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Learning Graphical Models for
Stationary Time Series

Francis R. Bach and Michael I. Jordan

Abstract—Probabilistic graphical models can be extended to
time series by considering probabilistic dependencies between
entire time series. For stationary Gaussian time series, the
graphical model semantics can be expressed naturally in the
frequency domain, leading to interesting families of structured
time series models that are complementary to families defined
in the time domain. In this paper, we present an algorithm to
learn the structure from data for directed graphical models for
stationary Gaussian time series. We describe an algorithm for
efficient forecasting for stationary Gaussian time series whose
spectral densities factorize in a graphical model. We also explore
the relationships between graphical model structure and sparsity,
comparing and contrasting the notions of sparsity in the time
domain and the frequency domain. Finally, we show how to make
use of Mercer kernels in this setting, allowing our ideas to be
extended to nonlinear models.

Index Terms—Frequency domain analysis, modeling, sparse ma-
trices, spectral analysis, statistics, time series.

I. INTRODUCTION

T IME series arise in many problems in signal processing,
bioinformatics, computer vision, and machine learning. In

the statistical modeling of time series, the assumption of station-
arity makes possible the use of tools from spectral analysis [1].
Much of the algorithmic research effort in this area has dealt
with making such tools scalable with respect to the number
of observed samples, for example, via algorithms that exploit
the fast Fourier transform or forecasting algorithms such as the
Durbin–Levinson algorithm [2].

Domains with large number of variables—in which Mar-
kovian or general graphical models have excelled—have not
attracted the same attention in the time series field. Graphical
models [3], [4] provide a general framework for defining prob-
abilistic models over large numbers of variables by building
global models out of local interaction models. Numerous
special cases are familiar in signal processing, including the
Kalman filter, hidden Markov models, and factor analysis. In
addition, these models come equipped with standard, numer-
ically efficient learning and inference algorithms, which are
algorithms that have had applications beyond signal processing
and machine learning, such as in error-control coding [5].
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Graphical models for time series are generally defined in the
time domain. That is, they define a transition probability dis-
tribution on a set of state variables, conditioning on values of
these variables at previous time steps. Such models, which are
often referred to as dynamic Bayesian networks, have had sig-
nificant applications in areas such as bioinformatics and speech
processing [6], [7]. In this paper, we consider an extension of
the basic notion of graphical model that considers dependencies
between entire time series [8], [9]. As we show, this extension
can be naturally expressed in the frequency domain, making use
of the spectral representations for stationary Gaussian time se-
ries. In this paper, we present an algorithm to learn the structure
of directed graphical models for spectral representations of time
series from data. The algorithm, which is presented in Section V,
is a direct extension of algorithms for learning-directed graph-
ical models for Gaussian data [10], [11].

We also discuss the problem of forecasting, which is the
problem of predicting the future given the past. For stationary
Gaussian time series, algorithms for forecasting can be de-
fined in either the time or frequency domain. In Section IV,
we present a novel algorithm for efficient forecasting with
graphical models. While classical algorithms such as the
Durbin–Levinson algorithm incur a cubic time complexity
[2], our new algorithm, by making use of the structure of the
graphical model, has a quadratic complexity (in the number
of variables). This new algorithm can also be used for factor
analysis models for time series [12].

While our basic focus is on structured linear time series
models, we also present an extension to nonlinear models in
Section VI. In particular, we make use of our previous work
in learning graphical models for hybrid data [13], enabling
the fitting of augmented models that include nonlinearities or
discrete variables. The principle of the algorithm is very simple:
Although variables may not be Gaussian, by mapping them
into a high-dimensional feature space, they can be considered
as Gaussian for the purpose of model selection. This mapping
is made implicit and computationally efficient through the use
of kernel methods [14].

The graphical models that we describe in this paper have sev-
eral possible applications, paralleling the many applications of
graphical models for nontemporal data, such as feature selection
for regression or classification, sparse and statistically sound
models for forecasting, or simply a better understanding of the
relationships between the different variables. In Section II, we
review the necessary background on stationary Gaussian time
series; in Section III, we show how the graphical framework can
be naturally extended to such time series, with new numerically
efficient inference procedures presented in Section IV. We then
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present the structure learning algorithm in Section V for sta-
tionary Gaussian time series and extend it to nonlinear settings
in Section VI. Finally, in Section VII, we report simulations on
synthetic and real datasets to illustrate the validity of our algo-
rithm and compare them with other approaches to model sta-
tionary time series.

