# Predictive low-rank decomposition for kernel methods

Francis Bach

Ecole des Mines de Paris



Michael Jordan

UC Berkeley



**ICML 2005** 

# Predictive low-rank decomposition for kernel methods

- Kernel algorithms and low-rank decompositions
- Incomplete Cholesky decomposition
- Cholesky with side information
- Simulations code online

#### **Kernel matrices**

- Given
  - n data points  $x_i \in \mathcal{X}$
  - kernel function  $k:\mathcal{X} imes\mathcal{X}
    ightarrow\mathbb{R}$
- Kernel methods works with kernel matrix  $K \in \mathbb{R}^{n \times n}$ 
  - defined as a Gram matrix :  $K_{ij} = k(x_i, x_j)$
  - symmetric :

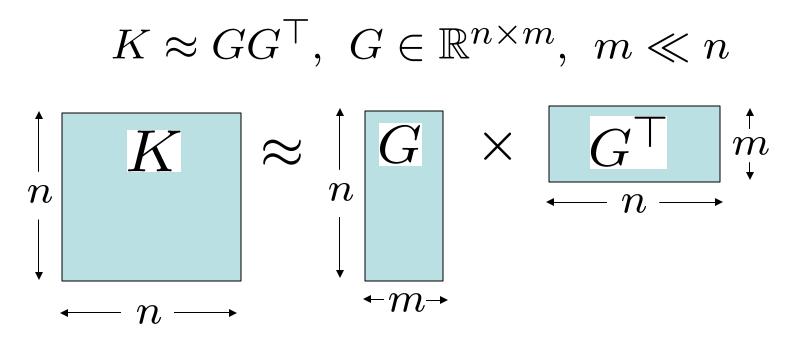
$$K = K^{\top}$$

– positive semi-definite :  $K \succcurlyeq 0$ 

# **Kernel algorithms**

- Kernel algorithms, usually  $O(n^3)$  or worse
  - Eigenvalues: Kernel PCA, CCA, FDA
  - Matrix inversion: LS-SVM
  - Convex optimization problems: SOCP, QP, SDP
- Requires speed-up techniques for medium/large scale problems
- General purpose matrix decomposition algorithms:
  - Linear in n (not even touching all entries!)
    - Nyström method (Williams & Seeger, 2000)
    - Sparse greedy approximations (Smola & Schölkopf, 2000)
    - Incomplete Cholesky decomposition (Fine & Scheinberg, 2001)

#### **Incomplete Cholesky decomposition**



- m is the rank of G
- Most algorithms become

$$O(m^3 + m^2\underline{\underline{n}})$$

#### **Kernel matrices and ranks**

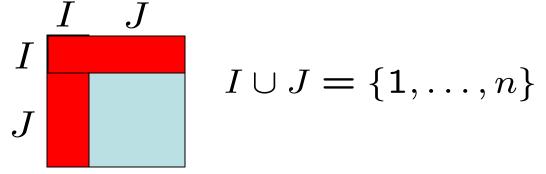
- Kernel matrices may have full rank, i.e.,  $m = n \dots$
- ... but eigenvalues decay (at least) exponentially fast for a wide variety of kernels (Williams & Seeger, 2000, Bach & Jordan, 2002)  $\implies$  Good approximation by low rank matrices with small m
- "Data live near a low-dimensional subspace in feature space"
- In practise, very small m

#### **Incomplete Cholesky decomposition**

$$K \approx GG^{\top}, \ G \in \mathbb{R}^{n \times m}, \ m \ll n$$

• Approximate full matrix from selected columns:

( $\Leftrightarrow$  use datapoints in I to approximate all of them)

