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Abstract

While kernel canonical correlation analysis (kernel CCA) has been
applied in many problems, the asymptotic convergence of the func-
tions estimated from a finite sample to the true functions has not
yet been established. This paper gives a rigorous proof of the statis-
tical convergence of kernel CCA and a related method (NOCCO),
which provides a theoretical justification for these methods. The
result also gives a sufficient condition on the decay of the regular-
ization coefficient in the methods to ensure convergence.

1 Introduction

Kernel canonical correlation analysis (kernel CCA) has been proposed as a nonlinear
extension of CCA [1, 11, 3]. Given two random variables, kernel CCA aims at
extracting the information which is shared by the two random variables, and has
been successfully applied in various practical contexts. More precisely, given two
random variables X and Y , the purpose of kernel CCA is to provide nonlinear
mappings f(X) and g(Y ) such that their correlation is maximized.

As in many statistical methods, the desired functions are in practice estimated from
a finite sample. Thus, the convergence of the estimated functions to the population
ones with increasing sample size is very important to justify the method. Since the
goal of kernel CCA is to estimate a pair of functions, the convergence should be
evaluated in an appropriate functional norm: thus, we need tools from functional
analysis to characterize the type of convergence.

The purpose of this paper is to rigorously prove the statistical convergence of kernel
CCA, and of a related method. The latter uses a NOrmalized Cross-Covariance
Operator, and we call it NOCCO for short. Both kernel CCA and NOCCO require a
regularization coefficient to enforce smoothness of the functions in the finite sample
case (thus avoiding a trivial solution), but the decay of this regularisation with
increased sample size has not yet been established. Our main theorems give a
sufficient condition on the decay of the regularization coefficient for the finite sample



estimates to converge to the desired functions in the population limit. Another
important issue in establishing the convergence is an appropriate distance measure
for functions. For NOCCO, we obtain convergence in the norm of reproducing kernel
Hilbert spaces (RKHS) [2]. This norm is very strong: if the positive definite (p.d.)
kernels are continuous and bounded, it is stronger than the uniform norm in the
space of continuous functions, and thus the estimated functions converge uniformly
to the desired ones. For kernel CCA, we show convergence in the L2 norm, which
is a standard distance measure for functions. We also discuss the relation between
our results and two relevant studies: COCO [9] and CCA on curves [10].

2 Kernel CCA and related methods

In this section, we review kernel CCA as presented by [3], and then formulate it
with covariance operators on RKHS. In this paper, a Hilbert space always refers to
a separable Hilbert space, and an operator to a linear operator. ‖T‖ denotes the
operator norm sup‖ϕ‖=1 ‖Tϕ‖, and R(T ) denotes the range of an operator T .

Throughout this paper, (HX , kX ) and (HY , kY) are RKHS of functions on measur-
able spaces X and Y, respectively, with measurable p.d. kernels kX and kY . We
consider a random vector (X,Y ) : Ω→ X×Y with distribution PXY . The marginal
distributions of X and Y are denoted PX and PY . We always assume

EX [kX (X,X)] <∞ and EY [kY(Y, Y )] <∞. (1)
Note that under this assumption it is easy to see HX and HY are continuously
included in L2(PX) and L2(PY ), respectively, where L2(µ) denotes the Hilbert
space of square integrable functions with respect to the measure µ.

2.1 CCA in reproducing kernel Hilbert spaces

Classical CCA provides the linear mappings aTX and bTY that achieve maximum
correlation. Kernel CCA extends this by looking for functions f and g such that
f(X) and g(Y ) have maximal correlation. More precisely, kernel CCA solves

max
f∈HX ,g∈HY

Cov[f(X), g(Y )]
Var[f(X)]1/2Var[g(Y )]1/2

. (2)

In practice, we have to estimate the desired function from a finite sample. Given
an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) from PXY , an empirical solution of Eq. (2) is

max
f∈HX ,g∈HY

Ĉov[f(X), g(Y )]
(
V̂ar[f(X)] + εn‖f‖2HX

)1/2(V̂ar[g(Y )] + εn‖g‖2HY
)1/2 , (3)

where Ĉov and V̂ar denote the empirical covariance and variance, such as

Ĉov[f(X), g(Y )] =
1
n

∑n
i=1

(
f(Xi)− 1

n

∑n
j=1f(Xj)

)(
g(Yi)− 1

n

∑n
j=1 g(Yj)

)
.