II. STATIONARY GAUSSIAN PROCESSES

We consider a multiple time series , where for each ,
has univariate real components.1

Throughout this paper, we assume that is a zero-mean
Gaussian process, that is, all finite sets of marginals are jointly
Gaussian. In addition, we assume that the process is sta-
tionary: For Gaussian processes, is stationary if and only
if does not depend on , or equivalently, all
marginals are invariant by time translation. Given a stationary
process, the autocovariance function is defined as the following
matrix-valued function on , which is defined as

For each , is a symmetric real matrix, and
the function is non-negative, that is, for all sets of
vectors indexed by , we have

. Essentially, the Gaussian stationarity assumption is
equivalent to modeling the variables as jointly Gaussian with
tied parameters, i.e., the covariance matrix of any successive
variables is Toeplitz by blocks:

...
...

. . .

(1)

A. Spectral Density Matrix

We assume that , where denotes
the 2-norm of the matrix , equal to its largest singular value,
so that the spectral density matrix is well defined, as a
matrix-valued function on :

For each , is an Hermitian matrix. In addition, the
function is -periodic. Moreover, for real-valued
random variables, we have , which implies
that we only need to consider the spectral density matrix for

.
Since the function is non-negative, the spectral density

matrix is pointwise non-negative, that is, ,
, . Note that knowing the spectral density

1Note that the theory of stationary Gaussian processes and most of the results
of this paper can be naturally extended to the complex case.

is equivalent to knowing the autocovariance function since
they form a Fourier transform pair. In particular, we have

(2)

The rate of decay of as grows is determined by the
smoothness of the spectral density. In particular, when designing
a spectral density, care must be taken regarding its smoothness
so that the resulting autocovariance function has attractive decay
properties (which themselves govern the complexity of predic-
tion).

B. Spectral Representation

Any Gaussian stationary time series with an absolutely sum-
mable autocovariance function has a spectral representation of
the following form [2]:

(3)

where is a random process with orthogonal incre-
ments such that for each , cov

. In other words, is a superposition of infin-
itely many independent random signals at different frequencies.

C. Autoregressive Models

In this paper, we also consider stationary autoregressive (AR)
models. Stationarity can be imposed either by assuming that the
process is initialized according to the stationary distribution or
that the process is causal and extends to negative infinity. An
autoregressive model has the following formulation:

where the variables are mutually independent, each with
covariance matrix , and independent from , . Each

is an matrix.
The parameters and the order of AR models can be

efficiently estimated from data by using classical regression
methods for parameter estimation and variable selection [2].
If sparsity is desired, one can attempt to find zeros in the
covariance matrix or its inverse, as well as in the regression
weight matrices , in a manner analogous to subset selection
for linear regression [15]. In this paper, we consider sparsity in
the frequency domain, which is a notion that is complementary
to sparsity in the time domain.

D. Finite Sample

We now briefly review methods for estimating the autocovari-
ance function and the spectral density matrix from
data .

1) Sample Autocovariance and Periodogram: The sample
autocovariance function is defined as
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for , extended by symmetry for negative and
equal to zero for equal or greater than (the vector

is the sample mean of the data). The sample
autocovariance function is consistent and asymptotically normal
under weak assumptions [2].

The periodogram is a -periodic matrix-valued function that
is defined at the frequencies , as
the Fourier transform of the sample autocovariance function.
More precisely, let be the discrete Fourier
transform (DFT) of the data

At the frequencies , , the periodogram
is defined as and can readily be
computed using fast Fourier transforms (FFT). It is then ex-
tended as a piecewise constant periodic function on .

The periodogram does not provide a consistent estimator of
the spectral density and is a notoriously bad estimator of the
spectral density. However, when it is appropriately smoothed, it
is a good estimator.

2) Smoothing the Periodogram: The periodogram is
smoothed by convolving it with a smoothing window ,
leading to the following estimator, at frequency :

(4)

is a smoothing window that is required to be sym-
metric and to sum to one. In our simulations, we used
the window , whose discrete Fourier transform is

. When is less than , the window
is approximately equal to a Gaussian window of width , i.e.,

. This window has favorable
properties both in time (it is positive) and frequency (it is
smooth). We refer to as the bandwidth of the smoothed
periodogram. Note that if the number of samples tends to
infinity with tending to infinity such that tends
to zero, then (4) provides a consistent estimate of the spectral
density matrix [2].