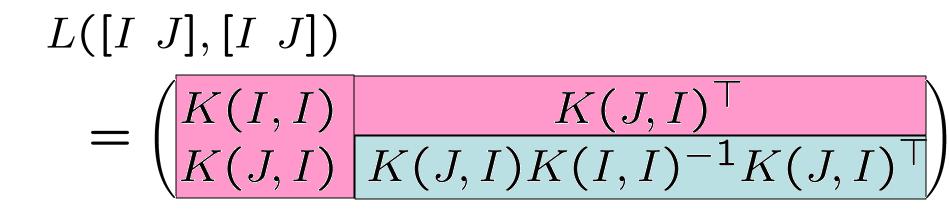


• Use diagonal to characterize behavior of the unknown block

$$I \cup J = \{1, \dots, n\}$$

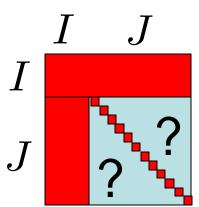
#### Lemma

- Given a positive matrix K and subsets  $I \cup J = \{1, \dots, n\}$
- There exists a unique matrix L such that
  - -L is symmetric
  - The column space of L is spanned by K(:,I)
  - L agrees with  ${\cal K}$  on columns in  $\,I$



# **Incomplete Cholesky decomposition**

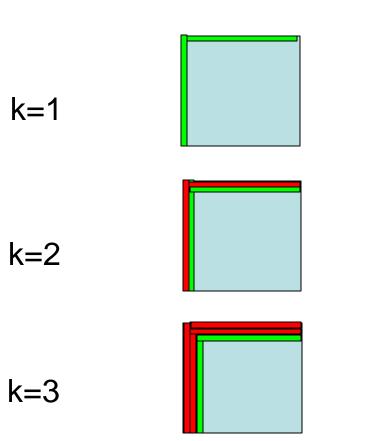
- Two main issues:
  - Selection of columns I (pivots)
  - Computation of



$$L(J,J) = K(J,I)K(I,I)^{-1}K(J,I)^{\top}$$
$$= \sum_{i \in I} G(i,:)G(i,:)^{\top} \text{ if } L = GG^{\top}$$

- Incomplete Cholesky decomposition
  - Efficient update of G with linear cost
  - Pivoting: greedy choice of pivot with linear cost

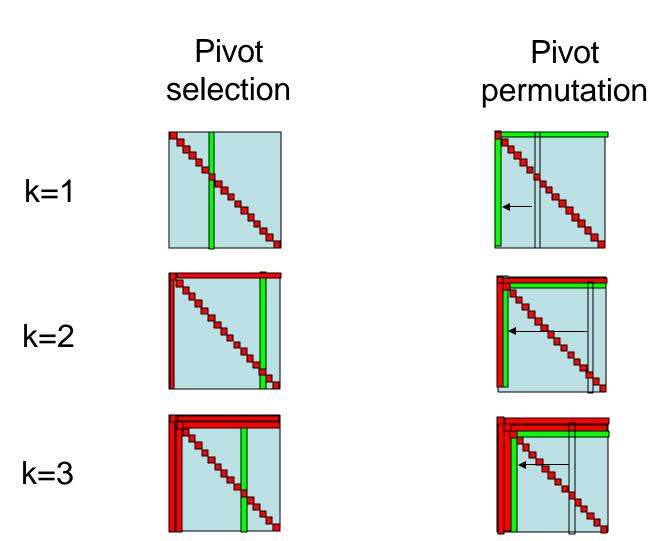
#### Incomplete Cholesky decomposition (no pivoting)



#### **Pivot selection**

- $G_k \in \mathbb{R}^{n imes k}$  approximation after k-th iteration
- Error  $||K G_k G_k^\top||_1 = \operatorname{tr}(K G_k G_k^\top)$ =  $\operatorname{tr}(K) - \sum_{j=1}^k ||G(:,j)||_2^2$
- Gain after between iterations k-1 and k =  $||G(:,k)||_2^2$
- Exact computation is O(kn(n-k))
- Lower bound  $\|G(:,k)\|_2^2 \ge G(i_k,k)^2 = D(i_k)$

# Incomplete Cholesky decomposition with pivoting



## Incomplete Cholesky decomposition: what's missing?

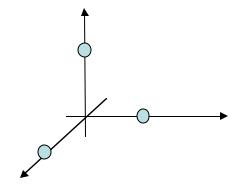
- Complexity after m steps:  $O(m^2n)$
- What's wrong with incomplete Cholesky (and other decomposition algorithms)?
  - They don't take into account the classification labels or regression variables
  - cf. PCA vs. LDA

# Incomplete Cholesky decomposition: what's missing?

- Two questions:
  - Can we exploit side information to lower the needed rank of the approximation?
  - Can we do it in linear time in n?

