
Supervised learning for computer vision:
Kernel methods & sparse methods

Francis Bach

SIERRA Project-team, INRIA - Ecole Normale Supérieure

CVML Summer school, July 2012

1

Machine learning

• Supervised learning

– Predict y ∈ Y from x ∈ X , given observations (xi, yi), i = 1, . . . , n

– Classification, regression

• Unsupervised learning

– Find structure in x ∈ X , given observations xi, i = 1, . . . , n

– Clustering, dimension reduction

• Application to many problems and data types:

– Computer vision

– Bioinformatics, text processing, audio processing

– etc.

• Specifity: exchanges between theory / algorithms / applications

2

Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems

– Massive data to learn from

• Machine learning is not limited to binary classification!

3

Image retrieval

⇒ Classification, ranking, outlier detection

4

Image retrieval

Classification, ranking, outlier detection

5

Image retrieval

Classification, ranking, outlier detection

6

Image annotation

Classification, clustering

7

Object recognition ⇒ Multi-label classification

8

Personal photos

⇒ Classification, clustering, visualization

9

Image recognition beyond Flickr

Digital historical archives

Monsieur, Vous êtes averti de

porter samedi prochain 26 janvier

quarante écus dans un trou qui

est au pied de la croix Montelay

sous peine d’avoir la tête cassée

à l’heure que vous y penserez le

moins. Si l’on ne vous rencontre

point vous êtes assuré que le feu

sera mis chez vous. Sil en est

parlé à qui que ce soit la tête

cassée vous aurez.

Archives du Val dOise - 1737

10

Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems

– Massive data to learn from

• Similar situations in many fields (e.g., bioinformatics)

11

Machine learning for bioinformatics (e.g., proteins)

1. Many learning tasks on proteins

• Classification into functional or structural classes

• Prediction of cellular localization and interactions

2. Massive data

12

Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems

– Massive data to learn from

• Similar situations in many fields (e.g., bioinformatics)

⇒ Machine learning for high-dimensional structured data

13

Why not simply memorizing everything?

Brute force nearest-neighbor classification

14

Why is visual recognition difficult?

Simple problems

• Few object classes with low variability within classes

15

Object recognition in everyday images

16

Why is visual recognition difficult?

Real/complex problems

• Many object classes with high variability within classes

17

Supervised machine learning from examples

Why is it difficult/interesting?

• Why not simply memorizing everything?

• Problem of generalization

• Curse of dimensionality

– For data in dimension p, without assumptions, 2p observations are

needed

• No free lunch theorem

– No algorithm can be the best all the time

• Prior knowledge is needed

18

Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f ∈ F :
n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss

2. Function space / norm

19

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

20

Losses for regression (Shawe-Taylor and Cristianini, 2004)

• Response: y ∈ R, prediction ŷ = f(x),

– quadratic (square) loss ℓ(y, f(x)) = 1
2(y − f(x))2

– Not many reasons to go beyond square loss!

−3 −2 −1 0 1 2 3
0

1

2

3

4

y−f(x)

square

21

Losses for regression (Shawe-Taylor and Cristianini, 2004)

• Response: y ∈ R, prediction ŷ = f(x),

– quadratic (square) loss ℓ(y, f(x)) = 1
2(y − f(x))2

– Not many reasons to go beyond square loss!

• Other convex losses “with added benefits”

– ε-insensitive loss ℓ(y, f(x)) = (|y − f(x)| − ε)+
– Hüber loss (mixed quadratic/linear): robustness to outliers

−3 −2 −1 0 1 2 3
0

1

2

3

4

y−f(x)

square
ε−insensitive
Huber

22

Losses for classification (Shawe-Taylor and Cristianini, 2004)

• Label : y ∈ {−1, 1}, prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f(x)) = ℓ(yf(x))

– “True” cost: ℓ(yf(x)) = 1yf(x)<0

– Usual convex costs:

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

0−1
hinge
square
logistic

• Differences between hinge and logistic loss: differentiability/sparsity

23

Image annotation ⇒ multi-class classification

24

Losses for multi-label classification (Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes

– “one-vs-rest” : learn k classifiers on the entire data

– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data

25

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)

3

2

1

3

2

1

26

Losses for multi-label classification (Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes

– “one-vs-rest” : learn k classifiers on the entire data

– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data

2. Dedicated loss functions for prediction using argmaxi∈{1,...,k} fi(x)

– Softmax regression: loss = − log(efy(x)/
∑k

i=1 e
fi(x))

– Multi-class SVM - 1: loss =
∑k

i=1(1 + fi(x)− fy(x))+
– Multi-class SVM - 2: loss = maxi∈{1,...,k}(1 + fi(x)− fy(x))+

• Different strategies do not consider same space of predictors

• Calibration of the softmax loss: p(y|x) = efy(x)
∑k

i=1 e
fi(x)

27

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)

3

2

1

3

2

1

• Dedicated loss function

3

2

1

28

Image retrieval ⇒ ranking

29

Image retrieval ⇒ outlier/novelty detection

30

Losses for ther tasks

• Outlier detection (Schölkopf et al., 2001; Vert and Vert, 2006)

– one-class SVM: learn only with positive examples

• Ranking

– simple trick: transform into learning on pairs (Herbrich et al.,

2000), i.e., predict {x > y} or {x 6 y}
– More general “structured output methods” (Joachims, 2002)

• General structured outputs

– Very active topic in machine learning and computer vision

– see, e.g., Taskar (2005) and Christoph Lampert’s course

31

Dealing with asymmetric cost or unbalanced data in

binary classification

• Two cases with similar issues:

– Asymmetric cost (e.g., spam filterting, detection)

– Unbalanced data, e.g., lots of negative examples in detection

• One number is not enough to characterize the asymmetric

properties

– ROC curves (Flach, 2003) – cf. precision-recall curves

• Training using asymmetric losses (Bach et al., 2006)

min
f∈F

C+

∑

i,yi=1

ℓ(yif(xi)) + C−
∑

i,yi=−1

ℓ(yif(xi)) + ‖f‖2

• Natural balance: C+n+ = C−n−
32

ROC curves

• ROC plane (u, v)

• u = proportion of false positives = P (f(x) = 1|y = −1)

• v = proportion of true positives = P (f(x) = 1|y = 1)

• Plot a set of classifiers fγ(x) for γ ∈ R (ex: γ = constant term)

• Equi-cost curves and convex hulls

v

1false positives0

tr
ue

 p
os

iti
ve

s

1

u u

a

10

1

tr
ue

 p
os

iti
ve

s

false positives

v

33

ROC curves

• ROC plane (u, v)

• u = proportion of false positives = P (f(x) = 1|y = −1)

• v = proportion of true positives = P (f(x) = 1|y = 1)

• Plot a set of classifiers fγ(x) for γ ∈ R (ex: γ = constant term)