The positive constant εn is a regularization coefficient. As we shall see, the regular-
ization terms εn‖f‖2HX and εn‖g‖2HY make the problem well-formulated statistically,
enforce smoothness, and enable operator inversion, as in Tikhonov regularization.

2.2 Representation with cross-covariance operators

Kernel CCA and related methods can be formulated using covariance operators [4,
7, 8], which make theoretical discussions easier. It is known that there exists a
unique cross-covariance operator ΣY X : HX → HY for (X,Y ) such that
〈g,ΣY Xf〉HY = EXY

[
(f(X)−EX [f(X)])(g(Y )−EY [g(Y )])

]
(= Cov[f(X), g(Y )])



holds for all f ∈ HX and g ∈ HY . The cross covariance operator represents the
covariance of f(X) and g(Y ) as a bilinear form of f and g. In particular, if Y is
equal to X, the self-adjoint operator ΣXX is called the covariance operator.

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors on X ×Y with distribution PXY .
The empirical cross-covariance operator Σ̂(n)

Y X is defined by the cross-covariance
operator with the empirical distribution 1

n

∑n
i=1 δXiδYi . By definition, for any f ∈

HX and g ∈ HY , the operator Σ̂(n)
Y X gives the empirical covariance as follows;

〈g, Σ̂(n)
Y Xf〉HY = Ĉov[f(X), g(Y )].

Let QX and QY be the orthogonal projections which respectively map HX onto
R(ΣXX) and HY onto R(ΣY Y ). It is known [4] that ΣY X can be represented as

ΣY X = Σ1/2
Y Y VY XΣ1/2

XX , (4)

where VY X : HX → HY is a unique bounded operator such that ‖VY X‖ ≤ 1
and VY X = QY VY XQX . We often write VY X as Σ−1/2

Y Y ΣY XΣ−1/2
XX in an abuse of

notation, even when Σ−1/2
XX or Σ−1/2

Y Y are not appropriately defined as operators.

With cross-covariance operators, the kernel CCA problem can be formulated as

sup
f∈HX ,g∈HY

〈g,ΣY Xf〉HY subject to
{〈f,ΣXXf〉HX = 1,
〈g,ΣY Y g〉HY = 1.

(5)

As with classical CCA, the solution of Eq. (5) is given by the eigenfunctions corre-
sponding to the largest eigenvalue of the following generalized eigenproblem:

(
O ΣXY

ΣY X O

)(
f
g

)
= ρ1

(
ΣXX O
O ΣY Y

)(
f
g

)
. (6)

Similarly, the empirical estimator in Eq. (3) is obtained by solving

sup
f∈HX ,g∈HY

〈g, Σ̂(n)
Y Xf〉HY subject to

{
〈f, (Σ̂(n)

XX + εnI)f〉HX = 1,
〈g, (Σ̂(n)

Y Y + εnI)g〉HY = 1.
(7)

Let us assume that the operator VY X is compact,1 and let φ and ψ be the unit
eigenfunctions of VY X corresponding to the largest singular value; that is,

〈ψ, VY Xφ〉HY = max
f∈HX ,g∈HY ,‖f‖HX=‖g‖HY=1

〈g, VY Xf〉HY . (8)

Given φ ∈ R(ΣXX) and ψ ∈ R(ΣY Y ), the kernel CCA solution in Eq. (6) is

f = Σ−1/2
XX φ, g = Σ−1/2

Y Y ψ. (9)

In the empirical case, let φ̂n ∈ HX and ψ̂n ∈ HY be the unit eigenfunctions corre-
sponding to the largest singular value of the finite rank operator