#### Using side information (classification labels, regression variables)

- Given
  - kernel matrix  $K \in \mathbb{R}^{n imes n}$
  - side information  $Y \in \mathbb{R}^{n \times d}$ 
    - Multiple regression with d response variables
    - Classification with d classes
      - $-Y_{ni} = 1$  if n-th data point belongs to class i
      - 0 otherwise



• Use Y to select pivots

#### **Prediction criterion**

- Square loss:  $c(y, f) = \frac{1}{2} ||y f||_2^2, y, f \in \mathbb{R}^d$
- Representer theorem: prediction using kernels leads to prediction error for i-th data point  $||y_i (K\alpha)_i||_2^2$  where  $\alpha \in \mathbb{R}^n$
- Minimum total prediction error

$$\min_{\alpha \in \mathbb{R}^{n \times d}} \frac{1}{2} \|Y - K\alpha\|_F^2$$

• If  $K = GG^{\top}$ , equal to  $\min_{\beta \in \mathbb{R}^{m \times d}} \frac{1}{2} \|Y - G\beta\|_F^2 = \frac{1}{2} \operatorname{tr} \left\{ Y^{\top} (I - G(G^{\top}G)^{-1}G^{\top})Y \right\}$ 

## **Computing/updating criterion**

$$\min_{\beta \in \mathbb{R}^{m \times d}} \frac{1}{2} \| Y - G\beta \|_F^2 = \frac{1}{2} \operatorname{tr} \left\{ Y^\top (I - G(G^\top G)^{-1} G^\top) Y \right\}$$

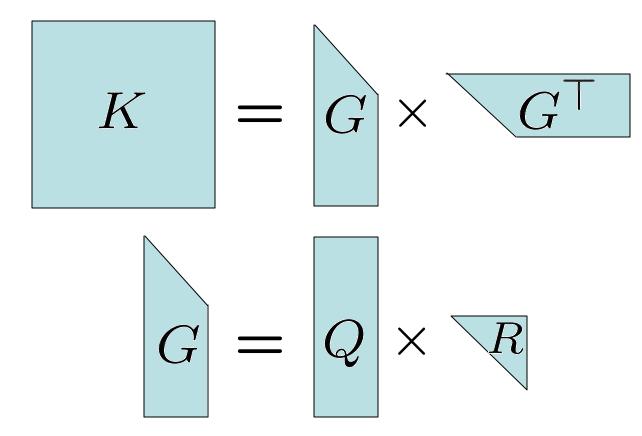
- Requirements: efficient to add one column at a time
  - (cf linear regression setting: add one variable at at time)
- QR decomposition of  $G \in \mathbb{R}^{n imes m}$

$$-G = QR$$

 $-Q \in \mathbb{R}^{n \times m} \text{ orthogonal}, R \in \mathbb{R}^{m \times m} \text{ upper triangular}$  $-G(G^{\top}G)^{-1}G^{\top} = QQ^{\top} = \sum_{k} Q(:,k)Q(:,k)^{\top}$  $G = Q \times R$ 

# **Cholesky with side information (CSI)**

• Parallel Cholesky and QR decomposition

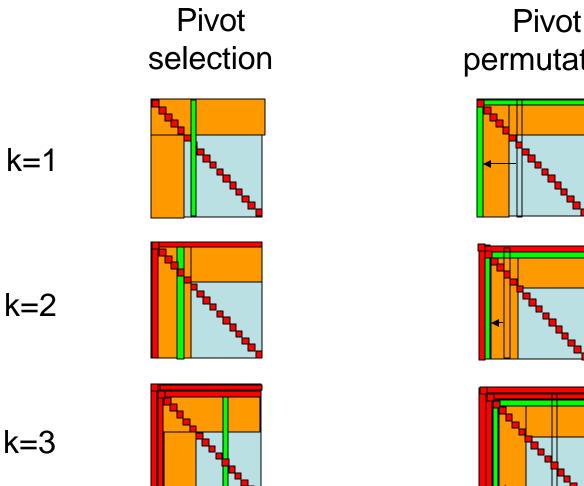


• Selection of pivots?