• Equi-cost curves and convex hulls

v

1false positives0

tr
ue

 p
os

iti
ve

s

1

u

v

c

b

a

1false positives0

tr
ue

 p
os

iti
ve

s

1

u

34

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

35

Regularizations

• Main goal: avoid overfitting (see, e.g. Hastie et al., 2001)

• Two main lines of work:

1. Use Hilbertian (RKHS) norms

– Non parametric supervised learning and kernel methods

– Well developped theory (Schölkopf and Smola, 2001; Shawe-

Taylor and Cristianini, 2004; Wahba, 1990)

2. Use “sparsity inducing” norms

– main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|
– Perform model selection as well as regularization

– Theory “in the making”

• Goal of (this part of) the course: Understand how and when

to use these different norms

36

Kernel methods for machine learning

• Definition: given a set of objects X , a positive definite kernel is

a symmetric function k(x, x′) such that for all finite sequences of

points xi ∈ X and αi ∈ R, i = 1, . . . , n,

∑n
i,j=1αiαjk(xi, xj) > 0

(i.e., the matrix (k(xi, xj))16i,j6n is symmetric positive semi-definite)

• Main example: k(x, x′) = 〈Φ(x),Φ(x′)〉

37

Kernel methods for machine learning

• Definition: given a set of objects X , a positive definite kernel is

a symmetric function k(x, x′) such that for all finite sequences of

points xi ∈ X and αi ∈ R, i = 1, . . . , n,

∑n
i,j=1αiαjk(xi, xj) > 0

(i.e., the matrix (k(xi, xj))16i,j6n is symmetric positive semi-definite)

• Aronszajn theorem (Aronszajn, 1950): k is a positive definite

kernel if and only if there exists a Hilbert space F and a mapping

Φ : X 7→ F such that

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉F
• X = “input space”, F = “feature space”, Φ = “feature map”

• Functional view: reproducing kernel Hilbert spaces

38

Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Φ(x) = x

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Φ(x) = monomials

– (1 + x⊤y)d =
∑

α1+···+αk6d

(
d

α1, . . . , αk

)

(x1y1)
α1 · · · (xkyk)

αk

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)
– Φ(x) =??

– From linear classifiers (α small) to nearest-neighbor (α large)

39

Reproducing kernel Hilbert spaces

• Assume k is a positive definite kernel on X × X

• Aronszajn theorem (1950): there exists a Hilbert space F and a

mapping Φ : X 7→ F such that

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉H
• X = “input space”, F = “feature space”, Φ = “feature map”

• RKHS: particular instantiation of F as a function space

– Φ(x) = k(·, x)
– function evaluation f(x) = 〈f,Φ(x)〉
– reproducing property: k(x, y) = 〈k(·, x), k(·, y)〉

• Notations : f(x) = 〈f,Φ(x)〉 = f⊤Φ(x), ‖f‖2 = 〈f, f〉

40

Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)
– Smooth functions

41

Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)
– Smooth functions

• Parameter selection? Structured domain?

– Data are not always vectors!

42

Regularization and representer theorem

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, kernel k (with RKHS F)

• Minimize with respect to f : min
f∈F

∑n
i=1 ℓ(yi, f

⊤Φ(xi)) +
λ
2‖f‖2

• No assumptions on cost ℓ or n

• Representer theorem (Kimeldorf and Wahba, 1971): optimum is

reached for weights of the form

f =
∑n

j=1αjΦ(xj) =
∑n

j=1αjk(·, xj)

• PROOF (two lines)

43

Regularization and representer theorem

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, kernel k (with RKHS F)

• Minimize with respect to f : min
f∈F

∑n
i=1 ℓ(yi, f

⊤Φ(xi)) +
λ
2‖f‖2

• No assumptions on cost ℓ or n

• Representer theorem (Kimeldorf and Wahba, 1971): optimum is

reached for weights of the form

f =
∑n

j=1αjΦ(xj) =
∑n

j=1αjk(·, xj)

• α ∈ R
n dual parameters, K ∈ R

n×n kernel matrix:

Kij = Φ(xi)
⊤Φ(xj) = k(xi, xj)

• Equivalent problem: minα∈Rn
∑n

i=1 ℓ(yi, (Kα)i) +
λ
2α

⊤Kα

44

Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods

45

Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods

• Modularity of kernel methods

1. Work on new algorithms and theoretical analysis

2. Work on new kernels for specific data types

46

Representer theorem and convex duality

• The parameters α ∈ R
n may also be interpreted as Lagrange

multipliers

• Assumption: cost function is convex, ϕi(ui) = ℓ(yi, ui)

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) +
λ
2‖f‖2

• What about the constant term b? replace Φ(x) by (Φ(x), c), c large

ϕi(ui)

LS regression 1
2(yi − ui)

2

Logistic

regression
log(1 + exp(−yiui))

SVM (1− yiui)+

47

Representer theorem and convex duality

Proof

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) +
λ
2‖f‖2

• Define ϕ∗
i (vi) = max

ui∈R

viui − ϕi(ui) as the Fenchel conjugate of ϕi

• Main trick: introduce constraint ui = f⊤Φ(xi) and associated

Lagrange multipliers αi

• Lagrangian L(α, f) =
n∑

i=1

ϕi(ui) +
λ

2
‖f‖2 + λ

n∑

i=1

αi(ui − f⊤Φ(xi))

– Maximize with respect to ui ⇒ term of the form −ϕ∗
i (−λαi)

– Maximize with respect to f ⇒ f =
∑n

i=1αiΦ(xi) and term of the

form −λ
2

∥
∥
∑n

i=1αiΦ(xi)‖2 = −λ
2α

⊤Kα

48

Representer theorem and convex duality

• Assumption: cost function is convex ϕi(ui) = ℓ(yi, ui)

• Primal problem: min
f∈F

∑n
i=1ϕi(f

⊤Φ(xi)) +
λ
2‖f‖2

• Dual problem: max
α∈Rn

−∑n
i=1ϕ

∗
i (−λαi)− λ

2α
⊤Kα

where ϕ∗
i (vi) = maxui∈R viui−ϕi(ui) is the Fenchel conjugate of ϕi

• Strong duality

• Relationship between primal and dual variables (at optimum):

f =
∑n

i=1αiΦ(xi)

• NB: adding constant term b ⇔ add constraints
∑n

i=1αi = 0

49

Supervised kernel methods (2-norm regularization)

Primal problem minf∈F
(∑

iϕi(f
⊤Φ(xi)) +

λ
2||f ||2

)

Dual problem maxα∈Rn

(
−∑iϕ

∗
i (λαi)− λ

2α
⊤Kα

)

Optimality conditions f =
∑n

i=1αiΦ(xi)

• Assumptions on loss ϕi:

– ϕi(u) convex

– ϕ∗
i Fenchel conjugate of ϕi, i.e., ϕ

∗
i (v) = maxu∈R(vu− ϕi(u))