Note that by simply inverting the Fourier transform using the
FFT, we can recover the autocovariance function. With the type
of smoothing we chose, we know in advance an upper bound
on the decay of the autocovariance as grows. Indeed, we can
simply verify that the autocovariance function derived from
the estimate satisfies .
Thus, we can choose the time horizon to be a constant times

(in simulations, we took ). Limiting
the time horizon is equivalent to limiting the resolution of the
spectra, that is, the spectral density is represented by its values
on the grid for a given , and all integrals in-
volving the density are approximated using Riemannian sums
computed on this grid. Note that by the Nyquist theorem, if
is equal to zero for , then the spectral density can be
exactly represented by a finite sample with even steps .
The periodogram gives a sample with precision ; to ob-
tain a sample with precision , we need to subsample the

Fig. 1. Periodogram smoothing with automatic selection of the bandwidth.

periodogram with a positive linear filter (in order to maintain its
positivity).

3) Selecting the Bandwidth: We use the Akaike informa-
tion criterion (AIC) to select the optimal bandwidth for a given
dataset. The AIC criterion is the sum of the negative log-likeli-
hood of the data under the model, plus a function of the effective
number of parameters or degrees of freedom [15].

We use the Whittle approximation of the likelihood [12]:

tr

(5)
where denotes the determinant of the matrix . The Whittle
approximation relies on the fact that the discrete Fourier trans-
form of the data is asymptotically normal with independent
components and with variance the spectral density [2].

In order to determine , we notice that the smoothing defined
in (4) is a linear smoothing, that is, is obtained from
by applying a linear matrix , which is circulant with first row
equal to the smoothing window . The effective number of
parameters is the trace of [15], which, in our case, is simply
obtained as tr .

Thus, in order to find the optimal bandwidth, we minimize the
following AIC criterion with respect to the smoothing parameter
:

(6)

( is the number of real parameters necessary to encode an
Hermitian matrix, and the 1/2 comes from the fact that

since our signals are real, we only need the spectral density on
). We perform an exhaustive search over values

of the smoothing parameter between and (the lower
and upper bounds ensure that we obtain a consistent estimate of
the spectral density matrix). The resulting algorithm is presented
in Fig. 1. Note that we estimate the joint spectral density matrix
first and then learn the structure of the graphical model (the topic
of Section V; see Fig. 2). In Section V-C, we show how adaptive
smoothing of the periodogram can be achieved in a manner that
depends on the structure of the learned graphical model.

E. Forecasting

Given a finite sample from time 1 to and a model (an auto-
covariance function or a spectral density), forecasting is the task
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Fig. 2. Graphical model for three time series: x is independent from x given
x .

of predicting values for times and later. In the Gaussian
case, the best prediction is a linear approximation of ,
based on . More precisely, we look for matrix
coefficients such that the expected error

(7)

is minimal, where denotes the Euclidean norm
of a vector .

Minimizing in (7) is equivalent to solving the following
system of equations [the so-called Yule–Walker equations,
which are obtained by setting the derivatives to zero in (7)]:

(8)

We denote by the vector such that
, and as the vector such that

. We also use the notation

...
. . .

Then, (8) can be written as

(9)

In order to solve the system in (8) or (9), the Toeplitz structure
of the problem can be exploited to avoid the com-
plexity associated with the unstructured linear system. In par-
ticular, the innovations algorithm or the Durbin–Levinson algo-
rithm can be used to iteratively compute the prediction and the
error covariance in operations [2].

When the model is defined through the spectral density
sampled at points, then we first compute the autocovariance
function using the FFT in time and incur a
cubic time complexity for inference. In Section IV, we use a
different technique to solve the Yule–Walker equations in time

for spectral densities that factorize in a
graphical model with maximum fan-in .

III. GRAPHICAL MODELS FOR TIME SERIES

The graphical model framework can be extended to multi-
variate time series in several ways. We follow [8] and [9] and

consider dependencies between whole time series, that is, be-
tween the entire sets , for .
Thus, the time series and are independent if and only if
the random infinite vectors and
are independent. Similarly, time series and are condition-
ally independent, given , if and only if and

are conditionally independent, given
.
For classical graphical models and Gaussian variables, mar-

ginal and conditional independence statements can be read out
from zeros in the covariance matrix and its inverse [3]. It turns
out that for Gaussian stationary time series, these results can be
naturally extended, essentially replacing the covariance matrix
by the spectral density matrix, as we now describe.