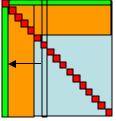
# **Criterion for selection of pivots**

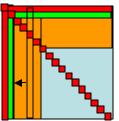
- Approximation error + prediction error  $\lambda tr(K - GG^{\top}) + \mu tr\left\{Y^{\top}Y - Y^{\top}G(G^{\top}G)^{-1}G^{\top}Y\right\}$
- Gain in criterion after k-th iteration:  $\lambda \|G(:,k)\|_2^2 + \mu \|Y^\top Q(:,k)\|_2^2$
- Cannot compute for each remaining pivot exactly because it requires the entire matrix
- Main idea: compute  $\delta$  "look-ahead" decomposition steps and use the decomposition to compute gains
  - $\delta$  large enough to gain enough information about K
  - $-\delta$  small enough to incur little additional cost

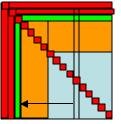
#### **Incomplete Cholesky decomposition** with pivoting and look-ahead



permutation







# **Running time complexity**

- "Semi-naïve" computations of look-ahead decompositions (i.e., start again from scratch at each iteration)
  - Decompositions:
  - Computing criterion gains:
- Efficient implementation (see paper/code)
  - $-m + \delta$  steps of Cholesky/QR:
  - Computing criterion gains:

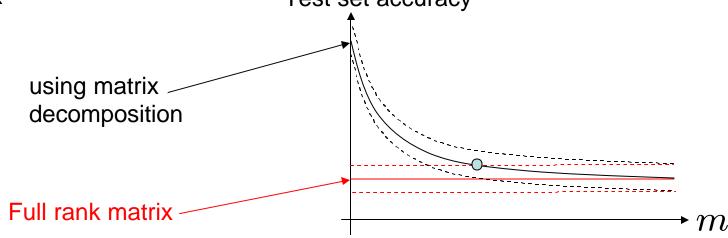
 $O(mn\delta(m+\delta))$  $O(ndm\delta)$ 

 $O((m+\delta)^2n)$ 

O(mdn)

# **Simulations**

- UCI datasets
- Gaussian-RBF kernels Least squares SVM
- Width and regularization parameters chosen by crossvalidation
- Compare minimal ranks for which the average performance is within a standard deviation from the one with the full kernel matrix



# **Simulations**

| dataset      | $n_{f}$ | $n_c$ | $n_p$ | Chol | CSI |
|--------------|---------|-------|-------|------|-----|
| ringnorm     | 20      | 2     | 1000  | 14   | 3   |
| kin-32fh-c   | 32      | 2     | 2000  | 25   | 6   |
| pumadyn-32nm | 32      | —     | 4000  | 93   | 23  |
| pumadyn-32fh | 32      | _     | 4000  | 30   | 8   |
| kin-32fh     | 32      | _     | 4000  | 34   | 10  |
| bank-32fh    | 32      | -     | 4000  | 221  | 72  |
| page-blocks  | 8       | 2     | 5473  | 451  | 155 |
| spambase     | 49      | 2     | 4000  | 90   | 31  |
| isolet       | 617     | 8     | 1798  | 254  | 89  |
| twonorm      | 20      | 2     | 4000  | 8    | 3   |
| comp-activ   | 21      | —     | 4000  | 159  | 73  |
| abalone      | 10      | -     | 4000  | 27   | 13  |
| kin-32nm-c   | 32      | 2     | 4000  | 122  | 68  |
| pendigits    | 16      | 4     | 4485  | 111  | 63  |
| kin-32nm     | 32      | -     | 2000  | 307  | 211 |
| add10        | 10      | -     | 2000  | 280  | 204 |
| mushroom     | 116     | 2     | 4000  | 60   | 44  |
| bank-32-nm   | 32      |       | 4000  | 413  | 328 |
| vehicle      | 18      | 2     | 416   | 31   | 27  |
| boston       | 12      | -     | 506   | 48   | 61  |

# Conclusion

- Discriminative kernel methods and ...
  - ... discriminative matrix decomposition algorithms
- Same complexity as non discriminative version (linear)
- Matlab/C code available online