ϕi(ui) ϕ∗
i (v)

LS regression 1
2(yi − ui)

2 1
2v

2 + vyi

Logistic

regression
log(1 + exp(−yiui))

(1+vyi) log(1+vyi)

−vyi log(−vyi)
SVM (1− yiui)+ vyi × 1−vyi∈[0,1]

50

Particular case of the support vector machine

• Primal problem: min
f∈F

∑n
i=1(1− yif

⊤Φ(xi))+ + λ
2‖f‖2

• Dual problem: max
α∈Rn

(

−
∑

i

λαiyi × 1−λαiyi∈[0,1] −
λ

2
α⊤Kα

)

• Dual problem (by change of variable α← −Diag(y)α and C = 1/λ):

max
α∈Rn, 06α6C

∑n
i=1αi − 1

2α
⊤Diag(y)K Diag(y)α

51

Particular case of the support vector machine

• Primal problem: min
f∈F

∑n
i=1(1− yif

⊤Φ(xi))+ + λ
2‖f‖2

• Dual problem:

max
α∈Rn, 06α6C

∑n
i=1αi − 1

2α
⊤Diag(y)K Diag(y)α

52

Particular case of the support vector machine

• Primal problem: min
f∈F

∑n
i=1(1− yif

⊤Φ(xi))+ + λ
2‖f‖2

• Dual problem:

max
α∈Rn, 06α6C

∑n
i=1αi − 1

2α
⊤Diag(y)K Diag(y)α

• What about the traditional picture?

53

Losses for classification (Shawe-Taylor and Cristianini, 2004)

• Label : y ∈ {−1, 1}, prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f(x)) = ℓ(yf(x))

– “True” cost: ℓ(yf(x)) = 1yf(x)<0

– Usual convex costs:

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

0−1
hinge
square
logistic

• Differences between hinge and logistic loss: differentiability/sparsity

54

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

55

Kernel ridge regression (a.k.a. spline smoothing) - I

• Data x1, . . . , xn ∈ X , y1, . . . , yn ∈ R, positive definite kernel k

• Least-squares

min
f∈F

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖2F

• View 1: representer theorem ⇒ f =
∑n

i=1αik(·, xi)

– equivalent to

min
α∈Rn

1

n

n∑

i=1

(yi − (Kα)i)
2 + λα⊤Kα

– Solution equal to α = (K + nλI)−1y + ε with Kε = 0

– Unique solution f

56

Kernel ridge regression (a.k.a. spline smoothing) - II

• Links with spline smoothing (Wahba, 1990)

• View 2: primal problem F ⊂ R
d, Φ ∈ R

n×d

min
w∈Rd

1

n
‖y − Φw‖2 + λ‖w‖2

• Solution equal to w = (Φ⊤Φ+ nλI)−1Φ⊤y

• Note that w = Φ⊤(ΦΦ⊤ + nλI)−1y = Φ⊤(K + nλI)−1y = Φ⊤α

– Using matrix inversion lemma

• Φw equal to Kα

57

Kernel ridge regression (a.k.a. spline smoothing) - III

• View 3: dual problem

– dual problem: maxα∈Rn−nλ
2 ‖α‖2 − α⊤y − 1

2α
⊤Kα

– solution: α = (K + λI)−1y

• Warning: same solution obtained from different point of views

– Primal problem: linear system of size d

– Dual problem: linear system of size n

58

Losses for classification

• Usual convex costs:

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

0−1
hinge
square
logistic

• Differences between hinge and logistic loss: differentiability/sparsity

59

Support vector machine or logistic regression?

• Predictive performance is similar

– Logistic cost better calibrated and often easier to optimize

• Only true difference is numerical

– SVM: sparsity in α

– Logistic: differentiable loss function

• Which one to use?

– Linear kernel ⇒ Logistic + Newton/Gradient descent

– Linear kernel - Large scale ⇒ Stochastic gradient descent

– Nonlinear kernel ⇒ SVM + dual methods or simpleSVM

60

Algorithms for supervised kernel methods

• Four formulations

1. Dual: maxα∈Rn−∑iϕ
∗
i (λαi)− λ

2α
⊤Kα

2. Primal: minf∈F
∑

iϕi(f
⊤Φ(xi)) +

λ
2 ||f ||2

3. Primal + Representer: minα∈Rn
∑

iϕi((Kα)i) +
λ
2α

⊤Kα

4. Convex programming

• Best strategy depends on loss (differentiable or not) and kernel

(linear or not)

61

Dual methods

• Dual problem: maxα∈Rn−∑iϕ
∗
i (λαi)− λ

2α
⊤Kα

• Main method: coordinate descent (a.k.a. sequential minimal

optimization - SMO) (Platt, 1998; Bottou and Lin, 2007; Joachims,

1998)

– Efficient when loss is piecewise quadratic (i.e., hinge = SVM)

– Sparsity may be used in the case of the SVM

• Computational complexity: between quadratic and cubic in n

• Works for all kernels

62

Primal methods

• Primal problem: minf∈F
∑

iϕi(f
⊤Φ(xi)) +

λ
2 ||f ||2

• Only works directly if Φ(x) may be built explicitly and has small

dimension

– Example: linear kernel in small dimensions

• Differentiable loss: gradient descent or Newton’s method are very

efficient in small dimensions

• Do not use linear SVMs in small dimensions!

• Larger scale

– stochastic gradient descent (Shalev-Shwartz et al., 2007; Bottou

and Bousquet, 2008)

– See Zaid Harchaoui’s course

63

Primal methods with representer theorems

• Primal problem in α: minα∈Rn
∑

iϕi((Kα)i) +
λ
2α

⊤Kα

• Direct optimization in α poorly conditioned (K has low-rank) unless

Newton method is used (Chapelle, 2007)

• General kernels: use incomplete Cholesky decomposition (Fine and

Scheinberg, 2001; Bach and Jordan, 2002) to obtain a square root

K = GG⊤

K

T

=
G

G
G of size n×m,

where m≪ n

– “Empirical input space” of size m obtained using rows of G

– Running time to compute G: O(m2n)

64

Direct convex programming

• Convex programming toolboxes ⇒ very inefficient!