V̂
(n)
Y X :=

(
Σ̂(n)
Y Y + εnI

)−1/2Σ̂(n)
Y X

(
Σ̂(n)
XX + εnI

)−1/2
. (10)

As in Eq. (9), the empirical estimators f̂n and ĝn in Eq. (7) are equal to

f̂n = (Σ̂(n)
XX + εnI)−1/2φ̂n, ĝn = (Σ̂(n)

Y Y + εnI)−1/2ψ̂n. (11)

1A bounded operator T : H1 → H2 is called compact if any bounded sequence {un} ⊂
H1 has a subsequence {un′} such that Tun′ converges in H2. One of the useful properties
of a compact operator is that it admits a singular value decomposition (see [5, 6])



Note that all the above empirical operators and the estimators can be expressed in
terms of Gram matrices. The solutions f̂n and ĝn are exactly the same as those
given in [3], and are obtained by linear combinations of kX (·, Xi)− 1

n

∑n
j=1kX (·, Xj)

and kY(·, Yi)− 1
n

∑n
j=1kY(·, Yj). The functions φ̂n and ψ̂n are obtained similarly.

There exist additional, related methods to extract nonlinear dependence. The con-
strained covariance (COCO) [9] uses the unit eigenfunctions of ΣY X ;

max
f∈HX ,g∈HY

‖f‖HX=‖g‖HY=1

〈g,ΣY Xf〉HY = max
f∈HX ,g∈HY

‖f‖HX=‖g‖HY=1

Cov[f(X), g(Y )].

The statistical convergence of COCO has been proved in [8]. Instead of normalizing
the covariance by the variances, COCO normalizes it by the RKHS norms of f and
g. Kernel CCA is a more direct nonlinear extension of CCA than COCO. COCO
tends to find functions with large variance for f(X) and g(Y ), which may not be the
most correlated features. On the other hand, kernel CCA may encounter situations
where it finds functions with moderately large covariance but very small variance
for f(X) or g(Y ), since ΣXX and ΣY Y can have arbitrarily small eigenvalues.

A possible compromise is to use φ and ψ for VY X , the NOrmalized Cross-Covariance
Operator (NOCCO). While the statistical meaning of NOCCO is not as direct as
kernel CCA, it can incorporate the normalization by ΣXX and ΣY Y . We will
establish the convergence of kernel CCA and NOCCO in Section 3.

3 Main theorems: convergence of kernel CCA and NOCCO

We show the convergence of NOCCO in the RKHS norm, and the kernel CCA in
L2 sense. The results may easily be extended to the convergence of the eigenspace
corresponding to the m-th largest eigenvalue.
Theorem 1. Let (εn)∞n=1 be a sequence of positive numbers such that

lim
n→∞

εn = 0, lim
n→∞

n1/3εn =∞. (12)

Assume VY X is compact, and the eigenspaces given by Eq. (8) are one-dimensional.
Let φ, ψ, φ̂n, and ψ̂n be the unit eigenfunctions of Eqs. (8) and (10). Then

|〈φ̂n, φ〉HX | → 1, |〈ψ̂n, ψ〉HY | → 1

in probability, as n goes to infinity.
Theorem 2. Let (εn)∞n=1 be a sequence of positive numbers which satisfies Eq. (12).
Assume that φ and ψ are included in R(ΣXX) and R(ΣY Y ), respectively, and that
VY X is compact. Then, for f, g, f̂n, and ĝn in Eqs.(9), (11), we have

∥∥(f̂n − EX [f̂n(X)])− (f − EX [f(X)])
∥∥
L2(PX)

→ 0,
∥∥(ĝn − EY [ĝn(Y )])− (g − EY [g(Y )])

∥∥
L2(PY )

→ 0

in probability, as n goes to infinity.

The convergence of NOCCO in the RKHS norm is a very strong result. If kX and
kY are continuous and bounded, the RKHS norm is stronger than the uniform norm
of the continuous functions. In such cases, Theorem 1 implies φ̂n and ψ̂n converge
uniformly to φ and ψ, respectively. This uniform convergence is useful in practice,
because in many applications the function value at each point is important.



