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Abstract

Regularization by the sum of singular values, also referred to as the trace norm, is a popular tech-
nique for estimating low rank rectangular matrices. In this paper, we extend some of the consis-
tency results of the Lasso to provide necessary and sufficient conditions for rank consistency of
trace norm minimization with the square loss. We also provide an adaptive version that is rank
consistent even when the necessary condition for the non adaptive version is not fulfilled.
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1. Introduction

In recent years, regularization by various non Euclidean norms has seen considerable interest. In
particular, in the context of linear supervised learning, norms such as the `1-norm may induce
sparse loading vectors, that is, loading vectors with low cardinality or `0-norm. Such regularization
schemes, also known as the Lasso (Tibshirani, 1994) for least-square regression, come with efficient
path following algorithms (Efron et al., 2004). Moreover, recent work has studied conditions under
which such procedures consistently estimate the sparsity pattern of the loading vector (Yuan and
Lin, 2007; Zhao and Yu, 2006; Zou, 2006).

When learning on rectangular matrices, the rank is a natural extension of the cardinality, and the
sum of singular values, also known as the trace norm or the nuclear norm, is the natural extension
of the `1-norm; indeed, as the `1-norm is the convex envelope of the `0-norm on the unit ball (i.e.,
the largest lower bounding convex function) (Boyd and Vandenberghe, 2003), the trace norm is the
convex envelope of the rank over the unit ball of the spectral norm (Fazel et al., 2001). In practice,
it leads to low rank solutions (Fazel et al., 2001; Srebro et al., 2005) and has seen recent increased
interest in the context of collaborative filtering (Srebro et al., 2005), multi-task learning (Abernethy
et al., 2006; Argyriou et al., 2007; Abernethy et al., 2008) or classification with multiple classes
(Amit et al., 2007).

In this paper, we consider the rank consistency of trace norm regularization with the square
loss, that is, if the data were actually generated by a low-rank matrix, will the matrix and its rank
be consistently estimated? In Section 4, we provide necessary and sufficient conditions for the rank
consistency that are extensions of corresponding results for the Lasso (Yuan and Lin, 2007; Zhao
and Yu, 2006; Zou, 2006) and the group Lasso (Bach, 2008). We do so under two sets of sampling
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assumptions detailed in Section 3.2: a full i.i.d assumption and a non i.i.d assumption which is
natural in the context of collaborative filtering.

As for the Lasso and the group Lasso, the necessary condition implies that such procedures do
not always estimate the rank correctly; similar to the adaptive version of the Lasso and group Lasso
(Zou, 2006), we design an adaptive version to achieve n−1/2-consistency and rank consistency, with
no consistency conditions. Following Zou (2006), the adaptive version is based on a unregular-
ized least-squares estimates which is used to design appropriate reweighted matrices. Finally, in
Section 6, we present a smoothing approach to convex optimization with the trace norm, while in
Section 6.3, we show simulations on toy examples to illustrate the consistency results.

2. Notation

In this paper we consider various norms on vectors and matrices. On vectors x in R
d , we always

consider the Euclidean norm, that is, ‖x‖ = (x>x)1/2. On rectangular matrices in R
p×q, however,

we consider several norms, based on singular values (Stewart and Sun, 1990): the spectral norm
‖M‖2 is the largest singular value (defined as ‖M‖2 = supx∈Rq

‖Mx‖
‖x‖ ), the trace norm (or nuclear

norm) ‖M‖∗ is the sum of singular values, and the Frobenius norm ‖M‖F is the `2-norm of singular
values—also defined as ‖M‖F = (trM>M)1/2. In Appendix A and B, we review and derive relevant
tools and results regarding perturbation of singular values as well as the trace norm.

Given a matrix M ∈ R
p×q, vec(M) denotes the vector in R

pq obtained by stacking its columns
into a single vector; and A⊗B denotes the Kronecker product between matrices A ∈ R

p1×q1 and
B ∈R

p2×q2 , defined as the matrix in R
p1 p2×q1q2 , defined by blocks of sizes p2×q2 equal to ai jB. We

make constant use of the following identities: (B>⊗A)vec(X) = vec(AXB) and vec(uv>) = v⊗u.
For more details and properties, see Golub and Loan (1996) and Magnus and Neudecker (1998).
We also use the notation ΣW for Σ ∈ R

pq×pq and W ∈ R
p×q to design the matrix in R

p×q such that
vec(ΣW ) = Σvec(W ) (note the potential confusion with ΣW when Σ is a matrix with p columns).

We use the following standard asymptotic notations: a random variable Zn is said to be of order
Op(an) if for any η > 0, there exists M > 0 such that supn P(|Zn| > Man) < η. Moreover, Zn is said
to be of order op(an) if Zn/an converges to zero in probability, that is, if for any η > 0, P(|Zn|> ηan)
converges to zero. See Van der Vaart (1998) and Shao (2003) for further definitions and properties
of asymptotics in probability.

Finally, we use the following two conventions: lowercase for vectors and uppercase for matrices,
while bold fonts are reserved for population quantities.

3. Trace Norm Minimization

We consider the problem of predicting a real random variable z as a linear function of a matrix
M ∈ R

p×q, where p and q are two fixed strictly positive integers. Throughout this paper, we assume
that we are given n observations (Mi,zi), i = 1, . . . ,n, and we consider the following optimization
problem with the square loss:

min
W∈Rp×q

1
2n

n

∑
i=1

(zi − trW>Mi)
2 +λn‖W‖∗, (1)

where ‖W‖∗ denotes the trace norm of W .
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3.1 Special Cases

Regularization by the trace norm has numerous applications (see, e.g., Recht et al., 2007, for a
review); in this paper, we are particularly interested in the following two situations:

Lasso and group Lasso When xi ∈ R
m, we can define Mi = Diag(xi) ∈ R

m×m as the diagonal
matrix with xi on the diagonal. In this situation, the minimization of problem in Eq. (1) must lead to
diagonal solutions (indeed the minimum trace norm matrix with fixed diagonal is the corresponding
diagonal matrix, which is a consequence of Lemma 20 and Proposition 21) and for a diagonal
matrix the trace norm is simply the `1 norm of the diagonal. Once we have derived our consistency
conditions, we check in Section 4.5 that they actually lead to the known ones for the Lasso (Yuan
and Lin, 2007; Zhao and Yu, 2006; Zou, 2006).

We can also see the group Lasso as a special case; indeed, if xi j ∈ R
d j for j = 1, . . . ,m, i =

1, . . . ,n, then we define Mi ∈ R
(∑m

j=1 d j)×m as the block diagonal matrix (with non square blocks)
with diagonal blocks x ji, j = 1, . . . ,m. Similarly, the optimal Ŵ must share the same block-diagonal
form, and its singular values are exactly the norms of each block, that is, the trace norm is indeed
the sum of the norms of each group. We also get back results from Bach (2008) in Section 4.5.

Note that the Lasso and group Lasso can be seen as special cases where the singular vectors
are fixed. However, the main difficulty in analyzing trace norm regularization, as well as the main
reason for it use, is that singular vectors are not fixed and those can often be seen as implicit features
learned by the estimation procedure (Srebro et al., 2005). In this paper we derive consistency results
about the value and numbers of such features.

Collaborative filtering and low-rank completion Another natural application is collaborative
filtering where two types of attributes x and y are observed and we consider bilinear forms in x
and y, which can be written as a linear form in M = xy> (thus it corresponds to situations where
all matrices Mi have rank one). In this setting, the matrices Mi are not usually i.i.d. but exhibit
a statistical dependence structure outlined in Section 3.2. A special case here is when then no
attributes are observed and we simply wish to complete a partially observed matrix (Srebro et al.,
2005; Abernethy et al., 2006). The results presented in this paper do not immediately apply because
the dimension of the estimated matrix may grow with the number of observed entries and this
situation is out of the scope of this paper.

Multivariate linear supervised learning When predicting multiple variables, in the context of
multivariate linear regression (Yuan et al., 2007) or in the multiple category classification (Amit
et al., 2007), the trace norm allows to perform feature selection.

3.2 Assumptions

We make the following assumptions on the sampling distributions of M ∈ R
p×q for the problem in

Eq. (1). We let denote: Σ̂mm = 1
n ∑n

i=1 vec(Mi)vec(Mi)
> ∈ R

pq×pq, and we consider the following
assumptions:

(A1) Given Mi, i = 1, . . . ,n, the n values zi are i.i.d. and there exists W ∈ R
p×q such that for all

i, E(zi|M1, . . . ,Mn) = trW>Mi and var(zi|M1, . . . ,Mn) is a strictly positive constant σ2. W is
not equal to zero and does not have full rank.
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(A2) There exists an invertible matrix Σmm ∈ R
pq×pq such that E‖Σ̂mm − Σmm‖2

F = O(ζ2
n) for a

certain sequence ζn that tends to zero.

(A3) The random variable n−1/2 ∑n
i=1 εi vec(Mi) is converging in distribution to a normal distribu-

tion with mean zero and covariance matrix σ2Σmm.