A. Gaussian Time Series and Independence

We consider a Gaussian stationary multivariate time series
with components and with positive (i.e., invertible) spec-

tral density matrix . Marginal independence and condi-
tional independence are easily characterized in the frequency
domain, as the following proposition shows [8].

Proposition 1: The time series and are marginally in-
dependent if and only if

The time series and are conditionally independent given
all other time series , if and only if

Intuitively, this proposition enables us to consider each fre-
quency component independently of the other components.

As a final step toward full equivalence between a Gaussian
stationary time series and the concatenation of independent
variables at each frequency, we have the following proposition,
which gives a closed-form expression for the KL divergence
[16], paralleling the expression for the KL divergence between
zero mean Gaussian vectors [17]:

Proposition 2: The KL divergence between two zero-mean
stationary vector-valued Gaussian processes and , with in-
vertible spectral density matrices and , is equal to

(10)

where tr
is the KL divergence between two covariance matrices.

As we will see in Section V, what is needed when learning
a graphical model from data is the expression of the entropy
of the random variable defined through a spectral density. The
expression of interest is the entropy rate, which is defined as

. For Gaussian stationary
time series, it can be readily computed as

(11)

which is a result known as Szëgo’s theorem [18].
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Fig. 3. Examples of graphical model and conditional independence. x is
independent from x , given x , x ; x is independent from x , given x .

Note that is also equal to the conditional entropy of
given the infinite past [19], that is, if is the covariance matrix
of given the infinite past, we have

B. Directed Graphical Models for Gaussian Time Series

In this paper, we consider directed graphical model represen-
tations for time series. This section reviews the semantics of di-
rected graphical models [3] to make the paper self-contained.
We first review the classical results for Gaussian vectors and
covariance matrices and present extensions of these to Gaussian
stationary time series and spectral densities.

1) Directed Models and Conditional Independence: Let
be a Gaussian variable with covariance matrix . The variable

, or the covariance matrix , is said to factorize in a directed
acyclic graph if and only if for all , is independent from
its nondescendant variables, given its parents [3]. See Fig. 3 for
a simple example. For a characterization in terms of the covari-
ance matrix, see Section III-B3.

We generalize this definition to stationary time series: The
time series , with spectral density , is said to factorize
in a directed acyclic graph , if for all , the (com-
plex) covariance matrix factorizes in . This is exactly
equivalent to the following property: factorizes in if
and only if, for all , is independent from its nondescendant
variables given its parents, where conditional independence be-
tween time series should be understood as in the previous sec-
tion.

2) Factorization of the KL Divergence: Since the KL diver-
gence decomposes in a directed acyclic graphical model for
Gaussian variables [3], the previous propositions immediately
imply that the KL divergence decomposes in directed acyclic
models for Gaussian stationary time series. Thus, parameter es-
timation in a directed graphical model with time series de-
couples into distinct conditional density estimates for uni-
variate time series. This makes possible the efficient learning of
the structure of a directed graphical model for time series from
data, as we show in Section V.

3) Sparse Representation of the Covariance and Precision
Matrices: In this section, we show how matrix-vector products

and can be computed efficiently when a covariance
matrix factorizes in a directed graphical model. This is easily
seen from the “regression view” of Gaussian directed graphical
models [20], which implies that and can be written as

where is a strictly lower triangular matrix (i.e. with zero diag-
onal), and is diagonal. In this interpretation, are the regres-
sion weights and the conditional variances. In other words, a
distribution that factorizes in is defined by the parameters
and . Note that these parameters can be easily found from the
full joint covariance matrix as follows:

where is the set of parents of node in , and for any two
subsets , of , of cardinal and de-
notes the matrix extracted from by keeping row
indices in and column indices in .

If the maximal fan-in of the graph is , then for any vector
, we can compute in operations because the

product can be computed in operations. In order to
be able to compute , we just need to be able to solve the sys-
tems of the form , which can be done in
operations, since the matrix is triangular and has at most
nonzero elements.

IV. EFFICIENT FORECASTING WITH DIRECTED

GRAPHICAL MODELS

In this section, we describe a novel algorithm for efficient
forecasting when the spectral density matrix has a sparse struc-
ture. We learn the one-step-ahead predictor from the potentially
infinite past, that is, we learn the predictor from the previous
time steps, where the required “horizon” is determined by
the smoothness of the spectral density. We essentially need to
solve the Yule–Walker equation of order . Direct methods
such as the Durbin–Levinson algorithm do not scale well with
the number of variables . However, by solving the linear
system using the conjugate gradient technique, we can make
use of the structure of our spectral density.