For any complete orthonormal systems (CONS) {φi}∞i=1 of HX and {ψi}∞i=1 of HY ,
the compactness assumption on VY X requires that the correlation of Σ−1/2

XX φi(X)
and Σ−1/2

Y Y ψi(Y ) decay to zero as i→∞. This is not necessarily satisfied in general.
A trivial example is the case of variables with Y = X, in which VY X = I is not
compact. In this case, NOCCO is solved by an arbitrary function. Moreover, the
kernel CCA does not have solutions, if ΣXX has arbitrarily small eigenvalues.

Leurgans et al. ([10]) discuss CCA on curves, which are represented by stochastic
processes on an interval, and use the Sobolev space of functions with square inte-
grable second derivative. Since the Sobolev space is a RKHS, their method is an
example of kernel CCA. They also show the convergence of estimators under the
condition n1/2εn → ∞. Although the proof can be extended to a general RKHS,
convergence is measured by the correlation,

|〈f̂n,ΣXXf〉HX |
(〈f̂n,ΣXX f̂n〉HX )1/2(〈f,ΣXXf〉HX )1/2

→ 1,

which is weaker than the L2 convergence in Theorem 2. In fact, using
〈f,ΣXXf〉HX = 1, it is easy to derive the above convergence from Theorem
2. On the other hand, convergence of the correlation does not necessarily imply
〈(f̂n − f),ΣXX(f̂n − f)〉HX → 0. From the equality

〈(f̂n − f),ΣXX(f̂n − f)〉HX = (〈f̂n,ΣXX f̂n〉1/2HX − 〈f,ΣXXf〉
1/2
HX )2

+ 2{1− 〈f̂n,ΣXXf〉HX /(‖Σ1/2
XX f̂n‖HX ‖Σ1/2

XXf‖HX )} ‖Σ1/2
XX f̂n‖HX ‖Σ1/2

XXf‖HX ,
we require 〈f̂n,ΣXX f̂n〉HX → 〈f,ΣXXf〉HX = 1 in order to guarantee the left hand
side converges to zero. However, with the normalization 〈f̂n, (Σ̂(n)

XX + εnI)f̂n〉HX =
1, convergence of 〈f̂n,ΣXX f̂n〉HX is not clear. We use the stronger assumption
n1/3εn →∞ to prove 〈(f̂n − f),ΣXX(f̂n − f)〉HX → 0 in Theorem 2.

4 Outline of the proof of the main theorems

We show only the outline of the proof in this paper. See [6] for the detail.

4.1 Preliminary lemmas

We introduce some definitions for our proofs. Let H1 and H2 be Hilbert spaces.
An operator T : H1 → H2 is called Hilbert-Schmidt if

∑∞
i=1 ‖Tϕi‖2H2

< ∞ for a
CONS {ϕi}∞i=1 of H1. Obviously ‖T‖ ≤ ‖T‖HS . For Hilbert-Schmidt operators,
the Hilbert-Schmidt norm and inner product are defined as

‖T‖2HS =
∑∞
i=1‖Tϕi‖2H2

, 〈T1, T2〉HS =
∑∞
i=1〈T1ϕi, T2ϕi〉H2 .

These definitions are independent of the CONS. For more details, see [5] and [8].

For a Hilbert space F , a Borel measurable map F : Ω→ F from a measurable space
F is called a random element in F . For a random element F in F with E‖F‖ <∞,
there exists a unique element E[F ] ∈ F , called the expectation of F , such that

〈E[F ], g〉H = E[〈F, g〉F ] (∀g ∈ F)

holds. If random elements F and G in F satisfy E[‖F‖2] < ∞ and E[‖G‖2] < ∞,
then 〈F,G〉F is integrable. Moreover, if F and G are independent, we have

E[〈F,G〉F ] = 〈E[F ], E[G]〉F . (13)



It is easy to see under the condition Eq. (1), the random element kX (·, X)kY(·, Y ) in
the direct product HX ⊗HY is integrable, i.e. E[‖kX (·, X)kY(·, Y )‖HX⊗HY ] < ∞.
Combining Lemma 1 in [8] and Eq. (13), we obtain the following lemma.
Lemma 3. The cross-covariance operator ΣY X is Hilbert-Schmidt, and

‖ΣY X‖2HS =
∥∥EY X

[(
kX (·, X)− EX [kX (·, X)]

)(
kY(·, Y )− EY [kY(·, Y )]

)]∥∥2

HX⊗HY .