Assumption (A1) states that given the input matrices Mi, i = 1, . . . ,n we have a linear prediction
model, where the loading matrix W is non trivial and rank-deficient, the goal being to estimate this
rank (as well as the matrix itself). We let denote W = UDiag(s)V> its singular value decomposition,
with U ∈ R

p×r , V ∈ R
q×r, and r ∈ (0,min{p,q}) denotes the rank of W. We also let denote

U⊥ ∈ R
p×(p−r) and V⊥ ∈ R

q×(q−r) any orthogonal complements of U and V.
We let denote εi = zi − trW>Mi and Σ̂Mz = 1

n ∑n
i=1 ziMi ∈ R

p×q, Σ̂Mε = 1
n ∑n

i=1 εiMi = Σ̂Mz −
Σ̂mmW ∈ R

p×q. We may then rewrite Eq. (1) as

min
W∈Rp×q

1
2

vec(W )>Σ̂mm vec(W )− trW>Σ̂Mz +λn‖W‖∗,

or, equivalently,

min
W∈Rp×q

1
2

vec(W −W)>Σ̂mm vec(W −W)− trW>Σ̂Mε +λn‖W‖∗.

The sampling assumptions (A2) and (A3) may seem restrictive, but they are satisfied in the
following two natural situations. The first situation corresponds to a classical full i.i.d problem,
where the pairs (zi,Mi) are sampled i.i.d:

Lemma 1 Assume (A1). If the matrices Mi are sampled i.i.d., z and M have finite fourth order
moments, and E

{

vec(M)vec(M)>
}

is invertible, then (A2) and (A3) are satisfied with ζn = n−1/2.

Note the further refinement when for each i, Mi = xiy>i and xi and yi are independent, which implies
that Σmm is factorized as a Kronecker product, of the form Σyy ⊗ Σxx where Σxx and Σyy are the
(invertible) second order moment matrices of x and y.

The second situation corresponds to a collaborative filtering situation where two types of at-
tributes are observed, for example, x and y, and for every pair (x,y) we wish to predict z as a bilinear
form in x and y: we first sample nx values for x, and ny values for y, and we select uniformly at ran-
dom a subset of n 6 nxny observations from the nxny possible pairs. The following lemma, proved
in Appendix C.1, shows that this set-up satisfies our assumptions:

Lemma 2 Assume (A1). Assume moreover that nx values x̃1, . . . , x̃nx are sampled i.i.d and ny values
ỹ1, . . . , ỹny are also sampled i.i.d. from distributions with finite fourth order moments and invertible
second order moment matrices Σxx and Σyy. Assume also that a random subset of size n of pairs
(ik, jk) in {1, . . . ,nx}×{1, . . . ,ny} is sampled uniformly, then if nx, ny and n tend to infinity, then

(A2) and (A3) are satisfied with Σmm = Σyy ⊗Σxx and ζn = n−1/2 +n−1/2
x +n−1/2

y .

3.3 Optimality Conditions

From the expression of the subdifferential of the trace norm in Proposition 21 (Appendix B), we can
identify the optimality condition for problem in Eq. (1), that we will constantly use in the paper:

1022



CONSISTENCY OF TRACE NORM MINIMIZATION

Proposition 3 The matrix W with singular value decomposition W = U Diag(s)V > (with strictly
positive singular values s) is optimal for the problem in Eq. (1) if and only if

Σ̂mmW − Σ̂Mz +λnUV> +N = 0,

with U>N = 0, NV = 0 and ‖N‖2 6 λn.

This implies notably that W and Σ̂mmW − Σ̂Mz have simultaneous singular value decompositions,
and the largest singular values are less than λn, and exactly equal to λn for the corresponding strictly
positive singular values of W . Note that when all matrices are diagonal (the Lasso case), we obtain
the usual optimality conditions (see also Recht et al., 2007, for further discussions).

4. Consistency Results

We consider two types of consistency; first, the regular consistency, that is, we want the probability
P(‖Ŵ −W‖ > ε) to tend to zero as n tends to infinity, for all ε > 0. We also consider the rank con-
sistency, that is, we want that P(rank(Ŵ ) 6= rank(W)) tends to zero as n tends to infinity. Following
the similar properties for the Lasso, the consistency depends on the decay of the regularization
parameter. Essentially, we obtain the following results:

a) if λn does not tend to zero, then the trace norm estimate Ŵ is not consistent;

b) if λn tends to zero faster than n−1/2, then the estimate is consistent and its error is Op(n−1/2)
while it is not rank-consistent with probability tending to one (see Section 4.1);

c) if λn tends to zero exactly at rate n−1/2, then the estimator is consistent with error Op(n−1/2)
but the probability of estimating the correct rank is converging to a limit in (0,1) (see Sec-
tion 4.2);

d) if λn tends to zero more slowly than n−1/2, then the estimate is consistent with error Op(λn)
and its rank consistency depends on specific consistency conditions detailed in Section 4.3.

The following sections will look at each of these cases, and state precise theorems. We then consider
some special cases, that is, factored second-order moments and implications for the special cases of
the Lasso and group Lasso.

The first proposition (proved in Appendix C.2) considers the case where the regularization pa-
rameter λn is converging to a certain limit λ0. When this limit is zero, we obtain regular consistency
(Corollary 5 below), while if λ0 > 0, then Ŵ tends in probability to a limit which is always different
from W:

Proposition 4 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If λn tends to a limit λ0 > 0,
then Ŵ converges in probability to the unique global minimizer of

min
W∈Rp×q

1
2

vec(W −W)>Σmm vec(W −W)+λ0‖W‖∗.

Corollary 5 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If λn tends to zero, then Ŵ
converges in probability to W.

We now consider finer results when λn tends to zero at certain rates, slower or faster than n−1/2, or
exactly at rate n−1/2.
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4.1 Fast Decay of Regularization Parameter

The following proposition—which is a consequence of standard results in M-estimation (Shao,
2003; Van der Vaart, 1998)—considers the case where n1/2λn is tending to zero, where we obtain
that Ŵ is asymptotically normal with mean W and covariance matrix n−1σ2Σ−1

mm, that is, for fast
decays, the first order expansion is the same as the one with no regularization parameter:

Proposition 6 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If n1/2λn tends to zero,
n1/2(Ŵ −W) is asymptotically normal with mean W and covariance matrix σ2Σ−1

mm.

We now consider the corresponding rank consistency results, when λn goes to zero faster than
n−1/2. The following proposition (proved in Appendix C.3) states that for such regularization pa-
rameter, the solution has rank strictly greater than r with probability tending to one and can thus not
be rank consistent:

Proposition 7 Assume (A1-3). If n1/2λn tends to zero, then P(rank(Ŵ ) > rank(W)) tends to one.

4.2 n−1/2-decay of the Regularization Parameter

We first consider regular consistency through the following proposition (proved in Appendix C.4),
then rank consistency (proposition proved in Appendix C.5):

Proposition 8 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If n1/2λn tends to a limit
λ0 > 0, then n1/2(Ŵ −W) converges in distribution to the unique global minimizer of

min
∆∈Rp×q

1
2

vec(∆)>Σmm vec(∆)− tr∆>A+λ0

[

trU>∆V+‖U>
⊥∆V⊥‖∗

]

,

where vec(A) ∈ R
pq is normally distributed with mean zero and covariance matrix σ2Σmm.

Proposition 9 Assume (A1-3). If n1/2λn tends to a limit λ0 > 0, then the probability that the rank
of Ŵ is different from the rank of W is converging to P(‖Λ− λ−1

0 Θ‖2 6 1) ∈ (0,1) where Λ ∈
R

(p−r)×(q−r) is defined in Eq. (3) (Section 4.3) and Θ ∈ R
(p−r)×(q−r) has a normal distribution with

mean zero and covariance matrix

σ2
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1
.

The previous proposition ensures that the estimate Ŵ cannot be rank consistent with this decay of
the regularization parameter. Note that when we take λ0 small (i.e., we get closer to fast decays),
the probability P(‖Λ−λ−1

0 Θ‖2 6 1) tends to zero, while when we take λ0 large (i.e., we get closer
to slow decays), the same probability tends to zero or one depending on the sign of ‖Λ‖2 −1. This
heuristic argument is made more precise in the following section.

4.3 Slow Decay of Regularization Parameter

When λn tends to zero more slowly than n−1/2, the first order expansion is deterministic, as the
following proposition shows (proof in Appendix C.6):
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Proposition 10 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If n1/2λn tends to +∞ and
λn tends to zero, then λ−1

n (Ŵ −W) converges in probability to the unique global minimizer ∆ of

min
∆∈Rp×q

1
2

vec(∆)>Σmm vec(∆)+ trU>∆V+‖U>
⊥∆V⊥‖∗. (2)

Moreover, we have Ŵ = W+λn∆+Op(λn +ζn +λ−1
n n−1/2).

The last proposition gives a first order expansion of Ŵ around W. From Proposition 18 (Ap-
pendix B), we obtain immediately that if U>

⊥∆V⊥ is different from zero, then the rank of Ŵ is
ultimately strictly larger than r. The condition U>

⊥∆V⊥ = 0 is thus necessary for rank consistency
when λnn1/2 tends to infinity while λn tends to zero. The next lemma (proved in Appendix 11),
gives a necessary and sufficient condition for U>

⊥∆V⊥ = 0.

Lemma 11 Assume Σmm is invertible, and W = UDiag(s)V> is the singular value decomposition
of W. Then the unique global minimizer of

vec(∆)>Σmm vec(∆)+ trU>∆V+‖U>
⊥∆V⊥‖∗

satisfies U>
⊥∆V⊥ = 0 if and only if

∥

∥

∥

∥

(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm(V⊗U)vec(I)

)

∥

∥

∥

∥

2
6 1.