A. Problem Setup

We assume that the spectral density is known through
samples at frequencies and that is large
enough so that the autocovariance function is equal to the dis-
crete Fourier transform of the sequence . In addition, we as-
sume that for each , has a sparse structure. By sparse struc-
ture, we mean that for each vector , the product
and can be computed in operations, where is a
constant independent of instead of . A first example is
when factorizes in a directed graphical model with maximal
fan-in that is less than , where we have , as shown
in Section III-B3. A second example is where the covariance

follows a factor analysis model, that is, ,
where is an matrix, and is diagonal. In that case, it
is easy to show that (the argument is trivial for ,
and it follows by the matrix inversion lemma for ).

In this section, our interest is the design of an algorithm
to determine the one-step-ahead predictor from the last
steps; therefore, we need to solve the following Yule–Walker
equations , as defined in (9). We assume that
the values , for , are obtained as
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the first values of the FFT of order of the sequence
, whereas for .

B. Conjugate Gradient Methods and Toeplitz Systems

Conjugate gradient methods can be used to solve large linear
systems of equations of size , where the matrix is
Hermitian positive and where the evaluation of the product
can be performed in operations [instead of ]. It is
an iterative method where at each iteration, one matrix-vector
product has to be performed. The number of iterations is gov-
erned by the condition number of the matrix —the ratio be-
tween its largest eigenvalue and its smallest eigenvalue. Unfor-
tunately, in many cases, is ill-conditioned, and the number
of iterations can be very large. A common solution is to pre-
condition the matrix ; instead of solving , the system

is solved, which yields a solution for the
original system through . In order to make condi-
tioning practical, there are two requirements for the matrix :
The linear system involving must be solved cheaply, and
the condition number of must be small [21], i.e.,

has to be as close as possible to a multiple of the
identity matrix.

For Toeplitz matrices, there is a natural choice of obtained
through the approximate diagonalization of Toeplitz matrices
in the Fourier basis [22]. Indeed, any block symmetric Toeplitz
matrix of the form

...
. . .

can be approximated by a circulant matrix of the form

...
. . .

where for , and (which
defines the values for ).

The circulant approximation is very useful because it can be
diagonalized in a fixed basis, that is

where is defined by blocks, that is,
, and is block diagonal with

diagonal blocks .
Since circulant matrices can be diagonalized in the Fourier
basis , they can be easily inverted as

For Toeplitz systems, it is natural to precondition the associ-
ated inverse circulant matrix [23], [24]. In our case, it is equiv-
alent to being preconditioned by the circulant matrix generated
by the sequence . The preconditioning is efficient be-
cause products of the form and can be computed
in linear time in . In Fig. 4, we give an outline of the resulting
algorithm.

C. Computing -Step-Ahead Predictors

Using the concept of spectral factorization, we can
compute any -step-ahead predictor and error covariances
efficiently. The solution of the linear system in (8) is
the optimal one-step-ahead filter, with transfer function

. Let be the transfer function of
the -step-ahead filter and its error. They can be computed
using the following theorem [25], [26].

Theorem 1: The error covariance of the one-step-
ahead predictor is

If and
, the -step-ahead filter can be written as

and the error covariance is
Thus, once the one-step-ahead filter is found, all other filters

and errors can be computed. However, this requires inverting
matrices of size . This can be avoided by noticing that

can be obtained by computing the one-step-ahead pre-
dictor corresponding to the spectral density . If is very
large, such that multiplying two full matrices of size is pro-
hibitive, we can obtain the -step-ahead predictor and error co-
variance by solving the Toeplitz system , where

.

D. Comments

1) Convergence Analysis: Results from [27] show that the
number of iterations is independent of the order and depends
on the smoothness of the spectral density as well as how far

is from singular.
2) Interpretation in the Frequency Domain: The previous

algorithm has an interpretation in the frequency domain that
links it to previous approaches [25], [26] that do not rely on
efficient methods for linear systems.

3) Total Complexity: Let be the number of samples re-
quired for the computation of the Fourier transforms, the
number of samples, and the maximum fan-in. We thus have
the following:

• each iteration: for the FFTs,
for the multiplication by ;

• overall complexity of computing the predictor:
.