• May use special structure of the problem

– e.g., SVM and sparsity in α

• Active set method for the SVM: SimpleSVM (Vishwanathan et al.,

2003; Loosli et al., 2005)

– Cubic complexity in the number of support vectors

• Full regularization path for the SVM (Hastie et al., 2005; Bach et al.,

2006)

– Cubic complexity in the number of support vectors

– May be extended to other settings (Rosset and Zhu, 2007)

65

Code

• SVM and other supervised learning techniques

www.shogun-toolbox.org

http://gaelle.loosli.fr/research/tools/simplesvm.html

http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html

http://ttic.uchicago.edu/~shai/code/index.html

• ℓ1-penalization:

– SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/

• Multiple kernel learning:

asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html

www.stat.berkeley.edu/~gobo/SKMsmo.tar

66

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

67

Kernel methods - I

• Distances in the “feature space”

dk(x, y)
2 = ‖Φ(x)− Φ(y)‖2F = k(x, x) + k(y, y)− 2k(x, y)

• Nearest-neighbor classification/regression

– Gaussian kernel: k(x, x) = k(y, y) = 1 ⇒ same as in input space

68

Kernel methods - II

Simple discrimination algorithm

• Data x1, . . . , xn ∈ X , classes y1, . . . , yn ∈ {−1, 1}

• Compare distances to mean of each class

• Equivalent to classifying x using the sign of

1

#{i, yi = 1}
∑

i,yi=1

k(x, xi)−
1

#{i, yi = −1}
∑

i,yi=−1

k(x, xi)

• Proof...

• Geometric interpretation of Parzen windows

– NB: onyl when k is positive definite and pointwise positive

(i.e., ∀x, y, k(x, y) > 0)

69

Kernel methods - III

Data centering

• n points x1, . . . , xn ∈ X

• kernel matrix K ∈ R
n, Kij = k(xi, xj) = 〈Φ(xi),Φ(xj)〉

• Kernel matrix of centered data K̃ij = 〈Φ(xi)− µ,Φ(xj)− µ〉
where µ = 1

n

∑n
i=1Φ(xi)

• Formula: K̃ = ΠnKΠn with Πn = In − E
n , and E constant matrix

equal to 1.

• Proof...

• NB: µ is not of the form Φ(z), z ∈ X (cf. preimage problem)

70

Kernel PCA

• Linear principal component analysis

– data x1, . . . , xn ∈ R
p,

max
w∈Rp

w⊤Σ̂w

w⊤w
= max

w∈Rp

var(w⊤X)

w⊤w

– w is largest eigenvector of Σ̂

– Denoising, data representation

• Kernel PCA: data x1, . . . , xn ∈ X , p.d. kernel k

– View 1: max
w∈F

var(〈Φ(X), w〉)
w⊤w

View 2: max
f∈F

var(f(X))

‖f‖2F
– Solution: f,w =

∑n
i=1αik(·, xi) and α first eigenvector of K̃ =

ΠnKΠn

– Interpretation in terms of covariance operators

71

Denoising with kernel PCA (From Schölkopf, 2005)

72

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

73

Kernel design

• Principle: kernel on X = space of functions on X + norm

• Two main design principles

1. Constructing kernels from kernels by algebraic operations

2. Using usual algebraic/numerical tricks to perform efficient kernel

computations with very high-dimensional feature spaces

• Operations: k1(x, y)=〈Φ1(x),Φ1(y)〉, k2(x, y)=〈Φ2(x),Φ2(y)〉
– Sum = concatenation of feature spaces:

k1(x, y) + k2(x, y) =
〈(Φ1(x)

Φ2(x)

)
,
(Φ1(y)
Φ2(y)

)〉

– Product = tensor product of feature spaces:

k1(x, y)k2(x, y) =
〈
Φ1(x)Φ2(x)

⊤,Φ1(y)Φ2(y)
⊤〉

74

Classical kernels: kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x⊤y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)
– Smooth functions

• Data are not always vectors!

75

Efficient ways of computing large sums

• Goal: Φ(x) ∈ R
p high-dimensional, compute

p
∑

i=1

Φi(x)Φi(y) in o(p)

• Sparsity: many Φi(x) equal to zero (example: pyramid match kernel)

• Factorization and recursivity: replace sums of many products by

product of few sums (example: polynomial kernel, graph kernel)

(1 + x⊤y)d =
∑

α1+···+αk6d

(
d

α1, . . . , αk

)

(x1y1)
α1 · · · (xkyk)

αk

76

Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

imin(hi, h
′
i), chi-square: exp

(

−α∑i
(hi−h′

i)
2

hi+h′
i

)

77

Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

imin(hi, h
′
i), chi-square: exp

(

−α∑i
(hi−h′

i)
2

hi+h′
i

)

• Pyramid match (Grauman and Darrell, 2007): efficiently introducing

localization

– Form a regular pyramid on top of the image

– Count the number of common elements in each bin

– Give a weight to each bin

– Many bins but most of them are empty

⇒ use sparsity to compute kernel efficiently

78

Pyramid match kernel

(Grauman and Darrell, 2007; Lazebnik et al., 2006)

• Two sets of points

• Counting matches at several scales: 7, 5, 4

79

Kernels from segmentation graphs

• Goal of segmentation: extract objects of interest

• Many methods available,

– ... but, rarely find the object of interest entirely

• Segmentation graphs

– Allows to work on “more reliable” over-segmentation

– Going to a large square grid (millions of pixels) to a small graph

(dozens or hundreds of regions)

• How to build a kernel over segmenation graphs?

– NB: more generally, kernelizing existing representations?

80

Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments

81

Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments

82

Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

⇒

83

Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

• Difficulties

– Extremely high-dimensional labels

– Planar undirected graph

– Inexact matching

• Graph kernels (Gärtner et al., 2003; Kashima et al., 2004; Harchaoui

and Bach, 2007) provide an elegant and efficient solution

84

Kernels between structured objects

Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

• Numerous applications (text, bio-informatics, speech, vision)

• Common design principle: enumeration of subparts (Haussler,

1999; Watkins, 1999)

– Efficient for strings

– Possibility of gaps, partial matches, very efficient algorithms

• Most approaches fail for general graphs (even for undirected trees!)

– NP-Hardness results (Ramon and Gärtner, 2003)

– Need specific set of subparts

85

Paths and walks

• Given a graph G,

– A path is a sequence of distinct neighboring vertices

– A walk is a sequence of neighboring vertices

• Apparently similar notions

86

Paths

87

Walks

88

Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

• Wp
G (resp. Wp

H) denotes the set of walks of length p in G (resp. H)

• Given basis kernel on labels k(ℓ, ℓ′)

• p-th order walk kernel:

kpW(G,H) =
∑

(r1, . . . , rp) ∈ Wp
G

(s1, . . . , sp) ∈ Wp
H

p
∏

i=1

k(ℓG(ri), ℓH(si)).

G

1

s3

2s

s 1r
2

3r
H

r

89

Dynamic programming for the walk kernel

(Harchaoui and Bach, 2007)

• Dynamic programming in O(pdGdHnGnH)

• kpW(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kpW(G,H, r, s)=k(ℓG(r), ℓH(s))
∑

r′ ∈ NG(r)

s′ ∈ NH(s)

kp−1
W (G,H, r′, s′).