This leads to consider the matrix Λ ∈ R
(p−r)×(q−r) defined as

vec(Λ) =
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm(V⊗U)vec(I)

)

, (3)

and the two weak and strict consistency conditions:

‖Λ‖2 6 1, (4)

‖Λ‖2 < 1. (5)

Note that if Σmm is proportional to identity, they are always satisfied because then Λ = 0. We can now
prove that the condition in Eq. (5) is sufficient for rank consistency when n1/2λn tends to infinity,
while the condition Eq. (4) is necessary for the existence of a sequence λn such that the estimate is
both consistent and rank consistent (which is a stronger result than restricting λn to be tending to
zero slower than n−1/2). The following two theorems are proved in Appendix C.8 and C.9:

Theorem 12 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If the condition in Eq. (5)
is satisfied, and if n1/2λn tends to +∞ and λn tends to zero, then the estimate Ŵ is consistent and
rank-consistent.

Theorem 13 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If the estimate Ŵ is consistent
and rank-consistent, then the condition in Eq. (4) is satisfied.
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As opposed to the Lasso, where Eq. (4) is a necessary and sufficient condition for rank consistency
(Yuan and Lin, 2007), this is not even true in general for the group Lasso (Bach, 2008). Looking
at the limiting case ‖Λ‖2 = 1 would similarly lead to additional but more complex sufficient and
necessary conditions, and is left out for future research.

Moreover, it may seem surprising that even when the sufficient condition Eq. (5) is fulfilled, that
the first order expansion of Ŵ , that is, Ŵ = W+λn∆+op(λn) is such that U>

⊥∆V⊥ = 0, but nothing
is said about U>

⊥∆V and U>∆V⊥, which are not equal to zero in general. This is due to the fact that
the first r singular vectors U and V of W+λn∆ are not fixed; indeed, the r first singular vectors (i.e.,
the implicit features) do rotate but with no contribution on U⊥V>

⊥. This is to be contrasted with the
adaptive version where asymptotically the first order expansion has constant singular vectors (see
Section 5).

Finally, in this paper, we have only proved whether the probability of correct rank selection tends
to zero or one. Proposition 9 suggests that when λnn1/2 tends to infinity slowly, then this probability
is close to P(‖Λ− λ−1

n n1/2Θ‖2 6 1), where Θ has a normal distribution with known covariance
matrix, which converges to one exponentially fast when ‖Λ‖2 < 1. We are currently investigating
additional assumptions under which such results are true and thus estimate the convergence rates of
the probability of good rank selection as done by Zhao and Yu (2006) for the Lasso.

4.4 Factored Second Order Moment

Note that in the situation where nx points in R
p and ny points in R

q are sampled i.i.d and a random
subset of n points in selected, then, we can refine the condition as follows (because Σmm = Σyy⊗Σxx):

Λ = (U>
⊥Σ−1

xx U⊥)−1U>
⊥Σ−1

xx UV>Σ−1
yy V⊥(V>

⊥Σ−1
yy V⊥)−1,

which is equal to (by the expression of inverses of partitioned matrices):

Λ = (U>
⊥ΣxxU)(U>ΣxxU)−1(V>ΣyyV)−1(V>ΣyyV⊥).

This also happens when Mi = xiy>i and xi and yi independent for all i.

4.5 Corollaries for the Lasso and Group Lasso

For the Lasso or the group Lasso, all proposed results in Section 4.3 should hold with the additional
conditions that W and ∆ are diagonal (block-diagonal for the group Lasso). In this situation, the
singular values of the diagonal matrix W = Diag(w) are the norms of the diagonal blocks, while
the left singular vectors are equal to the normalized versions of the block (the signs for the Lasso).
However, the results developed in Section 4.3 do not immediately apply since the assumptions
regarding the invertibility of the second order moment matrix is not satisfied. For those problems,
all matrices M that are ever considered belong to a strict subspace of R

p×q and we need to satisfy
invertibility on that subspace.

More precisely, we assume that all matrices M are such that vec(M) = Hx where H is a given
design matrix in R

pq×s where s is the number of implicit parameter and x ∈ R
s. If we replace the

invertibility of Σmm by the invertibility of H>ΣmmH, then all results presented in Section 4.3 are
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valid, in particular, the matrix Λ may be written as

vec(Λ) =
(

(V⊥⊗U⊥)>H(H>ΣmmH)−1H>(V⊥⊗U⊥)
)†

×
(

(V⊥⊗U⊥)>H(H>ΣmmH)−1H>(V⊗U)vec(I)
)

, (6)

where A† denotes the pseudo-inverse of A (Golub and Loan, 1996).
We now apply Eq. (6) to the case of the group Lasso (which includes the Lasso as a special case).

In this situation, we have M = Diag(x1, . . . ,xm) and each x j ∈ R
d j , j = 1, . . . ,m; we consider w as

being defined by blocks w1, . . . ,wm, where each w j ∈ R
d j . The design matrix H is such that Hw =

vec(Diag(w)) and the matrix H>ΣmmH is exactly equal to the joint covariance matrix Σxx of x =
(x1, . . . ,xm). Without loss of generality, we assume that the generating sparsity pattern corresponds
to the first r blocks. We can then compute the singular value decomposition in closed form as
U =

((Diag(wi/‖wi‖)i6r
0

)

, V =
(I

0

)

and s = (‖w j‖) j6r. If we let denote, for each j, O j a basis of

the subspace orthogonal to w j, we have: U⊥ =

(

Diag(Oi)i6r 0
0 I

)

and V⊥ =
(0

I

)

. We can put

these singular vectors into Eq. (6) and get (H>ΣmmH)−1H>(V⊗U)vec(I) = (Σ−1
xx )J∪Jc,JηJ, where

J = {1, . . . ,r} and ηJ is the vector of normalized w j, j ∈ J. Thus, for the group Lasso, we finally
obtain:

‖Λ‖2 =
∥

∥Diag
[

((Σ−1
xx )JcJc)−1(Σ−1

xx )Jc,JηJ
]∥

∥

2

=
∥

∥

∥
Diag

[

(Σxx)JcJ(Σxx)
−1
J,JηJ

]∥

∥

∥

2
by the partitioned matrices inversion lemma,

= max
i∈Jc

∥

∥ΣxixJΣ−1
xJxJ

ηJ
∥

∥ .

The condition on the invertibility of H>ΣmmH is exactly the invertibility of the full joint covari-
ance matrix of x = (x1, . . . ,xm) and is a standard assumption for the Lasso or the group Lasso (Yuan
and Lin, 2007; Zhao and Yu, 2006; Zou, 2006; Bach, 2008). Moreover the condition ‖Λ‖2 6 1 is
exactly the one for the group Lasso (Bach, 2008), where the pattern consistency is replaced by the
consistency for the number of non zero groups.

Note that we only obtain a result in terms of numbers of selected groups of variables and not
in terms of the identities of the groups themselves. However, because of regular consistency, we
know that at least the r true groups will be selected, and then correct model size is asymptotically
equivalent to the correct groups being selected.

5. Adaptive Version

We can follow the adaptive version of the Lasso to provide a consistent algorithm with no consis-
tency conditions such as Eq. (4) or Eq. (5). More precisely, we consider the least-square estimate
vec(ŴLS) = Σ̂−1

mm vec(Σ̂Mz). We have the following well known result for least-square regression:

Lemma 14 Assume (A1-3). Then n1/2(Σ̂−1
mm vec(Σ̂Mz)−vec(W)) is converging in distribution to a

normal distribution with zero mean and covariance matrix σ2Σ−1
mm.

We consider the singular value decomposition of ŴLS = ULS Diag(sLS)V>
LS, where sLS > 0. With

probability tending to one, min{p,q} singular values are strictly positive (i.e., the rank of ŴLS is
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full). We consider the full decomposition where ULS and VLS are orthogonal square matrices and the
matrix Diag(sLS) is rectangular. We complete the singular values sLS ∈ R

min{p,q} by n−1/2 to reach
dimensions p and q (we keep the same notation for both dimensions for simplicity).

For γ ∈ (0,1], we let denote

A = ULS Diag(sLS)
−γU>

LS ∈ R
p×p and B = VLS Diag(sLS)

−γV>
LS ∈ R

q×q,

two positive definite symmetric matrices, and, following the adaptive Lasso of Zou (2006), we
consider replacing ‖W‖∗ by ‖AWB‖∗—note that in the Lasso special case, this exactly corresponds
to the adaptive Lasso of Zou (2006). We obtain the following consistency theorem (proved in
Appendix C.10):

Theorem 15 Assume (A1-3). If γ ∈ (0,1], n1/2λn tends to 0 and λnn1/2+γ/2 tends to infinity, then
any global minimizer ŴA of

1
2n

n

∑
i=1

(zi − trW>Mi)
2 +λn‖AWB‖∗

is consistent and rank consistent. Moreover, n1/2 vec(ŴA −W) is converging in distribution to a
normal distribution with mean zero and covariance matrix

σ2(V⊗U)
[

(V⊗U)>Σmm(V⊗U)
]−1

(V⊗U)>.