V. LEARNING-DIRECTED GRAPHICAL MODELS

In this section, we present our algorithm for learning-directed
graphical models for stationary Gaussian time series. Not sur-
prisingly, we make heavy use of the corresponding algorithms
for the Gaussian temporally independent case. We cast the struc-
ture learning as a model selection problem where the model is
defined by the directed graph . We use the Akaike Information
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Fig. 4. Solving the Yule–Walker equations using the spectral density.

Criterion (AIC) in order to define the score to be mini-
mized. Once the score is determined, the task of minimizing it
is performed with greedy algorithms, as detailed in Section V-B.

A. AIC Score for Time Series

We are given consecutive samples of univariate times
series , , and . We first es-
timate the joint spectral density matrix as well as the es-
timated degrees of freedom , as shown in Section II-D. The
spectral density is represented as a set of samples at fre-
quencies .

For directed models, the AIC score is equal to the max-
imum of the likelihood plus a penalty score. It is known to fac-
torize [28], [29]

(12)

where are the parents of node in , and

Fig. 5. Learning graphical models for stationary Gaussian time series.

where is the number of parameters required to en-
code the conditional probability distribution of given the par-
ents , and is conditional entropy of the random
vector , given the random vector , computed using the esti-
mated distribution of the joint (spectral) density.

Using the expression of the KL divergence and entropy rate in
(10) and (11), we get the following expression for the local score
(where we omit the terms that are independent of the choice of
the graph ):

(13)

where is the cardinality of (i.e., the number of parents),
and denotes the square block of the ma-
trix . The previous local score is approximated using the
samples of as

(14)

B. Learning Algorithm

In order to learn the graph structure , we need to minimize
the score defined by (12) and (13). This minimization
problem is known to be NP-complete [30], and greedy algo-
rithms are commonly used. In particular, since the score
factorizes as a sum of local scores, hillclimbing search using
local moves—edge addition, deletion or removal—is computa-
tionally efficient (in particular through the caching of already
computed local scores) and, with the possible use of random
restarts, yields good local minima [28], [29]. An outline of the
final algorithm is presented in Fig. 5. The exact complexity of
the search procedure that uses caching of local scores is pre-
sented in Section V-D.

C. Local Smoothing and Efficiency

One of the major gains from learning a sparse structure for the
spectral density matrix is that we can perform (and optimize) the
smoothing of the periodogram locally in the graph, restricting
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ourselves to elements that share a clique, that is, instead of ap-
plying the algorithm of Fig. 1 once with variables, we can
apply it times with variables . In the
algorithm presented in Fig. 5, a joint pilot estimate of the spec-
tral density is used to determine the graph ; then, the local
smoothing is performed. We now explore some of the issues,
both numerical and statistical, associated with such smoothing.

Numerically, learning the best smoothing parameter for the
joint spectral density is an operation. In order
to overcome the cubic time complexity in , it is possible to
learn a different smoothing parameter for each local potential
that is required, which makes the algorithm only ,
where is the maximal fan-in of the directed graph. Note that
in the algorithm of Fig. 5, it is possible to avoid the cubic time
complexity of the computation of the pilot estimate simply by
considering a bandwidth that is the mean of the optimal band-
width for each of the variables taken separately.

Statistically, learning a smoothing parameter for the joint
density when there is a strong local structure would lead to
oversmoothing (since the AIC penalty becomes relatively too
important): Local smoothing is substantially more efficient.
In the algorithm presented in Fig. 5, the local smoothing is
performed once the structure is learned, thus requiring
distinct smoothing parameter searches.

Finally, alternating between learning local smoothing param-
eters and directed graphs is possible in a manner analogous to
the procedure of [29]. In that situation, the global score to be
optimized is the concatenation of (6), (12), and (13). More pre-
cisely, if denotes the smoothing parameters for the clique

and denotes the smoothed periodogram with
parameter , we need to compute the Whittle likelihood and
then add the number of parameters, as shown in the next the-
orem.

Theorem 2: The Whittle likelihood for a spectral density that
factorizes in a directed graph , where the conditional spectral
densities are computed using a smoothing constant and with
resulting estimates for the cliques , is ap-
proximately equal to

tr tr

The overall AIC score is thus equal to

(15)

Note that the optimal local smoothing that results from opti-
mizing independently from and other smoothing constants

, is different from the optimal smoothing on the clique
. In simulations on a wide variety of examples, it turns

out that the difference between the two types of smoothing
is very small, with a slight advantage for the conditional
smoothing, which makes the density estimate more robust (see
Section VII-A).

