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Predictive low-rank decomposition 
for kernel methods

• Kernel algorithms and low-rank decompositions

• Incomplete Cholesky decomposition

• Cholesky with side information

• Simulations – code online



Kernel matrices

• Given 

– data points 

– kernel function

• Kernel methods works with kernel matrix

– defined as a Gram matrix :

– symmetric :

– positive semi-definite :



Kernel algorithms

• Kernel algorithms, usually              or worse

– Eigenvalues: Kernel PCA, CCA, FDA

– Matrix inversion: LS-SVM

– Convex optimization problems: SOCP, QP, SDP

• Requires speed-up techniques for medium/large scale 
problems

• General purpose matrix decomposition algorithms:

– Linear in     (not even touching all entries!)
• Nyström method (Williams & Seeger, 2000)

• Sparse greedy approximations (Smola & Schölkopf, 2000)

• Incomplete Cholesky decomposition (Fine & Scheinberg, 2001)



Incomplete Cholesky decomposition

– is the rank of 

– Most algorithms become 



Kernel matrices and ranks

• Kernel matrices may have full rank, i.e.,                  …

• … but eigenvalues decay (at least) exponentially fast for a 
wide variety of kernels (Williams & Seeger, 2000, Bach & Jordan, 2002)

Good approximation by low rank matrices with small

• “Data live near a low-dimensional subspace in feature space”

• In practise, very small 



Incomplete Cholesky decomposition

• Approximate full matrix from selected columns:

( use datapoints in      to approximate all of them)

• Use diagonal to characterize behavior of the unknown block



Lemma

• Given a positive matrix      and subsets

• There exists a unique matrix      such that

– is symmetric

– The column space of      is spanned by 

– agrees with       on columns in 



Incomplete Cholesky decomposition

• Two main issues:

– Selection of columns      (pivots)

– Computation of 

• Incomplete Cholesky decomposition

– Efficient update of       with linear cost

– Pivoting: greedy choice of pivot with linear cost

?
?



Incomplete Cholesky decomposition
(no pivoting)

k=1

k=2

k=3



Pivot selection

• approximation after k-th iteration

• Error

• Gain after between iterations k-1 and k =

• Exact computation is 

• Lower bound  



Incomplete Cholesky decomposition
with pivoting

Pivot
selection

k=1

k=2

k=3

Pivot
permutation



Incomplete Cholesky decomposition:
what’s missing?

• Complexity after      steps:

• What’s wrong with incomplete Cholesky (and other 
decomposition algorithms)?

– They don’t take into account the classification labels or 
regression variables

– cf. PCA vs. LDA



Incomplete Cholesky decomposition:
what’s missing?

• Two questions:

– Can we exploit side information to lower the needed rank 
of the approximation?

– Can we do it in linear time in     ? 



Using side information 
(classification labels, regression variables)

• Given 

– kernel matrix                        

– side information 
• Multiple regression with d response variables

• Classification with d classes

– if n-th data point belongs to class i

– 0 otherwise

• Use      to select pivots



Prediction criterion

• Square loss:

• Representer theorem: prediction using kernels leads to 
prediction error for i-th data point                                          
where

• Minimum total prediction error

• If                    , equal to



Computing/updating criterion

• Requirements: efficient to add one column at a time 

– (cf linear regression setting: add one variable at at time)

• QR decomposition of 

–

– orthogonal,                        upper triangular

–



• Parallel Cholesky and QR decomposition

• Selection of pivots?

Cholesky with side information (CSI)



Criterion for selection of pivots

• Approximation error + prediction error

• Gain in criterion after k-th iteration:

• Cannot compute for each remaining pivot exactly because it 
requires the entire matrix

• Main idea: compute     “look-ahead” decomposition steps and 
use the decomposition to compute gains

– large enough to gain enough information about

– small enough to incur little additional cost



Incomplete Cholesky decomposition
with pivoting and look-ahead

Pivot
selection
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Running time complexity

• “Semi-naïve” computations of look-ahead decompositions 
(i.e., start again from scratch at each iteration)

– Decompositions:

– Computing criterion gains:

• Efficient implementation (see paper/code)

– steps of Cholesky/QR:

– Computing criterion gains: 



Simulations

• UCI datasets

• Gaussian-RBF kernels – Least squares SVM

• Width and regularization parameters chosen by cross-
validation

• Compare minimal ranks for which the average performance 
is within a standard deviation from the one with the full kernel
matrix Test set accuracy

Full rank matrix

using matrix
decomposition



Simulations



Conclusion

• Discriminative kernel methods and …

… discriminative matrix decomposition algorithms

• Same complexity as non discriminative version (linear)

• Matlab/C code available online