Note the restriction γ 6 1 which is due to the fact that the least-square estimate ŴLS only estimates
the singular subspaces at rate Op(n−1/2). In Section 6.3, we illustrate the previous theorem on
synthetic examples. In particular, we exhibit some singular behavior for the limiting case γ = 1.

6. Algorithms and Simulations

In this section we provide a simple algorithm to solve problems of the form

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λ‖W‖∗, (7)

where Σ ∈ R
pq×pq is a positive definite matrix (note that we do not restrict Σ to be of the form

Σ = A⊗B where A and B are positive semidefinite matrices of size p× p and q× q). We assume
that vec(Q) is in the column space of Σ, so that the optimization problem is bounded from below
(and thus the dual is feasible). In our setting, we have Σ = Σ̂mm and Q = Σ̂Mz.

We focus on problems where p and q are not too large so that we can apply Newton’s method
to obtain convergence up to machine precision, which is required for the fine analysis of rank con-
sistency in Section 6.3. For more efficient algorithms with larger p and q, see Srebro et al. (2005);
Rennie and Srebro (2005) and Abernethy et al. (2006); Lu et al. (2008).

Because the dual norm of the trace norm is the spectral norm (see Appendix B), the dual is
easily obtained as

max
V∈Rp×q,‖V‖261

−1
2

vec(Q−λV )>Σ−1 vec(Q−λV ). (8)
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Figure 1: Spectral barrier functions: (left) primal function b(s) and (right) dual functions b∗(s).

Indeed, we have:

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λ‖W‖∗

= min
W∈Rp×q

max
V∈Rp×q,‖V‖261

1
2

vec(W )>Σvec(W )− trW>Q+λtrV>W

= max
V∈Rp×q,‖V‖261

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λtrV>W

= max
V∈Rp×q,‖V‖261

−1
2

vec(Q−λV )>Σ−1 vec(Q−λV ),

where strong duality holds because both the primal and dual problems are convex and strictly feasi-
ble (Boyd and Vandenberghe, 2003).

6.1 Smoothing

The problem in Eq. (7) is convex but non differentiable; in this paper we consider adding a strictly
convex function to its dual in Eq. (8) in order to make it differentiable, while controlling the increase
of duality gap yielded by the added function (Bonnans et al., 2003).

We thus consider the following smoothing of the trace norm, namely we define

Fε(W ) = max
V∈Rp×q,‖V‖261

trV>W − εB(V ),

where B(V ) is a spectral function (i.e., that depends only on singular values of V , equal to B(V ) =

∑min{p,q}
i=1 b(si(V )) where b(s) = (1 + s) log(1 + s)+ (1− s) log(1− s) if |s| 6 1 and +∞ otherwise

(si(V ) denotes the i-th largest singular values of V ). This function Fε may be computed in closed
form as:

Fε(W ) =
min{p,q}

∑
i=1

b∗(si(W )),

where b∗(s) = ε log(1 + ev/ε)+ ε log(1 + e−v/ε)−2ε log2. These functions are plotted in Figure 1;
note that |b∗(s)−|s|| is uniformly bounded by 2log2.
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We finally get the following pairs of primal/dual optimization problems:

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λFε/λ(W ),

max
V∈Rp×q,‖V‖261

−1
2

vec(Q−λV )>Σ−1 vec(Q−λV )− εB(V ).

We can now optimize directly in the primal formulation which is infinitely differentiable, using
Newton’s method. Note that the stopping criterion should be an ε × min{p,q} duality gap, as
the controlled smoothing also leads to a small additional gap on the solution of the original non
smoothed problem. More precisely, a duality gap of ε×min{p,q} on the smoothed problem, leads
to a gap of at most (1+2log2)ε×min{p,q} for the original problem.

6.2 Implementation Details

In this section, we provide details about the implementation of the estimation algorithm presented
earlier.

Derivatives of spectral functions Note that derivatives of spectral functions of the form B(W ) =

∑min{p,q}
i=1 b(si(W )), where b is an even twice differentiable function such that b(0) = b′(0) = 0, are

easily calculated as follows; Let U Diag(s)V> be the singular value decomposition of W . We then
have the following Taylor expansion (Lewis and Sendov, 2002):

B(W +∆) = B(W )+ tr∆>U Diag(b′(si))V
> +

1
2

p

∑
i=1

q

∑
j=1

b′(si)−b′(s j)

si − s j
(u>i ∆v j)

2,

where the vector of singular values is completed by zeros, and b′(si)−b′(s j)
si−s j

is defined as b′′(si) when
si = s j.

Choice of ε and computational complexity Following the common practice in barrier meth-
ods we decrease the parameter geometrically after each iteration of Newton’s method (Boyd and
Vandenberghe, 2003). Each of these Newton iterations has complexity O(p3q3). Empirically, the
number of iterations does not exceed a few hundreds for solving one problem up to machine pre-
cision. We are currently investigating theoretical bounds on the number of iterations through self
concordance theory (Boyd and Vandenberghe, 2003).

Start and end of the path In order to avoid to consider useless values of the regularization pa-
rameter and thus use a well adapted grid for trying several λ’s, we can consider a specific interval
for λ. When λ is large, the solution is exactly zero, while when λ is small, the solution tends to
vec(W ) = Σ−1 vec(Q).

More precisely, if λ is larger than ‖Q‖2, then the solution is exactly zero (because in this situa-
tion 0 is in the subdifferential). On the other side, we consider for which λ, Σ−1 vec(Q) leads to a
duality gap which is less than εvec(Q)>Σ−1 vec(Q), where ε is small. A looser condition is to take
V = 0, and the condition becomes λ‖Σ−1 vec(Q)‖∗ 6 εvec(Q)>Σ−1 vec(Q). Note that this is in the
correct order (i.e., lower bound smaller than upper bound ), because

vec(Q)>Σ−1 vec(Q) = 〈vec(Q),Σ−1 vec(Q)〉 6 ‖Σ−1 vec(Q)‖∗‖vec(Q)‖2.
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Figure 2: Examples of paths of singular values for ‖Λ‖2 = 0.49 < 1 (consistent, top) and ‖Λ‖2 =
4.78 > 1 (inconsistent, bottom) rank selection: regular trace norm penalization (left) and
adaptive penalization with γ = 1/2 (center) and γ = 1 (right). Estimated singular values
are plotted in plain, while population singular values are dotted.

This allows to design a good interval for searching for a good value of λ or for computing the
regularization path by uniform grid sampling (in log scale), or for numerical path following with
predictor-corrector methods such as used by Bach et al. (2004).

6.3 Simulations

In this section, we perform simulations on toy examples to illustrate our consistency results. We
generate random i.i.d. data X̃ and Ỹ with Gaussian distributions and we select a low rank ma-
trix W at random and generate Z = diag(X̃>WỸ ) + ε where ε has i.i.d components with normal
distributions with zero mean and known variance. In this section, we always use r = 2, p = q = 4,
while we consider several numbers of samples n, and several distributions for which the consistency
conditions Eq. (4) and Eq. (5) may or may not be satisfied.1

In Figure 2, we plot regularization paths for n = 103, by showing the singular values of Ŵ
compared to the singular values of W, in two particular situations (Eq. (4) and Eq. (5) satisfied and
not satisfied), for the regular trace norm regularization and the adaptive versions, with γ = 1/2 and
γ = 1. Note that in the consistent case (top), the singular values and their cardinalities are well
jointly estimated, both for the non adaptive version (as predicted by Theorem 12) and the adaptive

1. Simulations may be reproduced with MATLAB code available from http://www.di.ens.fr/˜fbach/
tracenorm/.
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versions (Theorem 15), while the range of correct rank selection increases compared to the adaptive
versions. However in the inconsistent case, the non adaptive regularizations scheme (bottom left)
cannot achieve regular consistency together with rank consistency (Theorem 13), while the adaptive
schemes can. Note the particular behavior of the limiting case γ = 1, which still achieves both
consistencies but with a singular behavior for large λ.

In Figure 3, we select the distribution used for the rank-consistent case of Figure 2, and compute
the paths from 200 replications for n = 102, 103, 103 and 105. For each λ, we plot the proportion of
estimates with correct rank on the left plots (i.e., we get an estimation of P(rank(Ŵ ) = rank(W)),
while we plot the logarithm of the average root mean squared estimation error ‖Ŵ −W‖ on the
right plot. For the three regularization schemes, the range of values with high probability of correct
rank selection increases as n increases, and, most importantly achieves good mean squared error
(right plot); in particular, for the non adaptive schemes (top plots), this corroborates the results from
Proposition 9, which states that for λn = λ0n−1/2 the probability tends to a limit in (0,1): indeed,
when n increases, the value λn which achieves a particular limit grows as n−1/2, and considering the
log-scale for λn in Figure 3 and the uniform sampling for n in log-scale as well, the regular spacing
between the decaying parts observed in Figure 3 is coherent with our results.

In Figure 4, we perform the same operations but with the inconsistent case of Figure 2. For the
non adaptive case (top plot), the range of values of λ that achieve high probability of correct rank
selection does not increase when n increases and stays bounded, in places where the estimation
error is not tending to zero: in the inconsistent case, the trace norm regularization does not manage
to solve the trade-off between rank consistency and regular consistency. However, for the adaptive
versions, it does, still with a somewhat singular behavior of the limiting case γ = 1.