The law of large numbers implies limn→∞〈g, Σ̂(n)
Y Xf〉HY = 〈g,ΣY Xf〉HY for each f

and g in probability. The following lemma shows a much stronger uniform result.
Lemma 4. ∥∥Σ̂(n)

Y X − ΣY X
∥∥
HS

= Op(n−1/2) (n→∞).

Proof. Write for simplicity F = kX (·, X) − EX [kX (·, X)], G = kY(·, Y ) −
EY [kY(·, Y )], Fi = kX (·, Xi) − EX [kX (·, X)], and Gi = kY(·, Yi) − EY [kY(·, Y )].
Then, F, F1, . . . , Fn are i.i.d. random elements in HX , and a similar property also
holds for G,G1, . . . , Gn. Lemma 3 and the same argument as its proof implies

∥∥Σ̂(n)
Y X

∥∥2

HS
=
∥∥ 1
n

∑n
i=1

(
Fi − 1

n

∑n
j=1 Fj

)(
Gi − 1

n

∑n
j=1Gj

)∥∥2

HX⊗HY ,

〈ΣY X , Σ̂(n)
Y X〉HS =

〈
E[FG], 1

n

∑n
i=1

(
Fi − 1

n

∑n
j=1 Fj

)(
Gi − 1

n

∑n
j=1Gj

)〉
HX⊗HY .

From these equations, we have
∥∥Σ̂(n)

Y X − ΣY X
∥∥2

HS
=
∥∥ 1
n

∑n
i=1

(
Fi − 1

n

∑n
j=1 Fj

)(
Gi − 1

n

∑n
j=1Gj

)− E[FG]
∥∥2

HX⊗HY

=
∥∥ 1
n

(
1− 1

n

)∑n
i=1 FiGi − 1

n2

∑n
i=1

∑n
j 6=i(FiGj + FjGi)− E[FG]

∥∥2

HX⊗HY .

Using E[Fi] = E[Gi] = 0 and E[FiGjFkG`] = 0 for i 6= j, {k, `} 6= {i, j}, we have

E
∥∥Σ̂(n)

Y X − ΣY X
∥∥2

HS
= 1

nE
[‖FG‖2HX⊗HY

]− 1
n‖E[FG]‖2HX⊗HY +O(1/n2).

The proof is completed by Chebyshev’s inequality.

The following two lemmas are essential parts of the proof of the main theorems.
Lemma 5. Let εn be a positive number such that εn → 0 (n→∞). Then

∥∥V̂ (n)
Y X − (ΣY Y + εnI)−1/2ΣY X(ΣXX + εnI)−1/2

∥∥ = Op(ε−3/2
n n−1/2).

Proof. The operator on the left hand side is equal to
{

(Σ̂(n)
Y Y + εnI)−1/2 − (ΣY Y + εnI)−1/2

}
Σ̂(n)
Y X(Σ̂(n)

XX + εnI)−1/2

+ (ΣY Y + εnI)−1/2
{

Σ̂(n)
Y X − ΣY X

}
(Σ̂(n)

XX + εnI)−1/2

+ (ΣY Y + εnI)−1/2ΣY X
{

(Σ̂(n)
XX + εnI)−1/2 − (ΣXX + εnI)−1/2

}
. (14)

From the equality A−1/2−B−1/2 = A−1/2
(
B3/2−A3/2

)
B−3/2 +(A−B)B−3/2, the

first term in Eq. (14) is equal to
{

(Σ̂(n)
Y Y +εnI)−1/2

(
Σ3/2
Y Y−Σ̂(n)3/2

Y Y

)
+
(
Σ̂(n)
Y Y−ΣY Y

)}(
Σ̂(n)
Y Y +εnI

)−3/2Σ̂(n)
Y X(Σ̂(n)

XX+εnI)−1/2.