G
s

r

H

90

Dynamic programming for the walk kernel

(Harchaoui and Bach, 2007)

• Dynamic programming in O(pdGdHnGnH)

• kpW(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kpW(G,H, r, s)=k(ℓG(r), ℓH(s))
∑

r′ ∈ NG(r)

s′ ∈ NH(s)

kp−1
W (G,H, r′, s′)

• Kernel obtained as kp,αT (G,H) =
∑

r∈VG,s∈VH

kp,αT (G,H, r, s)

91

Extensions of graph kernels

• Main principle: compare all possible subparts of the graphs

• Going from paths to subtrees

– Extension of the concept of walks ⇒ tree-walks (Ramon and

Gärtner, 2003)

• Similar dynamic programming recursions (Harchaoui and Bach, 2007)

• Need to play around with subparts to obtain efficient recursions

– NB: Do we actually need positive definiteness?

92

Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes

93

Performance on Corel14 (Harchaoui & Bach, 2007)

Error rates

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
(wTW)

• MKL (M) H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

• Hyperparameter selection using cross-validation

94

Kernel methods - Summary

• Kernels and representer theorems

– Clear distinction between representation/algorithms

• Algorithms

– Two formulations (primal/dual)

– Logistic or SVM?

• Kernel design

– Very large feature spaces with efficient kernel evaluations

95

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

96

Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f : X → Y:
n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss

2. Function space / norm

97

Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

98

Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

2. Sparsity-inducing norms

– Usually restricted to linear predictors on vectors f(x) = w⊤x
– Main example: ℓ1-norm ‖w‖1 =

∑p
i=1 |wi|

– Perform model selection as well as regularization

– Theory and algorithms “in the making”

99

ℓ2-norm vs. ℓ1-norm

• ℓ1-norms lead to interpretable models

• ℓ2-norms can be run implicitly with very large feature spaces

• Algorithms:

– Smooth convex optimization vs. nonsmooth convex optimization

• Theory:

– better predictive performance?

100

ℓ2 vs. ℓ1 - Gaussian hare vs. Laplacian tortoise

• First-order methods (Fu, 1998; Wu and Lange, 2008)
• Homotopy methods (Markowitz, 1956; Efron et al., 2004)

101

Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

– Derivative at 0+: g+ = λ− y and 0−: g− = −λ− y

– x = 0 is the solution iff g+ > 0 and g− 6 0 (i.e., |y| 6 λ)

– x > 0 is the solution iff g+ 6 0 (i.e., y > λ) ⇒ x∗ = y − λ

– x 6 0 is the solution iff g− 6 0 (i.e., y 6 −λ) ⇒ x∗ = y + λ

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding

102

Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding

x

−λ

x*(y)

λ y

103

Why ℓ1-norms lead to sparsity?

• Example 2: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining

1

2
w

w 1

2
w

w

104

ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

J(w) =
n∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1

Error on data + Regularization

• Including a constant term b? Penalizing or constraining?

• square loss ⇒ basis pursuit in signal processing (Chen et al., 2001),

Lasso in statistics/machine learning (Tibshirani, 1996)

105

First order methods for convex optimization on R
p

Smooth optimization

• Gradient descent: wt+1 = wt − αt∇J(wt)

– with line search: search for a decent (not necessarily best) αt

– fixed diminishing step size, e.g., αt = t−1/2

• Convergence of J(wt) to J∗ = minw∈Rp J(w) (Nesterov, 2003)

– f convex and M -Lipschitz: J(wt)−J∗ = O
(
M/
√
t
)

– and, differentiable with L-Lipschitz gradient: J(wt)−J∗ = O
(
L/t
)

– and, J µ-strongly convex: J(wt)−J∗ = O
(
L exp(−4tµL)

)

• µ
L = condition number of the optimization problem

• Coordinate descent: similar properties

• NB: “optimal scheme” J(wt)−J∗ = O
(
Lmin{exp(−4t

√

µ/L), t−2}
)

106

First-order methods for convex optimization on R
p

Non smooth optimization

• First-order methods for non differentiable objective

– Subgradient descent: wt+1 = wt − αtgt, with gt ∈ ∂J(wt)

- with exact line search: not always convergent (see counter-

example)

- diminishing step size, e.g., αt = a(t+ b)−1/2: convergent

– Coordinate descent: not always convergent (show counter-example)

• Convergence rates (J convex andM -Lipschitz): J(wt)−J∗ = O
(
M√
t

)

107

Counter-example

Coordinate descent for nonsmooth objectives

5
4

3
2

1

w

w
2

1

108

Counter-example (Bertsekas, 1995)

Steepest descent for nonsmooth objectives

• q(x1, x2) =

{ −5(9x2
1 + 16x2

2)
1/2 if x1 > |x2|

−(9x1 + 16|x2|)1/2 if x1 6 |x2|

• Steepest descent starting from any x such that x1 > |x2| >

(9/16)2|x1|

−5 0 5
−5

0

5

109

Second order methods

• Differentiable case

– Newton: wt+1 = wt − αtH
−1
t gt

- Traditional: αt = 1, but non globally convergent

- globally convergent with line search for αt (see Boyd, 2003)

- O(log log(1/ε)) (slower) iterations

– Quasi-newton methods (see Bonnans et al., 2003)

• Non differentiable case (interior point methods)

– Smoothing of problem + second order methods

∗ See example later and (Boyd, 2003)

∗ Theoretically O(
√
p) Newton steps, usually O(1) Newton steps

110

Regularized problems - Proximal methods

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

J(wt) + (w − wt)
⊤∇J(wt)+

L

2
‖w − wt‖22

– wt+1 = wt − 1
L∇J(wt)

• Problems of the form: min
w∈Rp

J(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

J(wt)+(w−wt)
⊤∇J(wt)+λΩ(w)+

L

2
‖w − wt‖22

– Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

– depends on the condition number of the loss

111

Piecewise linear paths

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

regularization parameter

w
ei

gh
ts

112

Algorithms for ℓ1-norms (square loss):

Gaussian hare vs. Laplacian tortoise

• Coordinate descent: O(pn) per iterations for ℓ1 and ℓ2

• “Exact” algorithms: O(kpn) for ℓ1 vs. O(p2n) for ℓ2

• See Bach, Jenatton, Mairal, and Obozinski (2011)
113

Additional methods - Softwares

• Many contributions in signal processing, optimization, machine

learning

– Extensions to stochastic setting (Bottou and Bousquet, 2008)

• Extensions to other sparsity-inducing norms

– Computing proximal operator

– See small www.di.ens.fr/~fbach/bach_jenatton_mairal_

obozinski_FOT.pdf

• Softwares

– Many available codes

– SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/

114

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

115

Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if

‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1,

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)

116

Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2006;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if

‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1,

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2006; Bickel et al., 2009; Lounici, 2008; Meinshausen

and Yu, 2008): under appropriate assumptions, consistency is possible

as long as

log p = O(n)