Finally, in Figure 5, we consider 400 different distributions with various values of ‖Λ‖2 smaller
or greater than one, and computed the regularization paths with n = 103 samples. From the paths,
we consider the estimate Ŵ with correct rank and best distance to W and plot the best error versus
log10(‖Λ‖2). For positive values of log10(‖Λ‖2), the best error is far from zero, and the error grows
with the distance to zero; while for negative values, we get low errors with lower errors for small
log10(‖Λ‖2), corroborating the influence of ‖Λ‖2 described in Proposition 9.

7. Conclusion

We have presented an analysis of the rank consistency for the penalization by the trace norm, and
derived general necessary and sufficient conditions. This work can be extended in several interesting
ways: first, by going from the square loss to more general losses, in particular for other types
of supervised learning problems such as classification; or by looking at the collaborative filtering
setting where only some of the attributes are observed (Abernethy et al., 2006) and dimensions p
and q are allowed to grow. Moreover, we are currently pursuing non asymptotic extensions of the
current work, making links with the recent work of Recht et al. (2007) and of Meinshausen and Yu
(2006).

Appendix A. Tools for Analysis of Singular Value Decomposition

In this appendix, we review and derive precise results regarding singular value decompositions.
We consider W ∈ R

p×q and we let denote W = U Diag(s)V> its singular value decomposition with
U ∈R

p×r, V ∈R
q×r with orthonormal columns, and s∈R

r with strictly positive values (r is the rank
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Figure 3: Synthetic example where consistency condition in Eq. (5) is satisfied: probability of cor-
rect rank selection (left) and logarithm of the expected mean squared estimation error
(right), for several number of samples as a function of the regularization parameter, for
regular regularization (top), adaptive regularization with γ = 1/2 (center) and γ = 1 (bot-
tom).
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Figure 4: Synthetic example where consistency condition in Eq. (4) is not satisfied: probability
of correct rank selection (left) and logarithm of the expected mean squared estimation
error (right), for several number of samples as a function of the regularization parameter,
for regular regularization (top), adaptive regularization with γ = 1/2 (center) and γ = 1
(bottom).
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Figure 5: Scatter plots of log10(‖Λ‖2) versus the squared error of the best estimate with correct
rank (i.e., such that rank(Ŵ ) = r and ‖Ŵ −W‖ as small as possible). See text for details.

of W ). Note that when a singular value si is simple, that is, does not coalesce with any other singular
values, then the vectors ui and vi are uniquely defined up to simultaneous sign flips, that is, only
the matrix uiv>i is unique. However, when some singular values coalesce, then the corresponding
singular vectors are defined up to a rotation, and thus in general care must be taken and considering
isolated singular vectors should be avoided (Stewart and Sun, 1990). All tools presented in this
appendix are robust to the particular choice of the singular vectors.

A.1 Jordan-Wielandt Matrix

We use the fact that singular values of W can be obtained from the eigenvalues of the Jordan-

Wielandt matrix W̄ =

(

0 W
W> 0

)

∈ R
(p+q)×(p+q) (Stewart and Sun, 1990). Indeed this matrix

has eigenvalues si and −si, i = 1, . . . ,r, where si are the (strictly positive) singular values of W ,

with eigenvectors 1√
2

(

ui

vi

)

and 1√
2

(

ui

−vi

)

where ui,vi are the left and right associated singular

vectors. Also, the remaining eigenvalues are all equal to zero, with eigensubspace (of dimension p+

q−2r) composed of all

(

u
v

)

such that for all i ∈ {1, . . . ,r}, u>ui = v>vi = 0. We let denote Ū the

eigenvectors of W̄ corresponding to non zero eigenvalues in S̄. We have Ū = 1√
2

(

U U
V −V

)

and

S̄ = 1√
2

(

Diag(s) 0
0 −Diag(s)

)

and W̄ = Ū S̄Ū>, ŪŪ> =

(

UU> 0
0 VV>

)

, and Ūsign(S̄)Ū> =
(

0 UV>

VU> 0

)

.

A.2 Cauchy Residue Formula and Eigenvalues

Given the matrix W̄ , and a simple closed curve C in the complex plane that does not go through any
of the eigenvalues of W̄ , then

ΠC (W̄ ) =
1

2iπ

I

C

dλ
λI−W̄
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is equal to the orthogonal projection onto the orthogonal sum of all eigensubspaces of W̄ associated
with eigenvalues in the interior of C (Kato, 1966). This is easily seen by writing down the eigenvalue
decomposition and the Cauchy residue formula ( 1

2iπ
H

C
dλ

λ−λi
= 1 if λi is in the interior int(C ) of C

and 0 otherwise), and:

1
2iπ

I

C

dλ
λI−W̄

=
2r

∑
i=1

ūi ū>i × 1
2iπ

I

C

dλ
λ− s̄i

= ∑
i, s̄i∈int(C )

uiu
>
i .

See Rudin (1987) for an introduction to complex analysis and Cauchy residue formula. Moreover,
we can obtain the restriction of W̄ onto a specific eigensubspace as:

W̄ΠC (W̄ ) =
1

2iπ

I

C

W̄dλ
λI−W̄

= − 1
2iπ

I

C

λdλ
λI−W̄

.

We let denote s1 and sr the largest and smallest strictly positive singular values of W ; if ‖∆‖2 < sr/2,
then W + ∆ has r singular values strictly greater than sr/2 and the remaining ones are strictly less
than sr/2 (Stewart and Sun, 1990). Thus, if we denote C the oriented circle of radius sr/2, ΠC (W̄ )
is the projector on the p+q−2r-dimensional null space of W̄ , and for any ∆ such that ‖∆‖2 < sr/2,
ΠC (W̄ + ∆̄) is also the projector on the p+q−2r-dimensional invariant subspace of W̄ + ∆̄, which
corresponds to the smallest eigenvalues. We let denote Πo(W̄ + ∆̄) that projector and Πr(W̄ + ∆̄) =
I−Πo(W̄ + ∆̄) the orthogonal projector (which is the projection onto the 2r-th principal subspace).

We can now find expansions around ∆ = 0 as follows:

Πo(W̄ + ∆̄)−Πo(W̄ ) =
1

2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ

=
1

2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ )−1dλ

+
1

2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ,

and

(W̄ + ∆̄)Πo(W̄ + ∆̄)−W̄Πo(W̄ ) = − 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ

= − 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ )−1dλ

− 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ,

which lead to the following two propositions:

Proposition 16 Assume W has rank r and ‖∆‖2 < sr/4 where sr is the smallest positive singular
value of W. Then the projection Πr(W̄ ) on the first r eigenvectors of W̄ is such that

‖Πo(W̄ + ∆̄)−Πo(W̄ )‖2 6
4
sr
‖∆‖2

and

‖Πo(W̄ + ∆̄)−Πo(W̄ )− (I−ŪŪ>)∆̄Ū S̄−1Ū>−Ū S̄−1Ū>∆̄(I−ŪŪ>)‖2 6
8
s2

r
‖∆̄‖2

2.
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Proof For λ ∈ C we have: ‖(λI−W̄ )−1‖2 > 2/sr and ‖(λI−W̄ − ∆̄)−1‖2 > 4/sr, which implies

‖Πr(W̄ + ∆̄)−Πr(W̄ )‖2 6
1

2π

I

C
‖(λI−W̄ )−1‖2‖∆‖2‖(λI−W̄ − ∆̄)−1‖2

6

(

1
2π

2π
sr

2

)

‖∆‖2
2
sr

4
sr

.

In order to prove the other result, we simply need to compute:

1
2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ )−1dλ = ∑

i, j

ūi ū>i ∆ ūj ū>j
1

2iπ

I

C

1
(λ− s̄i)(λ− s̄j)

dλ

= ∑
i, j

ūi ū>i ∆ ūj ū>j

(

1i/∈int(C )1 j∈int(C )

s̄i
+

1 j/∈int(C )1i∈int(C )

s̄j

)

= (I−ŪŪ>)∆̄Ū S̄−1Ū> +Ū S̄−1Ū>∆̄(I−ŪŪ>).

Proposition 17 Assume W has rank r and ‖∆‖2 < sr/4 where sr is the smallest positive singular
value of W. Then the projection Πr(W̄ ) on the first r eigenvectors of W̄ is such that

‖Πo(W̄ + ∆̄)(W̄ + ∆̄)−Πo(W̄ )W̄‖2 6 2‖∆‖2

and

‖Πo(W̄ + ∆̄)(W̄ + ∆̄)−Πo(W̄ )W̄ +(I−ŪŪ>)∆̄(I−ŪŪ>)‖2 6
4
sr
‖∆̄‖2

2.

Proof For λ ∈ C we have: ‖(λI−W̄ )−1‖2 > 2/sr and ‖(λI−W̄ − ∆̄)−1‖2 > 4/sr, which implies

‖Πr(W̄ + ∆̄)−Πr(W̄ )‖2 6
1

2π

I

C
|λ|‖(λI−W̄ )−1‖2‖∆‖2‖(λI−W̄ − ∆̄)−1‖2

6

(

1
2π

2π
sr

2

)

sr

2
‖∆‖2

2
sr

4
sr

.

In order to prove the other result, we simply need to compute:

− 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ )−1dλ = −∑

i, j

ūi ū>i ∆ ūj ū>j
1

2iπ

I

C

λ
(λ− s̄i)(λ− s̄j)

dλ

= −∑
i, j

ūi ū>i ∆ ūj ū>j
(

1i∈int(C )1 j∈int(C )

)

= −(I−ŪŪ>)∆̄(I−ŪŪ>).