D. Running Time Complexity

Denoting by the number of these variables, the maximum
fan-in that we impose on our networks, the number of obser-
vations, and the time horizon, we can compute the running
time complexity of our learning algorithm: As seen in Fig. 5, the
structure learning has several successive stages, whose running
time complexities are the following.

1) Estimate (marginal) smoothing parameters for each of
the variables. Cost: .

2) Compute/smooth the periodogram for the joint density.
Cost: .

3) Structure learning using greedy search: When using the
efficient scheme of [31], it can be made to be

.
4) Estimate local smoothing parameters. Cost:

.
5) The overall cost is

.

VI. NONLINEARITY THROUGH MERCER KERNELS

In this section, we show how the methods presented thus
far can be extended to nonlinear models. In particular, in
Section VI-B, we show how these methods can be “kernel-
ized”; based on this, we develop algorithms for learning in
Section VI-C and prediction in Section VI-D. As already
mentioned, the basic principle underlying our approach is to
first map the data into a “feature space” using a “feature
map” and to use the algorithms developed in earlier
sections on the transformed data . What makes the ap-
proach feasible is that only dot products between data points
are needed by these algorithms, as seen in Section VI-B and C.
Thus, the algorithm only involves manipulation of the values

for and because they are two data
points in the original space. is usually referred to as the
kernel function. A function is a Mercer kernel if and
if only there exists a feature space and a feature map
such that .

Since the algorithm only involves dot products and, thus,
kernel values, algorithms can benefit from the expressive power
of the feature space, without incurring the computational cost
of actually mapping the points into this feature space, which is
a method usually referred to as the “kernel trick” [14]. Mercer
kernels can be defined on many different input spaces, thus
making the applicability of the presented technique wide.

A. Notation

We assume that the variables are mapped to
, where are given feature

maps from the “input space” to the feature space . Let
be the dot product between two

mapped elements. We are given samples from to
. We can build “Gram matrices” (one per

variable), which are defined as matrices composed of
the pairwise kernel values between two data
points.
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B. Kernelization of the Periodogram

We now show how we can find a basis in which the peri-
odogram has a particularly simple expression involving prod-
ucts of Gram matrices. Since the model selection scores are in-
dependent of the basis, we can use these expressions in Sec-
tion VI-C to construct our model selection criteria.

We assume that the data are centered,2 that is, .
The sample covariance matrix , which is defined by blocks,
has its -block equal to, for

For , , we have

where is the vector in with only zeros, except for a one at
index , is the Gram matrix associated with variable , and

is the matrix such that . The
only nonzero elements of belong to the th lower diagonal.
Thus, in the data basis defined by the data points, the autoco-
variance function has its th block equal to .
The Fourier transform of the autocovariance has the following
expression:

where is the vector in with components ,
. The periodogram is exactly for

.
Since the feature space might have infinite dimension,

smoothing (in space) is usually required to limit the number
of parameters that are implicitly estimated. Smoothing (in
space) the periodogram by an isotropic Gaussian is equivalent
to adding ; in the data basis, the regularized (cross)-peri-
odogram is thus

2The data can be implicitly centered in feature space by replacing Gram ma-
tricesK by (I�(1=T )1)K(I�(1=T)1), where1 is aT�T matrix composed
of ones [14].

Smoothing (in frequency) can be done as in the nonkernelized
version by averaging consecutive values of the periodogram.
We denote , as the values of the estimated
spectral density after smoothing. Each is a matrix.

C. Model Selection Criteria

Following [13], the effective dimension of variables is taken
to be tr , and we use the following AIC
score:

The same optimization techniques used for classical graphical
models can be used to optimize this score. Efficient implementa-
tion techniques based on low-rank approximations are presented
in [13].

D. Prediction with Kernels

Once we have a model, we would like to perform pre-
diction. Given our framework, we obtain a predicted value

in the feature space, and this predicted
value might not correspond to an such that .
As for the covariance error, it is not defined in input space.
In order to get an estimate and an error, we propose the
following two-stage procedure. Once the predicting filters

are computed, do the
following.

1) For each variable and each index , find

This is usually referred to as the “pre-image,” and several
techniques are available [14], [32].

