linear constraints on the parameters of the classifier:

∀i ∈ I−, n ∈ Ni, wT
0 φ(xn) + b0 ≥ wT

1 φ(xn) + b1. (7)

We add these hard constraints in the M-step (opti-
mization over w and b) of the EM procedure. The
projection over this set of linear constraints is per-
formed efficiently with an homotopy algorithm in the
dual (Mairal et al., 2010).

5. Results

Implementation. Our algorithm is implemented in
MATLAB and takes from 1 to 5 minutes for 500 points.
Note that we can efficiently compute the solutions for
different values of λ using warm restarts. Our overall
complexity is O(N3) but we can scale up to several
thousands of points. The complexity of the differ-
ent steps in our algorithm is given in Figure 1. On
larger datasets, we can use our relaxation on subsets
of instances or on pre-clustering the instances (with k-
means) and use it to initialize the EM on the complete

dataset.

5.1. Discriminative clustering

In this section, we compare our method to two dif-
ferent discriminative clustering methods for the mul-
ticlass case: the SDP relaxation of the soft-max prob-
lem with no intercept (Guo & Schuurmans, 2008) and
the discriminative clustering framework introduced by
Bach and Harchaoui (2007). The latter comparison
is relevant since they propose a convex cost function
based on the square loss with intercept.

We consider in Figure 2, as a proof of concept, two
toy examples where the goal is to find 3 and 5 clus-
ters with linear kernels and N = 500. Even if the
clusters are linearly separable, the set of values of w
and b which leads to a perfect separation is very small
(Figure 2, panel (a)), making the problem challeng-
ing. For fair comparison, we test different regulariza-
tion parameters and show the one leading to the best
performances. We show the matrix Z obtained for the
three methods as well as the matrix K = xxT in Fig-
ure 2. We see that our method clearly obtains a bet-
ter estimation of the class assignment compared to the
others, showing the importance of both the soft-max
loss and the intercept.

In panels (a) and (b) of Figure 3, we also show that
our method works with non-linear kernels in a multi-
class setting. Finally, in the panel (c) of Figure 3, we
show a comparison with k-means as we increase the
number of dimensions containing only noise, following
the setup of Bach & Harchaoui (2007). Our setting is
the 3-cluster problem shown in Figure 2 with an RBF
kernel and N = 300. We see that our algorithm is
more robust than k-means.

5.2. Multiple instance learning

In Figure 4, we show some comparisons with other MIL
methods on standard datasets (Dietterich & Lathrop,
1997; Andrews et al., 2003) for a variety of tasks:
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Algorithm Musk1 Tiger Elephant Fox Trec1
Citation k-NN (Wang & Zucker, 2000) 91.3 78.0 80.5 60.0 87.0
EM-DD (Zhang & Goldman, 2001) 84.8 72.1 78.3 56.1 85.8
mi-SVM (Andrews et al., 2003) 87.4 78.9 82.0 58.2 93.6
MI-SVM (Andrews et al., 2003) 77.9 84.0 81.4 59.4 93.9
PPMM Kernel (Wang et al., 2008) 95.6 80.2 82.4 60.3 93.3
Random init / Uniform 71.1 69.0 74.5 61.0 81.3
Tandom init / Weight 76.6 71.0 74.5 59.0 84.4
No intercept / Uniform 75.0 ± 19.5 67.8 ± 10.4 77.3 ± 9.2 51.3 ± 6.4 87.5 ± 5.2
No intercept / Weight 77.8 ± 15.7 71.0 ± 10.8 78.9 ± 9.8 52.1 ± 5.0 87.3 ± 5.6
Ours / Uniform 84.4 ± 14.0 73.0 ± 8.2 86.7 ± 3.5 57.5 ± 5.9 93.0 ± 4.7
Ours / Weight 87.7 ± 13.3 78.0 ± 5.4 83.9 ± 4.2 62.5 ± 6.4 89.0 ± 6.2

Figure 4. Accuracy of our approach and of standard methods for MIL. We evaluate our method with and without the
intercept and with two types of weights. In bold, the significantly best performances.

Dataset Linear Nonlinear Entropy-Reg. Ours (Linear) Ours (Nonlinear)
Digit1 79.41 82.23 75.56 84.57 ± 0.67 75.45 ± 2.88
BCI 49.96 50.85 52.29 52.22 ± 1.13 50.21 ± 1.09

l=10 g241c 79.05 75.29 52.64 87.15 ± 0.21 87.29 ± 0.42
g241d 53.65 49.92 54.19 54.44 ± 9.09 53.15 ± 10.09
USPS 69.34 74.80 79.75 57.08 ± 13.34 79.48 ± 0.50
Digit1 81.95 93.85 92.72 91.24 ± 1.66 93.31 ± 0.97
BCI 57.33 66.75 71.11 78.12 ± 2.26 64.04 ± 0.87

l=100 g241c 81.82 81.54 79.03 86.02 ± 0.72 85.13 ± 0.71
g241d 76.24 77.58 74.64 77.11 ± 1.65 73.03 ± 3.02
USPS 78.88 90.23 87.79 71.62 ± 2.62 73.04 ± 0.19

Figure 5. Comparison in accuracy on SSL databases with methods proposed in (Chapelle et al., 2006). In bold, the
significantly best performances.

a drug activity prediction (musk), image classifica-
tion (fox, tiger and elephant), and text classification
(trec1 ).

For comparison, we use the setting described
by Andrews et al. (2003), where we create 10 random
splits of the data, train on 90% of them and test on the
remaining 10%. We test our algorithm with and with-
out the intercept and with uniform or bag-specific (i.e.,
1

INi
for instances in the bag i) weights, and compare it

to some classical MIL algorithms. Note that we have
only tried a linear kernel, and we select the regulariza-
tion parameter using a 2-fold cross-validation for each
split. Our algorithm obtains comparable performances
with methods dedicated to the MIL problem.

5.3. Semi-supervised learning

For the SSL setting, we choose the standard SSL
datasets and we compare with methods proposed
in Chapelle et al. (2006). The benchmarks (Linear
and Nonlinear) are based on a SVM formulation and
the benchmark (Entropy-Reg.) uses an entropy regu-
larization. We use our method with either a linear or
a RBF kernel. To fix our parameters, we follow the
experimental setup of Chapelle et al. (2006). Each set
contains 1500 points and either l = 10 or 100 of them
are labeled. We show the results in Figure 5. As
expected, since the benchmarks and our formulation

are very related, the performances are mostly similar
when l = 100. However, when l = 10, our method
is more robust and its performances get significantly
higher showing that a convex relaxation is less sensible
to noise and poorly labeled data.

6. Conclusion

In this paper, we propose a convex relaxation of a
general cost function for weakly supervised problems.
We show the importance of a tight convex relaxation
compared to relaxation where either the related linear
classifier has been approximated (absence of intercept)
or the loss function (square-loss instead of the soft-
max loss). Our comparison with standard non-convex
methods for MIL and SSL shows the importance of
the initialization for robustness of the approach. We
believe that convex relaxation is a powerful tool to ob-
tain good initializations to non-convex problems. The
trade-off is that these methods are usually not scal-
able which suggest to use them on subsets of points or
after a quantization step to initialize a more efficient
algorithm, such as EM.
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