The variations of Π(W̄ ) translates immediately into variations of the singular projections UU>

and VV>. Indeed we get that the first order variation of UU> is −(I−UU>)∆V S−1U> and the
variation of V is equal to −(I−VV>)∆>US−1V>, with errors bounded in spectral norm by 8

s2
r
‖∆‖2

2.

Similarly, when restricted to the small singular values, the first order expansion is (I−UU>)∆(I−
VV>), with error term bounded in spectral norm by 4

sr
‖∆‖2

2. Those results lead to the following
proposition that gives a local sufficient condition for rank(W +∆) > rank(W ):
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Proposition 18 Assume W has rank r < min{p,q} with ordered singular value decomposition W =
U Diag(s)V>. If 4

sr
‖∆‖2

2 < ‖(I−UU>)∆(I−VV>)‖2, then rank(W +∆) > r.

Appendix B. Some Facts about the Trace Norm

In this appendix, we review known properties of the trace norm that we use in this paper. Most of
the results are extensions of similar results for the `1-norm on vectors. First, we have the following
result:

Lemma 19 (Dual norm, Fazel et al., 2001) The trace norm ‖ · ‖∗ is a norm and its dual norm is
the operator norm ‖ · ‖.

Note that the dual norm N(W ) is defined as Boyd and Vandenberghe (2003):

N(W ) = sup
‖V‖∗61

trW>V.

This immediately implies the following result:

Lemma 20 (Fenchel conjugate) We have: max
W∈Rp×q

trW>V −‖W‖∗ = 0 if ‖V‖ 6 1 and +∞ other-

wise.

In this paper, we need to compute the subdifferential and directional derivatives of the trace
norm. We have from Recht et al. (2007) or Borwein and Lewis (2000):

Proposition 21 (Subdifferential) If W = U Diag(s)V> with U ∈ R
p×m and V ∈ R

q×m having or-
thonormal columns, and s ∈ R

m is strictly positive, is the singular value decomposition of W, then
‖W‖∗ = ∑m

i=1 si and the subdifferential of ‖ · ‖∗ is equal to

∂‖ · ‖∗(W ) =
{

UV> +M, such that ‖M‖2 6 1, U>M = 0 and MV = 0
}

.

This result can be extended to compute directional derivatives:

Proposition 22 (Directional derivative) The directional derivative at W = USV > is equal to:

lim
ε→0+

‖W + ε∆‖∗−‖W‖∗
ε

= trU>∆V +‖U>
⊥ ∆V⊥‖∗,

where U⊥ ∈ R
p×(p−m) and V⊥ ∈ R

q×(q−m) are any orthonormal complements of U and V .

Proof From the subdifferential, we get the directional derivative (Borwein and Lewis, 2000) as

lim
ε→0+

‖W + ε∆‖∗−‖W‖∗
ε

= max
V∈∂‖·‖∗(W )

tr∆>V

which exactly leads to the desired result.

The final result that we use is a bit finer as it gives an upper bound on the error in the previous
limit:
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Proposition 23 Let W =U Diag(s)V> the ordered singular value decomposition, where rank(W ) =
r, s > 0 and U⊥ and V⊥ be orthogonal complement of U and V ; then, if ‖∆‖2 6 sr/4:

∣

∣

∣
‖W +∆‖∗−‖W‖∗− trU>∆V −‖U>

⊥ ∆V⊥‖∗
∣

∣

∣
6 16min{p,q} s2

1

s3
r
‖∆‖2

2.

Proof The trace norm of ‖W + ∆‖∗ may be divided into the sum of the r largest and the sum of
the remaining singular values. The sums of the remaining ones are given through Proposition 17
by ‖U>

⊥ ∆V⊥‖∗ with an error bounded by min{p,q} 4
sr
‖∆‖2

2. For the first r singular values, we need
to upperbound the second derivative of the sum of the r largest eigenvalues of W̄ + ∆̄ with strictly
positive eigengap, which leads to the given bound by using the same Cauchy residue technique de-
scribed in Appendix A.

Appendix C. Proofs

In this appendix, we give the proofs of the results presented in the paper.

C.1 Proof of Lemma 2

We let denote S ∈ {0,1}nx×ny the sampling matrix; that is, Si j = 1 if the pair (i, j) is observed and
zero otherwise. We let denote X̃ and Ỹ the data matrices. We can write Mk = X̃>δik δ>jkỸ and:

1
n

n

∑
k=1

vec(Mk)vec(Mk)
> =

1
n

n

∑
k=1

(Ỹ ⊗ X̃)> vec(δik δ
>
jk)vec(δik δ

>
jk)

>(Ỹ ⊗ X̃)

=
1
n
(Ỹ ⊗ X̃)> Diag(vec(S))(Ỹ ⊗ X̃),

which leads to (denoting Σ̂xx = n−1
x X̃>X̃ and Σ̂yy = n−1

x Ỹ>Ỹ ):
(

1
n

n

∑
k=1

vec(Mk)vec(Mk)
>− Σ̂yy ⊗ Σ̂xx

)

=
1
n
(Ỹ ⊗ X̃)> Diag(vec(S−n/nxny))(Ỹ ⊗ X̃).

We can thus compute the squared Frobenius norm:
∥

∥

∥

∥

∥

1
n

n

∑
k=1

vec(Mk)vec(Mk)
>− Σ̂yy ⊗ Σ̂xx

∥

∥

∥

∥

∥

2

F

=
1
n2 trDiag(vec(S−n/nxny))(ỸỸ>⊗ X̃ X̃>)Diag(vec(S−n/nxny))(ỸỸ>⊗ X̃ X̃>)

=
1
n2 ∑

i, j,i′, j′
(Si j −n/nxny)(ỸỸ>⊗ X̃ X̃>)i j,i′ j′(Si′ j′ −n/nxny)(ỸỸ>⊗ X̃ X̃>)i j,i′ j′ .

We have, by properties of sampling without replacement (Hoeffding, 1963):

E(Si j −n/nxny)(Si′ j′ −n/nxny) = n/nxny(1−n/nxny) if (i, j) = (i′, j′),

E(Si j −n/nxny)(Si′ j′ −n/nxny) = −n/nxny(1−n/nxny)
1

nxny −1
if (i, j) 6= (i′, j′).
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This implies

E(‖1
n

n

∑
k=1

vec(Mk)vec(Mk)
>− Σ̂yy ⊗ Σ̂xx‖2

F |X̃ ,Ỹ )

=
1

nxnyn ∑
i, j

(ỸỸ>⊗ X̃ X̃>)2
i j,i j −

1
(nxny −1)nxnyn ∑

(i, j)6=(i′, j′)

(ỸỸ>⊗ X̃ X̃>)2
i j,i′ j′

6
2

nxnyn ∑
i, j

‖ỹ j‖4‖x̃i‖4.

This finally implies that

E

∥

∥

∥

∥

∥

1
n

n

∑
k=1

vec(Mk)vec(Mk)
>−Σyy ⊗Σxx

∥

∥

∥

∥

∥

2

F

6
4
n ∑

i, j

E‖x‖4
E‖y‖4 +2E‖Σ̂xx −Σxx‖2

FE‖Σ̂yy‖2
F +2E‖Σ̂yy −Σyy‖2

F‖Σxx‖2
F

6 CE‖x‖4
E‖y‖4 × (

1
n

+
1
ny

+
1
nx

),

for some constant C > 0. This implies (A2). To prove the asymptotic normality in (A3), we
use the martingale central limit theorem (Hall and Heyde, 1980) with sequence of σ-fields Fn,k =
σ(X̃ ,Ỹ ,ε1, . . . ,εk,(i1, j1), . . . ,(ik, jk)) for k 6 n. We consider ∆n,k = n−1/2εik jk y jk ⊗ xik ∈ R

pq as the
martingale difference. We have E(∆n,k|Fn,k−1) = 0 and

E(∆n,k∆>
n,k|Fn,k−1) = n−1σ2y jk y

>
jk ⊗ xik x

>
ik ,

with E(‖∆n,k)‖4) = O(n−2) because of the finite fourth order moments. Moreover,

n

∑
k=1

E(∆n,k∆>
n,k|Fn,k−1) = σ2Σ̂mm,

and thus tends in probability to σ2Σyy ⊗Σxx because of (A2). The assumptions of the martingale
central limit theorem are met, we have that ∑n

k=1 vec(∆n,k) is asymptotically normal with mean zero
and covariance matrix σ2Σyy ⊗Σxx, which concludes the proof.