From ‖(Σ̂(n)
Y Y + εnI)−1/2‖ ≤ 1/

√
εn, ‖(Σ̂(n)

Y Y + εnI)−1/2Σ̂(n)
Y X(Σ̂(n)

XX + εnI)−1/2‖ ≤ 1
and Lemma 7, the norm of the above operator is upper-bounded by

1
εn

{
3√
εn

max
{‖ΣY Y ‖3/2, ‖Σ̂(n)

Y Y ‖3/2
}

+ 1
}‖Σ̂(n)

Y Y − ΣY Y ‖.
A similar bound applies to the third term of Eq. (14), and the second term is
upper-bounded by 1

εn
‖ΣY X − Σ̂(n)

Y X‖. Thus, Lemma 4 completes the proof.



Lemma 6. Assume VY X is compact. Then, for a sequence εn → 0,
∥∥(ΣY Y + εnI)−1/2ΣY X(ΣXX + εnI)−1/2 − VY X

∥∥ → 0 (n→∞).

Proof. It suffices to prove ‖{(ΣY Y + εnI)−1/2−Σ−1/2
Y Y }ΣY X(ΣXX + εnI)−1/2‖ and

‖Σ−1/2
Y Y ΣY X{(ΣXX + εnI)−1/2 − Σ−1/2

XX }‖ converge to zero. The former is equal to
∥∥{(ΣY Y + εnI)−1/2Σ1/2

Y Y − I
}
VY X

∥∥. (15)

Note that R(VY X) ⊂ R(ΣY Y ), as remarked in Section 2.2. Let v = ΣY Y u be
an arbitrary element in R(VY X) ∩ R(ΣY Y ). We have ‖{(ΣY Y + εnI)−1/2Σ1/2

Y Y −
I}v‖HY = ‖(ΣY Y + εnI)−1/2Σ1/2

Y Y {Σ1/2
Y Y − (ΣY Y + εnI)1/2}Σ1/2

Y Y u‖HY ≤ ‖Σ1/2
Y Y −

(ΣY Y + εnI)1/2‖ ‖Σ1/2
Y Y u‖HY . Since (ΣY Y + εnI)1/2 → Σ1/2

Y Y in norm, we obtain

{(ΣY Y + εnI)−1/2Σ1/2
Y Y − I}v → 0 (n→∞) (16)

for all v ∈ R(VY X)∩R(ΣY Y ). Because VY X is compact, Lemma 8 in the Appendix
shows Eq. (15) converges to zero. The convergence of the second norm is similar.

4.2 Proof of the main theorems

Proof of Thm. 1. This follows from Lemmas 5, 6, and Lemma 9 in Appendix.

Proof Thm. 2. We show only the convergence of f̂n. W.l.o.g, we can assume φ̂n → φ

in HX . From ‖Σ1/2
XX(f̂n − f)‖2HX = ‖Σ1/2

XX f̂n‖2HX − 2〈φ,Σ1/2
XX f̂n〉HX + ‖φ‖2HX , it

suffices to show Σ1/2
XX f̂n converges to φ in probability. We have

‖Σ1/2
XX f̂n − φ‖HX ≤ ‖Σ1/2

XX{(Σ̂(n)
XX + εnI)−1/2 − (ΣXX + εnI)−1/2}φ̂n‖HX

+ ‖Σ1/2
XX(ΣXX + εnI)−1/2(φ̂n − φ)‖HX + ‖Σ1/2

XX(ΣXX + εnI)−1/2φ− φ‖HX .
Using the same argument as the bound on the first term in Eq. (14), the first term on
the R.H.S of the above inequality is shown to converge to zero. The convergence of
the second term is obvious. Using the assumption φ ∈ R(ΣXX), the same argument
as the proof of Eq. (16) applies to the third term, which completes the proof.