117

Alternative sparse methods

Greedy methods

• Forward selection

• Forward-backward selection

• Non-convex method

– Harder to analyze

– Simpler to implement

– Problems of stability

• Positive theoretical results (Zhang, 2009, 2008)

– Similar sufficient conditions than for the Lasso

118

Comparing Lasso and other strategies for linear

regression

• Compared methods to reach the least-square solution

– Ridge regression: min
w∈Rp

1

2
‖y −Xw‖22 +

λ

2
‖w‖22

– Lasso: min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to ordinary least-

squares solution

• Regularization parameters selected on the test set

119

Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log
2
(p)

m
ea

n
sq

ua
re

 e
rr

or

L1
L2
greedy
oracle

Sparse

120

Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log
2
(p)

m
ea

n
sq

ua
re

 e
rr

or

L1
L2
greedy
oracle

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log
2
(p)

m
ea

n
sq

ua
re

 e
rr

or

L1
L2
greedy

Sparse Rotated (non sparse)

121

Summary

ℓ1-norm regularization

• ℓ1-norm regularization leads to nonsmooth optimization problems

– analysis through directional derivatives or subgradients

– optimization may or may not take advantage of sparsity

• ℓ1-norm regularization allows high-dimensional inference

• Interesting problems for ℓ1-regularization

– Stable variable selection

– Weaker sufficient conditions (for weaker results)

– Estimation of regularization parameter (all bounds depend on the

unknown noise variance σ2)

122

Extensions

• Sparse methods are not limited to the square loss

– logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van

De Geer, 2008; Bach, 2009)

• Sparse methods are not limited to supervised learning

– Learning the structure of Gaussian graphical models (Meinshausen

and Bühlmann, 2006; Banerjee et al., 2008)

– Sparsity on matrices (last part of the course)

– See Jean Ponce’s course

• Sparse methods are not limited to variable selection in a linear

model

– See next part of the course

123

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

124

Penalization with grouped variables

(Yuan and Lin, 2006)

• Assume that {1, . . . , p} is partitioned
into m groups G1, . . . , Gm

• Penalization by
∑m

i=1 ‖wGi
‖2, often called ℓ1-ℓ2 norm

• Induces group sparsity

– Some groups entirely set to zero

– no zeros within groups

G

2G

3G

1

125

Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√

w2
1 + w2

2 + |w3|

126

Linear vs. non-linear methods

• All methods in this course are linear in the parameters

• By replacing x by features Φ(x), they can be made non linear in

the data

• Implicit vs. explicit features

– ℓ1-norm: explicit features

– ℓ2-norm: representer theorem allows to consider implicit features if

their dot products can be computed easily (kernel methods)

127

Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Sparse methods are linear!

• Sparsity with non-linearities

– replace f(x) =
∑p

j=1w
⊤
j xj with x ∈ R

p and wj ∈ R

– by f(x) =
∑p

j=1w
⊤
j Φj(x) with x ∈ X , Φj(x) ∈ Fj an wj ∈ Fj

• Replace the ℓ1-norm
∑p

j=1 |wj| by “block” ℓ1-norm
∑p

j=1 ‖wj‖2

• Remarks

– Hilbert space extension of the group Lasso (Yuan and Lin, 2006)

– Alternative sparsity-inducing norms (Ravikumar et al., 2008)

128

Multiple kernel learning

• Learning combinations of kernels: K(η) =
∑m

j=1 ηjKj, η > 0

– Summing kernels ⇔ concatenating feature spaces

– Assume k1(x, y)=〈Φ1(x),Φ1(y)〉, k2(x, y)=〈Φ2(x),Φ2(y)〉

k1(x, y) + k2(x, y) =
〈(Φ1(x)

Φ2(x)

)
,
(Φ1(y)
Φ2(y)

)〉

• Summing kernels ⇔ generalized additive models

• Various priors on kernel weights η do not change the function space

129

Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Multiple feature maps / kernels on x ∈ X :
– p “feature maps” Φj : X 7→ Fj, j = 1, . . . , p.

– Minimization with respect to w1 ∈ F1, . . . , wp ∈ Fp

– Predictor: f(x) = w1
⊤Φ1(x) + · · ·+ wp

⊤Φp(x)

x

Φ1(x)
⊤ w1

ր ց
−→ Φj(x)

⊤ wj −→
ց ր

Φp(x)
⊤ wp

w⊤
1 Φ1(x) + · · ·+ w⊤

p Φp(x)

– Generalized additive models (Hastie and Tibshirani, 1990)

130

Regularization for multiple features

x

Φ1(x)
⊤ w1

ր ց
−→ Φj(x)

⊤ wj −→
ց ր

Φp(x)
⊤ wp

w⊤
1 Φ1(x) + · · ·+ w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖22 is equivalent to using K =
∑p

j=1Kj

– Summing kernels is equivalent to concatenating feature spaces

131

Regularization for multiple features

x

Φ1(x)
⊤ w1

ր ց
−→ Φj(x)

⊤ wj −→
ց ր

Φp(x)
⊤ wp

w⊤
1 Φ1(x) + · · ·+ w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖22 is equivalent to using K =
∑p

j=1Kj

• Regularization by
∑p

j=1 ‖wj‖2 imposes sparsity at the group level

• Main results when regularizing by block ℓ1-norm:

1. Algorithms

2. Analysis of sparsity inducing properties (Bach, 2008)

3. Corresponds to a sparse combination of kernels

K =
∑p

j=1 ηjKj (Bach et al., 2004a)

132

Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

- In particular, with few well-designed kernels

- Be careful with normalization of kernels (Bach et al., 2004b)

• Rank-one kernel matrices: MKL = Lasso

133

Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

- In particular, with few well-designed kernels

- Be careful with normalization of kernels (Bach et al., 2004b)

• Rank-one kernel matrices: MKL = Lasso

• Sparse methods: new possibilities and new features

134

How does a good kernel matrix look like?

135

How does a good kernel matrix look like?

136

How does a good kernel matrix look like?

137

How does a good kernel matrix look like?

138

How does a good kernel matrix look like?

139

How does a good kernel matrix look like?

• Good kernel matrices for classification may not be block-constants

140

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

141

Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009)

142

Learning on matrices - Collaborative filtering

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.