C.2 Proof of Proposition 4

We may first restrict minimization over the ball {W, ‖W‖∗ 6 ‖Σ̂−1
mmΣ̂Mz‖∗} because the optimum

value is less than the value for W = Σ̂−1
mmΣ̂Mz. Since this random variable is bounded in probabil-

ity, we can reduce the problem to a compact set. The sequence of continuous random functions
W 7→ 1

2 vec(W −W)>Σ̂mm vec(W −W)− trW>Σ̂Mε + λn‖W‖∗ converges pointwise in probability
to W 7→ 1

2 vec(W −W)>Σmm vec(W −W)+ λ0‖W‖∗ with a unique global minimum (because Σmm

is assumed invertible). We can thus apply standard result of consistency in M-estimation (Van der
Vaart, 1998; Shao, 2003).
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C.3 Proof of Proposition 7

We consider the result of Proposition 6: ∆̂ = n1/2(Ŵ −W) is asymptotically normal with mean

zero and covariance σ2Σ−1
mm. By Proposition 18 in Appendix B, if 4n−1/2

sr
‖∆̂‖2

2 < ‖U>
⊥∆̂V⊥‖2, then

rank(Ŵ ) > r. For a random variable Θ with normal distribution with mean zero and covariance

matrix σ2Σ−1
mm, we let denote f (C) = P( 4C−1/2

sr
‖Θ‖2

2 < ‖U>
⊥ΘV⊥‖2). By the dominated convergence

theorem, f (C) converges to one when C → ∞. Let ε > 0, thus there exists C0 > 0 such that f (C0) >

1− ε/2. By the asymptotic normality result, P(
4C−1/2

0
sr

‖∆̂‖2
2 < ‖U>

⊥∆̂V⊥‖2) converges to f (C0) thus

∃n0 > 0 such that ∀n > n0, P(
4C−1/2

0
sr

‖∆̂‖2
2 < ‖U>

⊥∆̂V⊥‖2) > f (C0)− ε/2 > 1− ε, which concludes

the proof, because P( 4n−1/2

sr
‖∆̂‖2

2 < ‖U>
⊥∆̂V⊥‖2) > P(

4C−1/2
0
sr

‖∆̂‖2
2 < ‖U>

⊥∆̂V⊥‖2) as soon as n > C0.

C.4 Proof of Proposition 8

This is the same result as Fu and Knight (2000), but extended to the trace norm minimization, simply
using the directional derivative result of Proposition 22 and the epiconvergence theorem from Geyer
(1994, 1996). Indeed, if we denote Vn(∆) = vec(∆)>Σ̂mm vec(∆)− tr∆>n1/2Σ̂Mε + λ0n1/2(‖W +
n−1/2∆‖∗−‖W‖∗) and V (∆) = vec(∆)>Σmm vec(∆)− tr∆>A+λ0

[

trU>∆V+‖U>
⊥∆V⊥‖∗

]

, then for
each ∆, Vn(∆) converges in probability to V (∆), and V is strictly convex, which implies that it has
an unique global minimum; thus the epi-convergence theorem can be applied, which concludes the
proof.

Note that a simpler analysis using regular tools in M-estimation leads to Ŵ = W + n−1/2∆̂ +
op(n−1/2), where ∆̂ is the unique global minimizer of

min
∆∈Rp×q

1
2

vec(∆)>Σmm vec(∆)− tr∆>(n1/2Σ̂Mε)+λ0

[

trU>∆V+‖U>
⊥∆V⊥‖∗

]

,

that is, we can actually take A = n1/2Σ̂Mε (which is asymptotically normal with correct moments).

C.5 Proof of Proposition 9

We let denote ∆̂ = n1/2(Ŵ −W). We first show that limsupn→∞ P(rank(Ŵ ) = r) is smaller than the
proposed limit a. We consider the following events:

E0 = {rank(Ŵ ) = r}
E1 = {‖n−1/2∆̂‖2 < sr/2}

E2 =

{

4n−1/2

sr
‖∆̂‖2

2 < ‖U>
⊥∆̂V⊥‖2

}

.

By Proposition 18 in Appendix B, we have E1∩E2 ⊂Ec
0 , and thus it suffices to show that P(E1) tends

to one, while limsupn→∞ P(Ec
2) 6 a. The first assertion is a simple consequence of Proposition 8.

Moreover, by Proposition 8, ∆̂ converges in distribution to the unique global optimum ∆(A) of
an optimization problem parameterized by a vector A with normal distribution. For a given η > 0,
we consider the probability P(‖U>

⊥∆(A)V⊥‖2 6 η). For any A, when η tends to zero, the indicator
function 1‖U>

⊥∆(A)V⊥‖26η converges to 1‖U>
⊥∆(A)V⊥‖2=0, which is equal to 1‖Λ(A)‖26λ0

, where

vec(Λ(A)) =
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm((V⊗U)vec(I)−vec(A))

)

.
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By the dominated convergence theorem, P(‖U>
⊥∆(A)V⊥‖2 6 η) converges to

a = P(‖Λ(A)‖2 6 λ0),

which is the proposed limit. This limit is in (0,1) because of the normal distribution has an invertible
covariance matrix and the set {‖Λ‖2 6 1} and its complement have non empty interiors.

Since ∆̂ = Op(1), we can instead consider E3 = { 4n−1/2

sr
M2 < ‖U>

⊥∆̂V⊥‖2} for a particular M,
instead of E2. Then following the same line or arguments than in Appendix C.3, we conclude that
limsupn→∞ P(Ec

3) 6 a, which concludes the first part of the proof.

We now show that liminfn→∞ P(rank(Ŵ ) = r) > a. A sufficient condition for rank consistency
is the following: we let denote Ŵ =USV> the singular value decomposition of Ŵ and we let denote
Uo and Vo the singular vectors corresponding to all but the r largest singular values. Since we
have simultaneous singular value decompositions, a sufficient condition is that rank(Ŵ ) > r and
∥

∥U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo
∥

∥

2 < λn(1−η). If ‖Λ(n1/2Σ̂Mε)‖ 6 λ0(1−η), then, by Lemma 11,
U>
⊥∆(n1/2Σ̂Mε)V⊥ = 0, and we get, using the proof of Proposition 8 and the notation Â = n1/2Σ̂Mε:

U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo = U>
o n−1/2 (Σ̂mm∆(Â)− Â

)

Vo +op(n
−1/2).

Moreover, because of regular consistency and a positive eigengap for W, the projection onto the
first r singular vectors of Ŵ converges to the projection onto the first r singular vectors of W (see
Appendix A), which implies that the projection onto the orthogonal is also consistent, that is, UoU>

o
converges in probability to U⊥U>

⊥ and VoV>
o converges in probability to V⊥V>

⊥. Thus:
∥

∥

∥
U>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo

∥

∥

∥

2
=

∥

∥

∥
UoU>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

VoV>
o

∥

∥

∥

2

= n−1/2‖U⊥U>
⊥(Σ̂mm∆(Â)− Â)V⊥V>

⊥‖2 +op(n
−1/2)

= n−1/2‖Λ(A)‖2 +op(n
−1/2).

This implies that

lim inf
n→∞

∥

∥

∥
U>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo

∥

∥

∥

2
< λn(1−η) > lim inf

n→∞
P(‖Λ(Â)‖2 6 λ0(1−η))

which converges to a when η tends to zero, which concludes the proof.

C.6 Proof of Proposition 10

This is the same result as Fu and Knight (2000), but extended to the trace norm minimization, simply
using the directional derivative result of Proposition 22. If we write Ŵ = W+λn∆̂, then ∆̂ is defined
as the global minimum of

Vn(∆) =
1
2

vec(∆)>Σ̂mm vec(∆)−λ−1
n tr∆>Σ̂Mε +λ−1

n (‖W+λn∆‖∗−‖W‖∗)

=
1
2

vec(∆)>Σmm vec(∆)+Op(ζn‖∆‖2
2)+Op(λ−1

n n−1/2)+ tr∆>Σ̂Mε

+trU>∆V+‖U>
⊥∆V⊥‖∗ +Op(λn‖∆‖2

2)

= V (∆)+Op(ζn‖∆‖2
2)+Op(λ−1

n n−1/2)+Op(λn‖∆‖2
2).
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More precisely, if Mλn < sr/2,

E sup
‖∆‖26M

|Vn(∆)−V (∆)| = cst×
(

M2
E‖Σ̂mm −Σmm‖F +Mλ−1

n E(‖Σ̂Mε‖2)1/2 +λnM2
)

= O(M2ζn +Mλ−1
n n−1/2 +λnM2).

Moreover, V (∆) achieves its minimum at a bounded point ∆0 6= 0. Thus, by Markov inequality the
minimum of Vn(∆) over the ball ‖∆‖2 < 2‖∆0‖2 is with probability tending to one strictly inside and
is thus also the unconstrained minimum, which leads to the proposition.

C.7 Proof of Proposition 11

The optimal ∆ ∈ R
p×q should be such that U>

⊥∆V⊥ has low rank, where U⊥ ∈ R
p×(p−r) and V⊥ ∈

R
q×(q−r) are orthogonal complements of the singular vectors U and V. We now derive the condition

under which the optimal ∆ is such that U>
⊥∆V⊥ is actually equal to zero: we consider the minimum

of 1
2 vec(∆)>Σmm vec(∆) + vec(∆)> vec(UV>) with respect to ∆ such that vec(U>

⊥∆V⊥) = (V⊥⊗
U⊥)> vec(∆) = 0. The solution of that constrained optimization problem is obtained through the
following linear system (Boyd and Vandenberghe, 2003):

(

Σmm (V⊥⊗U⊥)
(V⊥⊗U⊥)> 0

)(

vec(∆)
vec(Λ)

)

=

(

−vec(UV>)
0

)

,

where Λ ∈ R
(p−r)×(q−r) is the Lagrange multiplier for the equality constraint. We can solve explic-

itly for ∆ and Λ which leads to

vec(Λ) =
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm(V⊗U)vec(I)

)

,

and
vec(∆) = −Σ−1

mm vec(UV>−U⊥ΛV>
⊥).