5 Concluding remarks

We have established the statistical convergence of kernel CCA and NOCCO, show-
ing that the finite sample estimators of the nonlinear mappings converge to the
desired population functions. This convergence is proved in the RKHS norm for
NOCCO, and in the L2 norm for kernel CCA. These results give a theoretical jus-
tification for using the empirical estimates of NOCCO and kernel CCA in practice.

We have also derived a sufficient condition, n1/3εn → ∞, for the decay of the
regularization coefficient εn, which ensures the convergence described above. As
[10] suggests, the order of the sufficient condition seems to depend on the function
norm used to determine convergence. An interesting consideration is whether the
order n1/3εn →∞ can be improved for convergence in the L2 or RKHS norm.

Another question that remains to be addressed is when to use kernel CCA, COCO,
or NOCCO in practice. The answer probably depends on the statistical properties
of the data. It might consequently be helpful to determine the relation between the
spectral properties of the data distribution and the solutions of these methods.



Acknowledgements

This work is partially supported by KAKENHI 15700241 and Inamori Foundation.

References

[1] S. Akaho. A kernel method for canonical correlation analysis. Proc. Intern. Meeting
on Psychometric Society (IMPS2001), 2001.

[2] N. Aronszajn. Theory of reproducing kernels. Trans. American Mathematical Society,
69(3):337–404, 1950.

[3] F. R. Bach and M. I. Jordan. Kernel independent component analysis. J. Machine
Learning Research, 3:1–48, 2002.

[4] C. R. Baker. Joint measures and cross-covariance operators. Trans. American Math-
ematical Society, 186:273–289, 1973.

[5] N. Dunford and J. T. Schwartz. Linear Operators, Part II. Interscience, 1963.

[6] K. Fukumizu, F. R. Bach, and A. Gretton. Consistency of kernel canonical correlation.
Research Memorandum 942, Institute of Statistical Mathematics, 2005.

[7] K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised
learning with reproducing kernel Hilbert spaces. J. Machine Learning Research, 5:73–
99, 2004.

[8] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical de-
pendence with Hilbert-Schmidt norms. Tech Report 140, Max-Planck-Institut für
biologische Kybernetik, 2005.

[9] A. Gretton, A. Smola, O. Bousquet, R. Herbrich, B. Schölkopf, and N. Logothetis.
Behaviour and convergence of the constrained covariance. Tech Report 128, Max-
Planck-Institut für biologische Kybernetik, 2004.

[10] S. Leurgans, R. Moyeed, and B. Silverman. Canonical correlation analysis when the
data are curves. J. Royal Statistical Society, Series B, 55(3):725–740, 1993.

[11] T. Melzer, M. Reiter, and H. Bischof. Nonlinear feature extraction using general-
ized canonical correlation analysis. Proc. Intern. Conf. Artificial Neural Networks
(ICANN2001), 353–360, 2001.

A Lemmas used in the proofs

We list the lemmas used in Section 4. See [6] for the proofs.
Lemma 7. Suppose A and B are positive self-adjoint operators on a Hilbert space
such that 0 ≤ A ≤ λI and 0 ≤ B ≤ λI hold for a positive constant λ. Then

‖A3/2 −B3/2‖ ≤ 3λ3/2‖A−B‖.
Lemma 8. Let H1 and H2 be Hilbert spaces, and H0 be a dense linear subspace of
H2. Suppose An and A are bounded operators on H2, and B is a compact operator
from H1 to H2 such that Anu→ Au for all u ∈ H0, and supn ‖An‖ ≤M for some
M > 0. Then AnB converges to AB in norm.
Lemma 9. Let A be a compact positive operator on a Hilbert space H, and An (n ∈
N) be bounded positive operators on H such that An converges to A in norm. Assume
the eigenspace of A corresponding to the largest eigenvalue is one-dimensional and
spanned by a unit eigenvector φ, and the maximum of the spectrum of An is attained
by a unit eigenvector φn. Then we have |〈φn, φ〉H| → 1 as n→∞.