1
3

333

3

3
2

2

2
2

2

2
1

1
1

1

1

1
1

1

1

3

143

Learning on matrices - Source separation

• Single microphone (Benaroya et al., 2006; Févotte et al., 2009)

144

Learning on matrices - Multi-task learning

• k linear prediction tasks on same covariates x ∈ R
p

– k weight vectors wj ∈ R
p

– Joint matrix of predictors W = (w1, . . . ,wk) ∈ R
p×k

• Classical application

– Multi-category classification (one task per class) (Amit et al., 2007)

• Share parameters between tasks

• Joint variable selection (Obozinski et al., 2009)

– Select variables which are predictive for all tasks

• Joint feature selection (Pontil et al., 2007)

– Construct linear features common to all tasks

145

Matrix factorization - Dimension reduction

• Given data matrix X = (x1, . . . ,xn) ∈ R
p×n

– Principal component analysis: xi ≈ Dαi⇒ X = DA

– K-means: xi ≈ dk ⇒ X = DA

146

Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

• Many zero elements: Mij = 0

M

• Many zero rows (or columns): (Mi1, . . . ,Mip) = 0

M

147

Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV⊤

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Low rank: m small

=

T

U
V

M

• Sparse decomposition: U sparse

U= VM
T

148

Structured sparse matrix factorizations

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Structure on U and/or V

– Low-rank: U and V have few columns

– Dictionary learning / sparse PCA: U has many zeros

– Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1

– Pointwise positivity: non negative matrix factorization (NMF)

– Specific patterns of zeros (Jenatton et al., 2010)

– Low-rank + sparse (Candès et al., 2009)

– etc.

• Many applications

• Many open questions (Algorithms, identifiability, etc.)

149

Multi-task learning

• Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Joint variable selection (Obozinski et al., 2009)

– Penalize by the sum of the norms of rows of W (group Lasso)

– Select variables which are predictive for all tasks

150

Multi-task learning

• Joint matrix of predictors W = (w1, . . . , wk) ∈ R
p×k

• Joint variable selection (Obozinski et al., 2009)

– Penalize by the sum of the norms of rows of W (group Lasso)

– Select variables which are predictive for all tasks

• Joint feature selection (Pontil et al., 2007)

– Penalize by the trace-norm (see later)

– Construct linear features common to all tasks

• Theory: allows number of observations which is sublinear in the

number of tasks (Obozinski et al., 2008; Lounici et al., 2009)

• Practice: more interpretable models, slightly improved performance

151

Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = UDiag(s)V⊤ where U and

V have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values

152

Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = UDiag(s)V⊤ where U and

V have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values

• Trace-norm (a.k.a. nuclear norm) = sum of singular values

• Convex function, leads to a semi-definite program (Fazel et al., 2001)

• First used for collaborative filtering (Srebro et al., 2005)

• Multi-category classif. (Amit et al., 2007; Harchaoui et al., 2012)

153

Sparse principal component analysis

• Given data X = (x⊤
1 , . . . ,x

⊤
n) ∈ R

p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

154

Sparse principal component analysis

• Given data X = (x⊤
1 , . . . ,x

⊤
n) ∈ R

p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

• Sparse extensions

– Interpretability

– High-dimensional inference

– Two views are differents

- For analysis view, see d’Aspremont, Bach, and El Ghaoui (2008)

155

Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑

i=1

min
αi∈Rm

∥
∥
∥
∥
xi −

k∑

j=1

(αi)jdj

∥
∥
∥
∥

2

2

=
n∑

i=1

min
αi∈Rm

∥
∥xi −Dαi

∥
∥
2

2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small

156

Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑

i=1

min
αi∈Rm

∥
∥
∥
∥
xi −

k∑

j=1

(αi)jdj

∥
∥
∥
∥

2

2

=
n∑

i=1

min
αi∈Rm

∥
∥xi −Dαi

∥
∥
2

2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small

• Sparse formulation (Witten et al., 2009; Bach et al., 2008)

– Penalize/constrain dj by the ℓ1-norm for sparsity

– Penalize/constrain αi by the ℓ2-norm to avoid trivial solutions

min
D,A

n∑

i=1

‖xi −Dαi‖22 + λ
k∑

j=1

‖dj‖1 s.t. ∀i, ‖αi‖2 6 1

157

Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse

158

Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse

• Dictionary learning: xi ≈ Dαi, αi sparse

159

Structured matrix factorizations (Bach et al., 2008)

min
D,A

n∑

i=1

‖xi −Dαi‖22 + λ
k∑

j=1

‖dj‖⋆ s.t. ∀i, ‖αi‖• 6 1

min
D,A

n∑

i=1

‖xi −Dαi‖22 + λ
n∑

i=1

‖αi‖• s.t. ∀j, ‖dj‖⋆ 6 1

• Optimization by alternating minimization (non-convex)

• αi decomposition coefficients (or “code”), dj dictionary elements

• Two related/equivalent problems:

– Sparse PCA = sparse dictionary (ℓ1-norm on dj)

– Dictionary learning = sparse decompositions (ℓ1-norm on αi)

(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,

2007)

160

Dictionary learning for image denoising

x︸︷︷︸
measurements

= y
︸︷︷︸

original image

+ ε︸︷︷︸
noise

161

Sparse methods for machine learning

Why use sparse methods?

• Sparsity as a proxy to interpretability

– Structured sparsity (Jenatton et al., 2009)

• Sparsity for high-dimensional inference

– Influence on feature design

• Sparse methods are not limited to least-squares regression

• Faster training/testing

• Better predictive performance?

– Problems are sparse if you look at them the right way

162

Conclusion - Interesting questions/issues

• Implicit vs. explicit features

– Can we algorithmically achieve log p = O(n) with explicit

unstructured features?

• Norm design

– What type of behavior may be obtained with sparsity-inducing

norms?

• Overfitting convexity

– Do we actually need convexity for matrix factorization problems?

163

Course outline

1. Losses for particular machine learning tasks

• Classification, regression, etc...

2. Regularization by Hilbertian norms (kernel methods)

• Kernels and representer theorem

• Convex duality, optimization and algorithms

• Kernel methods

• Kernel design

3. Regularization by sparsity-inducing norms

• ℓ1-norm regularization

• Theoretical results

• Multiple kernel learning

• Learning on matrices

164

Conclusion - Interesting problems

Machine learning for computer vision

• Kernel design for computer vision

– Benefits of “kernelizing” existing representations

– Combining kernels

• Sparsity and computer vision

– Going beyond image denoising

• Large numbers of classes

– Theoretical and algorithmic challenges

• Structured output

• Semi-supervised learning

165

References

Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classification.

In Proceedings of the 24th international conference on Machine Learning (ICML), 2007.

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337–404, 1950.

F. Bach. Self-concordant analysis for logistic regression. Technical Report 0910.4627, ArXiv, 2009.

F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical Report 0812.1869,

ArXiv, 2008.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.

Technical Report 00613125, HAL, 2011.

F. R. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning

Research, pages 1179–1225, 2008.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning

Research, 3:1–48, 2002.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO

algorithm. In Proceedings of the International Conference on Machine Learning (ICML), 2004a.

F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels.

In Advances in Neural Information Processing Systems 17, 2004b.

F. R. Bach, D. Heckerman, and E. Horvitz. Considering cost asymmetry in learning classifiers. Journal

of Machine Learning Research, 7:1713–1741, 2006.

166

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood

estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9:

485–516, 2008.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

L. Benaroya, F. Bimbot, and R. Gribonval. Audio source separation with a single sensor. IEEE

Transactions on Speech and Audio Processing, 14(1):191, 2006.