Then the minimum of the function F(∆) in Eq. (2) is such that U>
⊥∆V⊥ = 0 (and thus equal to

∆ defined above) if and only if for all Θ ∈ R
p×q, the directional derivative of F at ∆ in the direction

Θ is nonnegative, that is:

lim
ε→0+

F(∆+ εΘ)−F(∆)

ε
> 0.

By Proposition 22, this directional derivative is equal to

trΘ>(Σmm∆+UV>)+‖U>
⊥ΘV⊥‖∗ = trΘ>U⊥ΛV⊥ +‖U>

⊥ΘV⊥‖∗
= trΛ>U>

⊥ΘV⊥ +‖U>
⊥ΘV⊥‖∗.

Thus the directional derivative is always non negative if for all Θ′ ∈R
(p−r)×(q−r), trΛ>Θ′+‖Θ′‖∗ >

0, that is, if and only if ‖Λ‖2 6 1, which concludes the proof.

C.8 Proof of Theorem 12

Regular consistency is obtained by Corollary 5. We consider the problem in Eq. (2) of Proposi-
tion 10, where λnn1/2 → ∞ and λn → 0. Since Eq. (5) is satisfied, the solution ∆ indeed satisfies
U>
⊥∆V⊥ = 0 by Lemma 11.
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We have Ŵ = W + λn∆ + op(λn) and we now show that the optimality conditions are satis-
fied with rank r. From the regular consistency, the rank of Ŵ is, with probability tending to one,
larger than r (because the rank is lower semi-continuous function). We now need to show that
it is actually equal to r. We let denote Ŵ = USV> the singular value decomposition of Ŵ and
we let denote Uo and Vo the singular vectors corresponding to all but the r largest singular val-
ues. Since we have simultaneous singular value decompositions, we simply need to show that,
∥

∥U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo
∥

∥

2 < λn with probability tending to one. We have:

U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo = U>
o

(

λnΣ̂mm∆+op(λn)−Op(n
−1/2)

)

Vo

= λnU>
o (Σmm∆)Vo +op(λn).

Moreover, because of regular consistency and a positive eigengap for W, the projection onto the
first r singular vectors of Ŵ converges to the projection onto the first r singular vectors of W (see
Appendix A), which implies that the projection onto the orthogonal is also consistent, that is, UoU>

o
converges in probability to U⊥U>

⊥ and VoV>
o converges in probability to V⊥V>

⊥. Thus:

∥

∥

∥
U>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo

∥

∥

∥

2
=

∥

∥

∥
UoU>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

VoV>
o

∥

∥

∥

2

= λn‖U⊥U>
⊥(Σmm∆)V⊥V>

⊥‖2 +op(λn)

= λn‖Λ‖2 +op(λn).

This implies that that the last expression is asymptotically of magnitude strictly less than one, which
concludes the proof.

C.9 Proof of Theorem 13

We have seen earlier that if n1/2λn tends to zero and λn tends to zero, then Eq. (4) is necessary
for rank-consistency. We just have to show that there is a subsequence that does satisfy this. If
liminfλn > 0, then we cannot have consistency (by Proposition 6), thus if we consider a subse-
quence, we can always assume that λn tends to zero.

We now consider the sequence n1/2λn, and its accumulation points. If zero or +∞ is one of
them, then by Propositions 7 and 9, we cannot have rank consistency. Thus, for all accumulation
points (which are finite and strictly positive), by considering a subsequence, we are in the situation
where n1/2λn tends to +∞ and λn tends to zero, which implies Eq. (4), by definition of Λ in Eq. (3)
and Lemma 11.

C.10 Proof of Theorem 15

We let denote U r
LS and V r

LS the first r columns of ULS and VLS and Uo
LS and V o

LS the remaining columns;
we also denote sr

LS the corresponding first r singular values and so
LS the remaining singular values.

From Lemma 14 and results in the appendix, we get that ‖sr
LS − s‖2 = Op(n−1/2) and ‖so

LS‖2 =
Op(n−1/2) and ‖U r

LS(U
r
LS)

>−UU>‖2 = Op(n−1/2) and ‖V r
LS(V

r
LS)

>−VV>‖2 = Op(n−1/2). By writ-
ing ŴA = W+n−1/2∆̂A, ∆̂A is defined as the minimum of

1
2

vec(∆)>Σ̂mm vec(∆)−n1/2tr∆>Σ̂Mε +nλn

(

‖AWB+n−1/2A∆B‖∗−‖AWB‖∗
)

.
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We have:

AU = ULS Diag(sLS)
−γU>

LSU

= Ur
LS Diag(sr

LS)
−γ(Ur

LS)
>U+Uo

LS Diag(so
LS)

−γ(Uo
LS)

>U

= UDiag(s)−γ +Op(n
−1/2)+Op(n

−1/2nγ/2)

= UDiag(s)−γ +Op(n
−1/2nγ/2),

and

AU⊥ = ULS Diag(sLS)
−γU>

LSU⊥
= Ur

LS Diag(sr
LS)

−γ(Ur
LS)

>U⊥ +Uo
LS Diag(so

LS)
−γ(Uo

LS)
>U⊥

= U⊥ Diag(so
LS)

−γ +Op(n
γ/2−1/2)

= Op(n
γ/2).

Similarly we have: BV = VDiag(s)−γ + Op(n−1/2nγ/2) and BV = Op(nγ/2). We can decompose

any ∆ ∈ R
p×q as ∆ = (U U⊥)

(

∆rr ∆ro

∆or ∆oo

)

(V V⊥)>. We have assumed that λnn1/2nγ/2 tends to

infinity. Thus,

• if U>
⊥∆ = 0 and ∆V⊥ = 0 (i.e., if ∆ is of the form U∆rrV>),

nλn‖AWB+n−1/2A∆B‖∗−‖AWB‖∗ 6 λnn1/2‖A∆B‖∗
= λnn1/2‖Diag(s)−γ∆rr Diag(s)−γ‖∗

+Op(λnnγ/2)

= Op(λnn1/2)

tends to zero.

• Otherwise, nλn‖AWB + n−1/2A∆B‖∗−‖AWB‖∗ is larger than λnn1/2‖A∆B‖∗− 2‖AWB‖∗.
The term ‖AWB‖∗ is bounded in probability because we can write AWB = UDiag(s)1−2γV>+
Op(n−1/2+γ/2) and γ 6 1. Besides, λnn1/2‖A∆B‖∗ is tending to infinity as soons as any of
∆or, ∆ro or ∆rr are different from zero. Indeed, by equivalence of finite dimensional norms
λnn1/2‖A∆B‖∗ is larger than a constant times λnn1/2‖A∆B‖F , which can be decomposed in
four pieces along (U,U⊥) and (V,V⊥), corresponding asymptotically to ∆oo, ∆or, ∆ro or ∆rr.
The smallest of those terms grows faster than λnn1/2+γ/2, and thus tends to infinity.

Thus, since Σmm is invertible, by the epi-convergence theorem of Geyer (1994, 1996), ∆̂A con-
verges in distribution to the minimum of

1
2

vec(∆)>Σmm vec(∆)−n1/2tr∆>Σ̂Mε,

such that U>
⊥∆ = 0 and ∆V⊥ = 0. This minimum has a simple asymptotic distribution, namely ∆ =

UΘV> and Θ is asymptotically normal with mean zero and covariance matrix
σ2
[

(V⊗U)>Σmm(V⊗U)
]−1

, which leads to the consistency and the asymptotic normality.
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In order to finish the proof, we consider the optimality conditions which can be written as A∆B
and

A−1
(

Σ̂mm∆̂A −n1/2Σ̂Mε

)

B−1

having simultaneous singular value decompositions with proper decays of singular values, that is,
such that the first r are equal to λnn1/2 and the remaining ones are less than λnn1/2.

From the asymptotic normality we get that Σ̂mm∆̂A − n1/2Σ̂Mε is Op(1), we can thus consider
matrices of the form A−1ΘB−1 where Θ is bounded, the same way we considered matrices of the
form A∆B.

We have:

A−1U = ULS Diag(sLS)
γU>

LSU

= Ur
LS Diag(sr

LS)
γ(Ur

LS)
>U+Uo

LS Diag(so
LS)

γ(Uo
LS)

>U

= UDiag(s)γ +Op(n
−1/2),

and

A−1U⊥ = ULS Diag(sLS)
γU>

LSU⊥
= Ur

LS Diag(sr
LS)

γ(Ur
LS)

>U⊥ +Uo
LS Diag(so

LS)
γ(Uo

LS)
>U⊥

= Op(n
−1/2)+U⊥ Diag(so

LS)
γ,

with similar expansions for B−1V and B−1V⊥. We obtain the first order expansion:

A−1ΘB−1 = UDiag(s)γΘrr Diag(s)γV> +U⊥ Diag(so
LS)

γΘor Diag(s)γV>

+UDiag(s)γΘro Diag(so
LS)

γV>
⊥ +U⊥ Diag(so

LS)
γΘoo Diag(so

LS)
γV>

⊥

Because of the regular consistency, the first term is of the order of λnn1/2 (so that the first r sin-
gular values of Ŵ are strictly positive), while the three other terms have norms less than Op(n−γ/2)
which is less than Op(n1/2λn) by assumption. This concludes the proof.
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