2) Compute the average errors. In particular, if all variables
are continuous, we get

VII. SIMULATIONS

A. Synthetic Examples

Our first goal is to see whether, when the data are gener-
ated from a sparse graphical model, the search procedure can
find this model. We use the following procedure: We generate a
random spectral density matrix, project the spectral density ma-
trix function to a random graph with maximal fan-in equal to
two, generate data from the new spectral density matrix with
various numbers of samples, and learn the model from data
using the algorithm described in Fig. 5. We then compute the
KL divergence from the generating model as well as the number
of undirected edges not found by the learning algorithm. We
compare the performance in KL divergence for the following
models: a fully connected graphical model, a learned graphical
model without post-smoothing, and a learned graphical model
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Fig. 6. Synthetic examples. KL divergence from the truth versus the number
of samples.

Fig. 7. Synthetic examples. Number of nonrecovered edges versus number of
samples for the structure learning algorithm presented in Section V-B.

with post-smoothing (as described in Section V-C). We can see
in Fig. 6 that the structure learning algorithm manages to predict
significantly better than the fully connected graphical model,
especially for small samples (when the sample gets large, the
KL divergences for all methods go to zero; see also Fig. 7). In
addition, the post-smoothing leads to a slight improvement; in
particular, the variance of the error is reduced.

B. Real-Life Datasets

We compare our algorithms with a classical approach that
exhibits reasonable scaling of computing time to large datasets.
Note, in particular, that with large datasets such as climate
data, two issues need to be addressed: a) There are a very
large number of variables , and b) there are relatively few
time samples compared to the number of variables. The model
we compare to is the sparse autoregressive model SAR of
maximal order . These are AR models that favor zeros in
the weights and are such that the error matrix factorizes
in a sparse graphical model . They are learned using forward
selection of edges with the AIC criterion.

We used climate datasets extracted from the National Cli-
matic Data Center (NCDC) “summary of the day” data, which
are composed of daily mean temperatures and precipitation for

Fig. 8. Results for the climate datasets: mean prediction error.

Fig. 9. Results for the climate datasets. Predictive log likelihood normalized
by the log likelihood for the full Gaussian iid model (larger values are better).

more than 10 000 stations across the United States. We subsam-
pled this dataset by choosing random locations and choosing
the closest stations. The number of samples was 1024 consecu-
tive days. Each of the datasets that was so constructed was di-
vided in a training set (of size 1024 days) and a testing set. For
each of these sets, the obvious seasonal component (year) is re-
moved by using the first six corresponding Fourier components.
We report the negative log likelihood of the one-step-ahead pre-
diction of the test data. We normalize the result by subtracting
the log likelihood of the corresponding iid Gaussian variables
with a full covariance matrix. We also report the average pre-
diction error. We report results in Figs. 8 and 9. We can see in
Fig. 8 that on the mean prediction error, the sparse methods, in
time or frequency, perform better than the methods that do not
use sparsity; in terms of log likelihood, the sparse frequency do-
main approach outperforms the time domain approach.

VIII. CONCLUSIONS

Probabilistic graphical models provide an elegant general
framework for the representation of complex sets of dependen-
cies among an interacting set of variables. Standard algorithms
are available for probabilistic inference, and a variety of
parameter estimation and model selection algorithms have been
devised. The graphical structure of these models is essential
for making these algorithms computationally efficient. It has
important statistical implications as well, yielding models in
which the graphical structure corresponds directly to a natural
notion of sparsity of the representation.

Applications of graphical models to time series analysis have
generally taken the form of state space models. In this setting,
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the graphical model machinery is aimed at capturing structure
in the state transition matrix, and sparsity in the graph has an
interpretation in the time domain—a given state variable has a
probabilistic dependence on a limited number of variables in the
past.

In the current paper, we have described an alternative method-
ology for making use of graphical models in time series analysis.
In particular, we have developed a frequency domain approach
in which the structure captured by a graphical model is related
to sparseness in the spectral density matrix. We have described
parameter estimation and structure learning algorithms that are
geared for this setting. We have provided computational com-
plexity analyses throughout, emphasizing the development of
methods that are appropriate for large-scale time series models.

As seen in the experiments with climate data, methods that at-
tempt to uncover structure in the frequency domain can lead to
equivalent predictive performance to analogous methods oper-
ating in the time domain but higher likelihoods. The frequency
approach is looking for conditional independence relationships
among the variables and should work well when such relation-
ships are expected.

Finally, it is worth noting that although we have restricted
ourselves to regularly sampled time series in this paper, our al-
gorithms apply immediately to irregularly sampled time series
once the spectral density is estimated [33].
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