D. Bertsekas. Nonlinear programming. Athena Scientific, 1995.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of

Statistics, 37(4):1705–1732, 2009.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola,

and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21, 2005.

L. Bottou and C. J. Lin. Support vector machine solvers. In Large scale kernel machines, 2007.

Léon Bottou and Olivier Bousquet. Learning using large datasets. In Mining Massive DataSets for

Security, NATO ASI Workshop Series. IOS Press, Amsterdam, 2008. URL http://leon.bottou.

org/papers/bottou-bousquet-2008b. to appear.

E.J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Arxiv preprint

arXiv:0912.3599, 2009.

O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155–1178,

2007.

Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by basis

167

pursuit. SIAM Rev., 43(1):129–159, 2001. ISSN 0036-1445.

A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component analysis.

Journal of Machine Learning Research, 9:1269–1294, 2008.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.

M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned

dictionaries. IEEE Trans. Image Proc., 15(12):3736–3745, 2006.

M. Fazel, H. Hindi, and S.P. Boyd. A rank minimization heuristic with application to minimum

order system approximation. In Proceedings of the American Control Conference, volume 6, pages

4734–4739, 2001.

C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the itakura-saito

divergence. with application to music analysis. Neural Computation, 21(3), 2009.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of

Machine Learning Research, 2:243–264, 2001.

P. A. Flach. The geometry of ROC space: understanding machine learning metrics through ROC

isometrics. In International Conference on Machine Learning (ICML), 2003.

W. Fu. Penalized regressions: the bridge vs. the Lasso. Journal of Computational and Graphical

Statistics, 7(3):397–416, 1998).

Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient

alternatives. In COLT, 2003.

K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of features. J.

Mach. Learn. Res., 8:725–760, 2007. ISSN 1533-7928.

168

Z. Harchaoui and F. R. Bach. Image classification with segmentation graph kernels. In Proceedings of

the Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

Z. Harchaoui, M. Douze, M. Paulin, M. Dudik, and J. Malick. Large-scale classification with trace-norm

regularization. In Proc. CVPR, 2012.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag,

2001.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector

machine. Journal of Machine Learning Research, 5:1391–1415, 2005.

T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman & Hall, 1990.

David Haussler. Convolution kernels on discrete structures. Technical report, UCSC, 1999.

M. Hein and O. Bousquet. Hilbertian metrics and positive-definite kernels on probability measures. In

AISTATS, 2004.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In

Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.

R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.

Technical report, arXiv:0904.3523, 2009.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary

learning. In Submitted to ICML, 2010.

T. Joachims. Making large-scale support vector machine learning practical. In Advances in kernel

methods — Support Vector learning. MIT Press, 1998.

T. Joachims. Optimizing search engines using clickthrough data. In ACM SIGKDD Conference on

169

Knowledge Discovery and Data Mining (KDD), pages 133–142, 2002.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Kernels for graphs. In Kernel Methods in

Computational Biology. MIT Press, 2004.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal.

Applicat., 33:82–95, 1971.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical framework

for genomic data fusion. Bioinf., 20:2626–2635, 2004a.

G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel

matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–72, 2004b.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for

recognizing natural scene categories. In Proc. CVPR, 2006.

H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In NIPS, 2007.

G. Loosli, S. Canu, S. Vishwanathan, A. Smola, and M. Chattopadhyay. Bôıte à outils SVM simple et

rapide. Revue dIntelligence Artificielle, 19(4-5):741–767, 2005.

K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig

estimators. Electronic Journal of Statistics, 2, 2008.

K. Lounici, A.B. Tsybakov, M. Pontil, and S.A. van de Geer. Taking advantage of sparsity in multi-task

learning. In Conference on Computational Learning Theory (COLT), 2009.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image

restoration. In International Conference on Computer Vision (ICCV), 2009.

H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. Naval

170

Research Logistics Quarterly, 3:111–133, 1956.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso.

Annals of statistics, 34(3):1436, 2006.

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data.

Annals of Statistics, 37(1):246–270, 2008.

F. Meyer. Hierarchies of partitions and morphological segmentation. In Scale-Space and Morphology

in Computer Vision. Springer-Verlag, 2001.

Y. Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic Pub,

2003.

Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations

Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.

G. Obozinski, M.J. Wainwright, and M.I. Jordan. High-dimensional union support recovery in

multivariate regression. In Advances in Neural Information Processing Systems (NIPS), 2008.

G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for

multiple classification problems. Statistics and Computing, pages 1–22, 2009.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed

by V1? Vision Research, 37:3311–3325, 1997.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances

in Kernel Methods: Support Vector Learning, 1998.

M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In Advances in Neural Information

Processing Systems, 2007.

171

Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. In First International

Workshop on Mining Graphs, Trees and Sequences, 2003.

P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman. SpAM: Sparse additive models. In Advances in

Neural Information Processing Systems (NIPS), 2008.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Ann. Statist., 35(3):1012–1030,

2007.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

B. Schölkopf, J. C. Platt, J. S. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the

support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471, 2001.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM.

In Proceedings of the International Conference on Machine Learning (ICML), 2007.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances

in Neural Information Processing Systems 17, 2005.

B. Taskar. Structured prediction: A large margin approach. In NIPS Tutorial, 2005. URL media.

nips.cc/Conferences/2007/Tutorials/Slides/taskar-NIPS-07-tutorial.ppt.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of The Royal Statistical Society

Series B, 58(1):267–288, 1996.

S. A. Van De Geer. High-dimensional generalized linear models and the Lasso. Annals of Statistics, 36

(2):614, 2008.

R. Vert and J.-P. Vert. Consistency and convergence rates of one-class svms and related algorithms.

172

Journal of Machine Learning Research, 7:817–854, 2006.

S. V. N. Vishwanathan, A. J. Smola, and M. Murty. Simplesvm. In Proceedings of the International

Conference on Machine Learning (ICML), 2003.

G. Wahba. Spline Models for Observational Data. SIAM, 1990.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ1-

constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.

C. Watkins. Dynamic alignment kernels. Technical report, RHUL, 1999.

D.M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to

sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515–534, 2009.

Tong Tong Wu and Kenneth Lange. Coordinate descent algorithms for lasso penalized regression. Ann.

Appl. Stat., 2(1):224–244, 2008.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of

The Royal Statistical Society Series B, 68(1):49–67, 2006.

M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal of The Royal Statistical Society

Series B, 69(2):143–161, 2007.

T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. Advances

in Neural Information Processing Systems, 22, 2008.

T. Zhang. On the consistency of feature selection using greedy least squares regression. The Journal

of Machine Learning Research, 10:555–568, 2009.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research,

7:2541–2563, 2006.

173

H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association,

101(476):1418–1429, 2006.

174

